
SEINA: A Stealthy and Effective Internal Attack in
Hadoop Systems

Jiayin Wang∗, Teng Wang∗, Zhengyu Yang†, Ying Mao∗, Ningfang Mi†, and Bo Sheng∗
∗Department of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
†Department of Electrical and Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115

Abstract—Big data processing frameworks such as Hadoop [1]
have been widely adopted in the past few years. However, the
security issues in such large scale systems have not been well
studied yet. While most of the prior work is focused on the
data privacy and protection, this paper investigates a potential
attack from a compromised internal node against the overall
system performance. We explore the vulnerabilities of the existing
Hadoop system, and develop an effective attack launched from
the compromised node that can significantly degrade the data
processing performance of the cluster without being detected and
blacklisted for job execution. In addition, we present a mitigation
scheme that protects a Hadoop system from such attack. We
conduct experiments on real systems, and the results show that
this attack greatly slows down the job executions in the native
Hadoop system even with some basic defense mechanisms. Our
mitigation scheme, while causing a minor overhead in normal
circumstances, can keep the whole cluster running efficiently
under this attack from the compromised internal node.

I. INTRODUCTION

With the rise of cloud computing and big data analytics,
more and more users are using big data processing frameworks
to analyze various types of data. Users either own or rent
a large-scale computing cluster to deploy a framework such
as Hadoop [1], [2] and Spark [3], [4], and process these
large volumes of data. Some companies also offer the data
processing service, such as AWS [5].

Since big data analytics provides critical information to a
wide set of applications, the security of the processing plat-
form becomes a serious concern. While most of the prior work
considers the data security and privacy, this paper considers a
novel attack that aims to degrade the processing performance
of the entire cluster. The problem is motived by two facts.
First, when using a large scale cluster with tens or hundreds
of machines, users may not be able to harden and protect each
node perfectly. Security breach and node comprise are possible
in practice. Second, once a node is compromised, the data loss
is not the only damage. Job execution time is also crucial to
such a cluster, especially when it is processing a large batch
of jobs.

In this paper, we develop a stealthy and effective attack
SEINA, that once launched can significantly prolong the job
execution time. The main idea is to manipulate the task exe-
cution on the compromised node by pausing it and resuming
it when needed. This attack is stealthy as it does not falsify
any information or violate the data processing protocol. We
also consider that the cluster may have deployed some defense
mechanisms. Our attack will follow the security policy without

triggering any alarm. On the other hand, this attack is very
effective because it is designed based on the understanding
of the data processing framework. Our main intuition is to
explore the vulnerability of the current speculation scheme
which starts a redundant task when the original task execution
becomes slow. In this paper, we use Hadoop as the target
platform, but the attack can be applied to any other frameworks
with built-in speculation scheme. Our attack manipulates the
execution timeline of the tasks assigned to the compromised
node so that the whole cluster has to wait a long time for the
finish of those tasks. With a careful management, this attack
can yield an extremely long delay which is much more serious
than just not participating the computation.

In addition, we present a mitigation scheme that helps
protect the existing Hadoop system against this new attack.
With a small overhead in regular circumstances, the mitigation
scheme can greatly improve the performance under attack.
We have implemented the attack and mitigation schemes in
Hadoop YARN platform, and conducted extensive experiments
in real system environments. The results show that this new
attack is devastating in the native Hadoop system, and our
mitigation scheme is an effective defense against it.

The rest of this paper is organized as follows: Section II
reviews the related work and Section III introduces the back-
ground of Hadoop system and formulates our problem. The
design of the new attack SEINA is presented in Section IV,
and we discuss the mitigation scheme in Section V. Finally,
we present the evaluation results in Section VI and conclude
in Section VII.

II. RELATED WORK

As one of the most popular open-source implementations
of MapReduce [2], Hadoop [1] is wildly being adopted in Big
Data processing. However, many comprehensive studies [6]–
[8] also indicated that challenges and issues of security in
cloud computing still remain in Hadoop, including the impacts
of multi-tenancy, elasticity and third party control, upon the
security requirements.

To solve these security related issues, a built-in secure mode
module [9] is proposed in the native Hadoop YARN [10],
which consists of three mechanisms: authentication (i.e., by
using Kerberos or Delegation Tokens between core Hadoop
services and clients), service level authorization (i.e., clients’
permissions to access given Hadoop services) and data con-

2

fidentiality (i.e., data encryption on Hadoop services/clients
RPC and cross-data-node block data transferring).

However, Hadoop is not ready for secure hybrid-cloud com-
puting in large scale systems [11], [12], since it is originally
designed to work on a single cloud and not aware of the
presence of the data with different security levels. To overcome
this challenge, a secure data-intensive computing system called
Sedic [13] is proposed, which schedules individual map tasks
over a carefully planned data placement, in a way that the tasks
within the private cloud only work on sensitive data and those
on the public cloud only processes public data. [14] further
proposed a novel DDoS detection method based on Hadoop
that implements a HTTP GET flooding detection algorithm
in Hadoop on the distributed computing platform. Later, a
security solution SAPSC [15] is proposed based on the HDFS
layer, with master/slave architecture under the environment of
a Private Storage Cloud extended with a Partner/Public Cloud.
Meanwhile, a fullscale, data-centric, reputation-based trust
management system for Hadoop clouds called Hatman [16] is
developed to leverage the clouds distributed computing power
to strengthen its security, which is achieved by formulating
both consistency-checking and trust management as secure
cloud computations.

III. BACKGROUND AND SYSTEM MODELS

In this section, we take Hadoop as an instance to introduce
the background of big data processing frameworks and the
vulnerabilities to potential attacks from a compromised node.
At the end, we formulate the problem by presenting the system
model, security model, and adversaries’ objective.

A. Architecture of big data processing frameworks

Big data processing frameworks, such as Hadoop, are
usually deployed in a large scale cluster consisting of a
master node and many slave nodes. Users submit their jobs
to the master node, and each job is composed of many tasks
which can be executed in parallel in the cluster. Centralized
controlling modules are deployed at the master node in charge
of monitoring slave nodes’ status and dispatching tasks to slave
nodes for execution.

Particularly in Hadoop YARN, ResourceManager in the
master node manages the slave nodes and the resource al-
location. And NodeManager is deployed on each slave node.
Each job first launches a special task, ApplicationMaster, on a
slave node. ApplicationMaster splits the job to multiple tasks,
generates resource requests that are sent to ResourceManager,
and negotiates resources with the scheduler in ResourceMan-
ager. In turn, ResourceManager responds to a specific resource
request by granting a resource container which is an allocation
of a specific amount of resources (CPU, memory etc.) on a
specific NodeManager. Then ApplicationMaster works with
NodeManagers to execute tasks in the containers. One task can
execute in one container and the container will terminate once
the task is finished. In addition, every NodeManager needs to
report the available resources of its slave node periodically to
ResourceManager.

B. How the cluster handle slow executions

In this paper, our design of the attack targets on the
vulnerability of speculation scheme which is a common so-
lution for handling slow task execution in big data processing
platforms. In this subsection, we briefly introduce how the
speculation works in Hadoop which helps understand the
attacking technique presented in the next section.

In the Hadoop system, if a task is detected as running
slowly, a redundant task (speculative task) will be created
in the system as an alternative. Hadoop runs a background
speculator service that maintains a statistics table to record
the average execution time of a task for each job. The data
in this table is updated upon the completion of each task.
The speculator service will periodically check this table and
the running tasks to find the candidate tasks for speculative
execution. Specifically, it enumerates all the running tasks and
estimate the finish time of each task ti based on the elapsed
time and the current progress as shown in Eq(1), where Tnow
is the current timestamp, Tstart(i) is the starting time of task
ti, Tmean is average execution time with the task type of
ti and PG(i) indicates ti’s current progress. In addition, the
speculator service estimates the finish time of the alternative
speculative execution in Eq(2). The execution time of the
speculative task is estimated as the mean value of the historic
execution times of the same type of tasks maintained in the
statistic table.

EstEnd =
Tnow − Tstart(i)

PG(i)
+ Tstart(i) (1)

EstRepEnd = Tmean + Tnow (2)

The speculator service will create a new task attempt of the
selected running task if EstEnd > EstRepEnd.

In addition, ApplicationMaster configures a threshold that
every task cannot execute longer than (Tterm). Above all,
a redundant task will be created for a running task when:
Tnow > min(PG(i)

1−PG(i)Tmean, Tterm) + Tstart(i).

C. Problem Formulation

In our problem setting, we consider that a set of jobs are
submitted to a Hadoop cluster consists of one master node
and m slave nodes. We consider a homogeneous cluster and
assume that for the same type of tasks in the same job, the
execution time of each task is the same, generally denoted as
t. Thus, we assume that the attacker is aware of the execution
time t of each task she or he plans to attack. In practice,
this execution time data can be leant from historic execution
of the same type of tasks because each node including the
compromised node before detected will be assigned with
multiple tasks from the same type of processing.

In addition, we assume that the Hadoop system can apply
a basic defense scheme that detects abnormal task executions
and records the number of their occurrences on each node.
Once the abnormal events happened on a node exceed a
threshold τ , the node is considered suspicious and blacklisted.
In practice, there are various ways to define an abnormal task

3

execution. In this paper, we consider the following represen-
tative definitions referring to different defense schemes:
• Defense I: A task execution is considered abnormal if the

original task is not successfully finished, i.e., the Hadoop
system has to start a speculative task and it is finished
before the original task.

• Defense II: A task execution is considered abnormal if
the task is finished, but the execution time is abnormally
long regardless if the original task is finished or not.

In the design of SEINA, our objective is to develop an
attacking strategy that maximizes the execution time of the
jobs under the basic defense schemes.

Here is a reference table of the notations that will be used
in our analysis. Their detailed definitions will be introduced
in the next section.

m number of nodes in the cluster
ti/t a particular task / execution time of a task
τ abnormality threshold the Hadoop system sets
D(θ, t) delay of a task(execution time t) if it’s paused at progress θ
D(ti) delay of job execution when task ti is attacked

TABLE I: Notations

IV. DESIGN OF SEINA

In this section, we present the details of the attack that
stealthily and effectively prolongs the execution time of a batch
of jobs in a processing cluster.

Once a node is compromised, the adversary gains the full
control, and can launch a wide set of attacks. For example, the
compromised node can refuse to execute the assigned tasks,
report more resource availabilities to attract more tasks, and
delete or revel the hosted data. However, these kinds of attacks
can be easily detected and the Hadoop system will exclude
it from the cluster by listing it in a blacklist. Then the worst
damage is the loss of one computing node, and the data hosted
there.

In this paper, we aim to develop a better attacking strategy
that could cause much more serious performance degradation
than just losing a node. Our main idea is to let the attacker
intendedly delay the execution of victim tasks assigned to the
compromised node which will eventually trigger speculative
tasks to be launched on other nodes. In the rest of this section,
we first present how to delay a task’s execution, and analyze
the additional overhead caused by the attack. Then we further
analyze how a delayed task affects the execution time of a
job and the makespan of multiple jobs. Finally, we present
complete attacking algorithms that target on the three basic
defenses mentioned in the previous section.

A. Delayed execution of a single task

In a Hadoop system, each task is executed in a resource
container which refers to an individual process on the hosting
node. Once a node is compromised, the attacker is able to view
all the running processes, pause and resume their executions
via external process management commands. Therefore, the
attacker can pause the execution in any resource container, and

resume it later if needed. Specifically, if the attacker plans to
delay the execution of a particular task (given the task ID),
she or he can check the Hadoop log messages and find the ID
of the process (PID in Linux) that is executing the task. Then
the attacker can execute the external commands to pause the
specific process.

In the rest of this subsection, we analyze the impact of the
delayed execution, i.e., if the system has to wait and start a
speculative task to finish the task, how much more time it
has to spend comparing to a regular execution. Assume that a
task’s regular execution time is t. The attacker starts to execute
the task at time 0, and pauses the execution when the progress
becomes θ. We use D(t, θ) to indicate the delay caused by this
setting. After the execution is paused, at a given time point
T ≥ θ · t, the expected finish time of the task is T

θ , and the
finish time of a speculative task is T + t. The cluster will
decide to launch a speculative task when

T

θ
> T + t ⇒ T >

t
1
θ − 1

Therefore, the longest delay we can achieve given t and θ is

D(θ, t) = t
1
θ − 1

(3)

The following Fig. 1 illustrates an example of delayed
execution.

Pause execution (= 2/3)

Speculative execution

θ

t

T = 2t

Fig. 1: Intuitions of the attack: In this example, the attacker
pauses the execution of a task when it reaches the progress of
2
3 . The Hadoop system waits until time T = 2 · t to realize
that it worthwhile to start a speculative task. At time T , the
original task is expected to be finished at T

θ = 3
2 · T = 3 · t,

which is the same as starting a speculative task (T + t = 3 · t).

Apparently, D(θ, t) is an increasing function on θ. To cause
the most serious damage, the attacker should pause the task
execution when the progress is very close to 1. However, in
practice, the progress report function in Hadoop is not fine-
grained, and there are also some atomic processes that cannot
be divided. Therefore, the reported progress value is discrete
and bounded when inclining close to 1. We define α ∈ (0, 1)
as the largest progress an unfinished task can reach before the
finish. Then the most delay the attacker can cause for a single
task is

D(α, t) = t
1
α − 1

.

For example, when α = 90%, the delay is D(α, t) = 9 · t
which is quite significant.

4

B. Impact of the delayed tasks on job executions
In this subsection, we further analyze the impact of the

attack on the execution of a job or multiple jobs. Specifically,
we need to answer the following two questions: (1) when the
adversary attacks a task causing D(α, t) delay, what is the
impact on the execution time of the job the victim task belongs
to? and (2) if multiple jobs are running, what is the impact on
the makespan performance.

In a Hadoop MapReduce job, there are two kinds of tasks,
i.e., map tasks and reduce tasks. We assume that the attacker
will mainly focus on the map tasks, because there are much
fewer reduce tasks and thus the compromised node may not get
the chance to host them. Based on this assumption, we further
present the analysis of the overhead of a single job caused by a
delayed map task. Assume that a single job consists of M map
tasks running in a cluster with m nodes. Each node can host r
containers to run the map tasks and each map task’s execution
time is t. The map phase of the job will be finished in the time
of d Mm·r e · t. In particular, the task executions roughly follow
waves. There are b Mm·r c waves for every node, and another
final wave for a subset of nodes.

M

M

M

M

M

M

MM

M

M

M

Node 1

Node 2

Node 3

Delayed execution

Fig. 2: An example of delay execution attack: the delayed task
is the last finished map task in this case.

Assume the attacker delays the execution of a task in i-
th wave, then in the following time period of D(α, t), the
compromised node can offer r − 1 containers to execute the
map tasks. Thus, the finish time of the map phase under attack
is

TM =

{
T ′ d M′

m·r−1
e · t < D(α, t)

T ′ + dM
′−dD(α,t)

t
e·(m·r−1)

m·r e · t otherwise
(4)

where T ′ = i · t+D(α, t) and M ′ =M − i ·m · r.
Referring to Fig. 2, when the attack starts, there are M ′

tasks left to be assigned. Depending on the value of i and
D(α, t), there are two cases in the analysis. First, the delayed
task is the last to finish in the map phase, which indicates the
map phase will take TM = T ′ to finish. The condition for
this case is that the delay D(α, t) is long than the execution
time of the remaining tasks with m · r − 1 containers, i.e.,
d M ′

m·r−1e · t. In the second case, the attacked task is not the
last one in the map phase. After it resumes to the normal
state, the cluster will continue to execute other pending tasks
(M ′ − dD(α,t)

t e · (m · r − 1)) with m · r containers.
For multiple job executions, the impact on the overall

makespan cannot be expressed in a closed form. However,
we can apply the similar analysis to estimate the delay. Due
to the page limit, we omit the details in this paper. Overall,
for a particular task ti, we can derive the delay of the job
execution caused by attacking it, denoted as D(ti).

C. Main algorithm

Finally, we present the complete attacking algorithms based
the analysis of delayed execution attack. We develop different
strategies against each of the two defenses we mentioned.
Against Defense I: The first defense only counts unfinished
tasks and is not effective against an intelligent attack. With
our delayed execution technique, the adversary can easily
bypass abnormality detection and the threshold checking of
τ , and attack every task assigned to the compromised node.
Specifically, the attacker can first normal execute the task
until the progress reaches α, then pauses the execution. The
Hadoop system will eventually start a speculative task after
D(α, t) delay. With the knowledge of the task execution time
and speculation policy, the attacker can estimate the time
when the speculative task will be launched and finished. Then,
the attacker can resume its own task’s execution before the
speculative task’s progress reaches α, i.e., ensure that its task is
finished before the speculative task. In this case, the attacker’s
behavior is not considered abnormal.

Pause execution

Speculative task

Resume execution

Fig. 3: Illustration of the attack against Defense I

Therefore, the best strategy against Defense I is to attack
every task assigned to the compromised node by pausing
each task at progress α, waiting for TA, and then resuming
the execution. The waiting TA can be calculated as TA =
D(α, t) + α · t. In practice, the attacker can make a more
conservative estimation to make sure its task will finish before
the speculative task by setting

TA = β · (D(α, t) + α · t), β ∈ (0, 1)

In our evaluation, we set β = 0.8.
Against Defense II: The second defense is more effective as it
counts the slow execution of tasks. Once the attacker launches
the delayed execution process, it will be detected regardless
if the task is finished or not. In this case, the attacker has to
consider the abnormality threshold τ , and cannot delay every
task assigned to it. The best strategy for the adversary is to
select a set of victim tasks to attack without violating the
abnormality policy. For example, if the system threshold τ is
5%, then the adversary can delay at most 5 tasks out of 100
tasks assigned to the compromised node.

Therefore, the problem of developing the best attacking
strategy becomes how to select k victim tasks to attack in order
to maximize the job execution time. The constraint parameter
k is derived from the abnormality threshold τ . We find that
the special case of this problem is similar to the traditional job
scheduling problem, and can be reducible to the bin-packing
problem which is NP-hard. The proof is omitted due to the
page limit. In this paper, we present a greedy algorithm to
solve the problem. The idea is to iteratively select the task

5

that can cause the longest delay. The detailed algorithm is
shown in Algorithm 1.

Algorithm 1 Attacker’s Algorithm against Defense II
1: Initialize the result set of selected tasks RET = {}
2: For each job’s map task, calculate D(α, t)
3: while |RET | < k do
4: for each job j’s map task do
5: dj1 = D(ti), ti is in the last wave
6: dj2 = D(ti), ti is in the second last wave
7: M ′ =Mj%(m · r)

8: pj = 1−
(

M ′

(m− 1) · r

)
/

(
M ′

m · r

)
9: end for

10: Sort all dj1 · pj and dj2 (totally 2 · j values) in the
descending order

11: Add the first task in the list to the return set RET
12: Rearrange the task executions considering the tasks in

RET being delayed
13: end while

In this algorithm, we use RET to represent the selected
tasks for the attack, initializing it as empty (line 1). Then we
consider each job’s map tasks as the candidates, and calculate
the delayed of each task if it is under attack (line 2). Then
we use a while loop to select k tasks as the targets (lines 3–
13). In each round, we enumerate all the jobs and calculate
two delays for each job’s map tasks. dj1 is the delay caused
by attacking the task in the last wave while dj2 is the delay
when we attack a task in the second last wave. Based on the
analysis in the previous subsection and Eq. 4, we find that
under the same circumstance, it is more effective to delay
the tasks in the tailing waves than the tasks in the earlier
waves. Thus the tasks in the last wave are the best candidate
for the attack. However, not every node would be able to
serve in the last wave. So we consider two candidates for
each job, the task in the second last wave which for sure
will be assigned to the compromised node, and the task in
the last wave which causes the most damage, but may not
be assigned to the compromised node. In our algorithm, we
use pj to represent the probability that the compromised node
can execute a task in the last wave. In line 7, Mj is the total
number of map task in job j, and M ′ is the remainder of
M divided by m · r which is the number of map tasks in
the last wave. The Hadoop resource manager will randomly
pick containers across the cluster to serve these M ′ tasks. The
equation in line 8 calculates the probability pj . Eventually, the
algorithm considers all the candidates, two values from each
job. For the delay caused by the task in the last wave, we use
the expected value of pj ·dj1 for comparison. The best choice
for the attack is the task with the longest delay (lines 10–11).
Once a candidate is selected for the attack, we will consider the
new arrangement of the task executions assuming that tasks in
RET will be delayed by D(α, t). Then the algorithm repeats
the process and selects the next candidate. It terminates when
there are k selected tasks in the result set RET .

V. MITIGATION SCHEME

In this section, we briefly discuss some mitigation schemes
that can protect a Hadoop system from the delayed execution
attack. First, as we have discussed, Defense II is a better
strategy than Defense I. The Hadoop system needs to monitor
the execution time of every task on each node. A abnormally
slow task is a suspicious sign of attacks. However, in practice,
it is difficult to set an appropriate value for the threshold
τ because a benign node may occasionally yield a slow
execution. On the other hand, the attack may behave normally
in the earlier waves, and then attack the last wave or second
last wave to significantly prolong the job execution.

In this paper, we present two techniques that can help reduce
the negative impact when the system is under attack. Our
main intuition is to protect the execution of the last wave
which is the major target and the most important wave for
the job execution. First, the Hadoop system should select the
most reliable or fastest nodes to execute the tasks in the last
wave. Various metrics can be used here to sort all the nodes,
such as the average task execution time and the top/bottom
task execution time. This is a stronger protection than the
abnormality threshold checking. If the compromised node has
launched delay execution in the earlier waves, but still within
the threshold τ , it still has the equal probability to host the
tasks in the last wave. In our mitigation scheme, however, if
the system can find sufficient more reliable nodes (e.g., with no
slow execution at all), the compromised node will be excluded
from executing the last wave.

Second, we propose to change the policy for launching a
speculative task in the last wave. In order to defend the system,
we need a more aggressive policy. We may start a speculative
task even if the estimated finish time of a speculative task is
later than the original task. In our mitigation scheme, when
the original task becomes slow, we use a parameter γ ∈ (0, 1)
to adjust the comparison. Let To and Ts be the estimated
execution time of the original task and a speculative task. In
stead of comparing To and Ts, our scheme checks whether
Ts is short than γ · To. If it is true, a speculative task will be
launched. In our evaluation, we set γ = 0.75.

In fact, both techniques cause additional overhead in regular
circumstances with no attacks. But they do save a lot of
execution time when the system is under attack. In Section VI,
we present evaluation results that show the effectiveness of our
mitigation scheme.

VI. IMPLEMENTATION AND EVALUATION

In this section, we will first introduce the system implemen-
tation and present the performance evaluation results of both
SEINA and our mitigation scheme.

A. System Implementation

First, to achieve the attacking of SEINA, we create a set
of new modules in the node manager: the Container Monitor
(CM), the Container Controller (CC), and the Container Op-
erator (CO). CM is responsible for monitoring the execution
of each container including the status of each container, the

6

execution time of each completed container, the progress of
each running container, and so on. CC is in charge to control a
container to be paused or resumed according to the algorithms
in SEINA and the statistics of CM. While receiving the
commands from CC, CO triggers the process commands in
Linux to pause or resume a container. Second, we implement
our mitigation scheme on Hadoop YARN version 2.7.1. We
modified the RMContainerAllocator of ApplicationMaster to
assign tailing tasks of every job to the appropriate node
managers, and DefaultSpeculator to change the policy for
launching a speculative task in the last wave.

B. Testbed Setup and Workloads

All experiments are conducted on NSF CloudLab platform
at the University of Utah [17]. Each server has 8 ARMv8
cores at 2.4GHz, 64 GB memory and 120 GB storage. We
launched a Hadoop YARN cluster with 1 master node and 8
slave nodes. In each slave node, we configured 16 vcores and
64 GB memory.

Our workloads for evaluation consider general Hadoop
benchmarks with large datasets as the input. In particular,
we use two datasets in our experiments including 20 GB
wiki category links data and 20 GB synthetic data. The
wiki data includes wiki page categories information, and the
synthetic data is generated by the tool TeraGen in Hadoop. We
choose the following three Hadoop benchmarks from Hadoop
examples library to evaluate the performance: (1) Terasort:
Sort (key,value) tuples on the key with the synthetic data as
input. (2) Word Count: Count the occurrences of each word
with a list of Wikipedia documents as input. (3) Wordmean:
Count the average length of the words with a list of Wikipedia
documents as input.

C. Performance Evaluation

Our performance metric is the makespan of a batch of
jobs. In the cluster, we assume only one node manager is
attacked and others can work normally. We mainly compare
the changing of the makespan in various situations. Two
categories of tests are conducted with different workloads:
simple workloads consist of the same type of jobs and mixed
workloads represent a set of hybrid jobs. We generate 6 jobs of
the same benchmarks in each test of simple workloads. And
for testing mixed workloads, we mix all three benchmarks
above and generate 2 jobs for each benchmark. For each job
of both simple and mixed workloads, the input data is 20 GB.
There are 80 map tasks and 10 reduce tasks created by each
job. Each map task requires 1vcore + 2GB memory and each
reduce task requires 1vcore + 3GB memory. In the rest of this
subsection, we separately present the evaluation results of both
the attacks and the mitigation scheme.

1) Performance Impact by the Attack: For our first experi-
ment, we conduct the test results of the makespan impact by
various kinds of attack: the thorough attack, the attack against
Defense I, and the attack against Defense II.

Thorough attack. First, we run the test with the thorough
attack. In other words, all the task containers in the attacked

node manager can be paused during the execution according
to the algorithm in IV. To show the performance impact of
the thorough attack, besides the makespan without any attack,
we also test the results with one node manager blocked in the
cluster. As illustrated in Fig. 4, Hadoop:Non-attack indicates
the makespans of both simple and mixed workloads without
any attack. Node Blocked shows the makespans with one node
manager blocked, i.e., there are only 7 slave nodes working
in the cluster. Compared to Hadoop:Non-attack, the average
makespan with one slave node blocked only increases 14.3%.
Thorough Attack presents a much better impact on reducing
the performance of the makespan which is averagely 76.4%
larger than Hadoop:Non-attack.

Terasort WordCount WordMean Mix
0

500

1000

1500

M
ak

es
pa

n
(S

ec
)

Hadoop:Non-attack
Node Blocked
Thorough Attack

Fig. 4: Makespan without any attack: (1) Hadoop:Non-attack
(Native Hadoop) (2) Node Blocked (Native Hadoop with one
nodeManager blocked), and (3) with thorough attack.

Attack against Defense I. Second, we consider a policy in
the ResourceManager to block the suspicious NodeManagers
with several killed tasks. In Hadoop, a task may be killed
because of two reasons: 1) its execution time is too long
and beyond a threshold (600 seconds by default) in Appli-
cationMaster; 2) it runs too slow and its speculative task has
finished earlier. If the ResourceManager detects any job with n
percent of tasks killed in a NodeManager, such NodeManager
will be blocked as an attacker. In this case, SEINA needs
to control the pause time of every attacked container and
guarantee each task can be finished before its speculative task
and won’t execute longer than the threshold configured in
ApplicationMaster. Fig. 5 shows the test results of both simple
and mixed workloads. During the experiments, we set a severe
value of n = 0.15%. For the job with 80 map task and 10
reduce tasks, only 1 killed task per job can be generated by
SEINA. SEINA:Time-control indicates the attacking results of
SEINA under Defense I. On average, the makespan under
SEINA:Time-control prolongs 46.7% compared to the one
without any attack. And the makespan under SEINA:Time-
control is only 16% less than Thorough Attack.

Attack against Defense II. Furthermore, we consider an-
other strict policy in the ResourceManager which monitors the
execution time of every task on each NodeManager and block
the one with several ‘slow’ containers. Specifically, for each
job, if there are k tasks on a NodeManager running slower than
the average task execution time, such NodeManager will be
considered as an attacker and get blocked. In this case, instead
of the thorough attack, the attacker needs to control the number
of attacked task containers within the number of k per each
job. Fig. 6 illustrates the test results with k = 3. During the

7

Terasort WordCount WordMean Mix
0

200

400

600

800

1000

1200

1400

1600

M
ak

es
pa

n
(S

ec
)

Hadoop:Non-attack
SEINA:Time-control

Fig. 5: Makespan under SEINA: controlling the pause time
of every attacked container

test, SEINA only attacks 1 or 2 task containers for every job
and still significantly affects the performance of the makespan
of both simple and mixed workloads. SEINA:1 / SEINA:2
indicate the test results by attacking one/two task per job. For
a total number of 80 tasks for each job, SEINA increases
meanly 36.2% and 61% of the makespan by attacking 1 and
2 tasks per job. On average, the makespan of SEINA:2 is only
8.7% less than the one of Thorough Attack. Overall, SEINA
indicates both efficient and effective attacking results.

Terasort WordCount WordMean Mix
0

200

400

600

800

1000

1200

1400

1600

M
ak

es
pa

n
(S

ec
)

Hadoop:Non-attack
SEINA:1
SEINA:2

Fig. 6: Makespan under SEINA: (1) SEINA:1: attack one task
per job, and (2) SEINA:2: attack two tasks per job.

2) Performance of the Mitigation Scheme: In the end,
we run the experiments of our mitigation scheme. Fig. 7
illustrates the performance with SEINA attacking against
Defense II, and the makespan of the mitigation scheme in a
normal environment without any attack. Ours:Attack indicates
the makespans with the mitigation scheme under SEINA and
the average makespan only increase 11.1% compared to the
one without any attack. Ours:Non-attack shows the makespans
with the mitigation scheme without any attack. Without any
attack, the mean makespan of Ours:Non-attack is just 5.6%
larger than the one of the native Hadoop. From the test results,
the mitigation scheme can effectively defense the attack of
SEINA and causes a minor overhead in the environment
without any attack.

Terasort WordCount WordMean Mix
0

200

400

600

800

1000

1200

M
ak

es
pa

n
(S

ec
)

Hadoop:Non-attack
Ours:Non-attack
Ours:Attack

Fig. 7: Makespan under the mitigation scheme

VII. CONCLUSION

This paper studies a security problem in big data processing
frameworks. Our goal is to degrade the overall system per-
formance by launching attacks from a compromised internal
node. We take Hadoop YARN as a representative platform and
develop a new attack scheme SEINA which can effectively
prolong the makespan of the applications against two basic
defense schemes. Furthermore, we create a mitigation scheme
to protect the Hadoop system from such attack. Our evaluation
is based on experiments with various workloads and settings.
The results show a significant performance reduction caused
by SEINA on the native Hadoop system, and an effective
protection from our mitigation scheme against SEINA.

REFERENCES

[1] Apache Hadoop. http://hadoop.apache.org.
[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data

processing on large clusters. Communications of the ACM, 51(1):107–
113, 2008.

[3] Apache Spark. http://spark.apache.org.
[4] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al. Resilient

distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In NSDI, 2012.

[5] Amazon AWS EMR. https://aws.amazon.com/emr/.
[6] M Lockneed. Awareness, trust and security to shape government cloud

adoption. LM Cyber Security Alliance and Market Connection White
Paper, 2010.

[7] Kevin Hamlen, Murat Kantarcioglu, Latifur Khan, and Bhavani Thurais-
ingham. Security issues for cloud computing. Optimizing Information
Security and Advancing Privacy Assurance: New Technologies: New
Technologies, 150, 2012.

[8] Jiaqi Zhao, Lizhe Wang, Jie Tao, Jinjun Chen, Weiye Sun, Rajiv
Ranjan, Joanna Kołodziej, Achim Streit, and Dimitrios Georgakopoulos.
A security framework in g-hadoop for big data computing across
distributed cloud data centres. Journal of Computer and System Sciences,
80(5):994–1007, 2014.

[9] Hadoop in secure mode. https://hadoop.apache.org/docs/r2.7.1/
hadoop-project-dist/hadoop-common/SecureMode.html.

[10] Vinod Kumar Vavilapalli, Arun C Murthy, Chris Douglas, Sharad
Agarwal, Mahadev Konar, Robert Evans, Thomas Graves, Jason Lowe,
Hitesh Shah, Siddharth Seth, et al. Apache hadoop yarn: Yet another
resource negotiator. In Proceedings of the 4th annual Symposium on
Cloud Computing, page 5. ACM, 2013.

[11] Borja Sotomayor, Rubén S Montero, Ignacio M Llorente, and Ian Foster.
Virtual infrastructure management in private and hybrid clouds. IEEE
Internet computing, 13(5):14–22, 2009.

[12] Jianzhe Tai, Deng Liu, Zhengyu Yang, Xiaoyun Zhu, Jack Lo, and Ning-
fang Mi. Improving flash resource utilization at minimal management
cost in virtualized flash-based storage systems. Cloud Computing, IEEE
Transactions on, PP:1–1, 2015.

[13] Kehuan Zhang, Xiaoyong Zhou, Yangyi Chen, XiaoFeng Wang, and
Yaoping Ruan. Sedic: privacy-aware data intensive computing on hybrid
clouds. In Proceedings of the 18th ACM conference on Computer and
communications security, pages 515–526. ACM, 2011.

[14] Yeonhee Lee and Youngseok Lee. Detecting ddos attacks with hadoop.
In Proceedings of The ACM CoNEXT Student Workshop, page 7. ACM,
2011.

[15] Qingni Shen, Yahui Yang, Zhonghai Wu, Xin Yang, Lizhe Zhang,
Xi Yu, Zhenming Lao, Dandan Wang, and Min Long. Sapsc: security
architecture of private storage cloud based on hdfs. In Advanced
Information Networking and Applications Workshops (WAINA), 2012
26th International Conference on, pages 1292–1297. IEEE, 2012.

[16] Safwan Mahmud Khan and Kevin W Hamlen. Hatman: Intra-cloud trust
management for hadoop. In Cloud Computing (CLOUD), 2012 IEEE
5th International Conference on, pages 494–501. IEEE, 2012.

[17] Robert Ricci, Eric Eide, and The CloudLab Team. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications. USENIX, 39(6), December 2014.

