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Abstract—Mobile devices represented by smartphones have
been continuously evolving to support various applications. In
this paper, we study a new mobile application, named ex-
act scene recognition, where a user can identify a particular
place by comparing two images taken there. This application
framework enables users to annotate a scene supporting more
descriptive image-based interactions such as mobile augmented-
reality applications. We enhance the regular approaches with
the assistance of the angle-of-view (AOV) information obtained
from the smartphone. Our experimental results show a significant
improvement on accuracy compared to the existing solutions.

I. INTRODUCTION

Smartphones and various mobile apps have been becoming
an important component in our daily lives. In this paper, we
target a new mobile application, where a user can take a picture
at a scene or receive the pictures taken by other users at the
scene, and when the user visits the scene later, she or he can
recognize it through the phone’s camera view.

We name our target application function as exact scene
recognition. It is related to, yet differs from, the traditional
scene recognition and object recognition in computer vision
that usually classify a scene or object into a known category
missing the ‘exact’ property. In addition, the traditional recog-
nitions often require a large elaborated training set to yield a
high accuracy. The computation workload of their common
techniques, such as deep learning, may not be suitable for
mobile devices. In this paper, our goal is to recognize the
exact same scene that has been caught in a pre-loaded image,
and there may not be any well recognizable objects.

Our framework FARES is based on feature extraction
algorithms in computer vision. Basically, the features of a
pre-loaded image and the captured image are compared to
determine if they are taken at the same scene. This problem,
in our practical setting, is quite challenging when the two
images are taken with different angle-of-views (AOV). The
existing feature extraction algorithms do not perform well
in the comparisons. In our solution FARES, we assume the
images are taken by smartphones, and the AOV information is
obtained by the on-board sensors. We develop new approaches
that can improve the recognition accuracy based on the AOV
information. In particular, we propose two new techniques in
FARES. The first one considers the ratio of the matching
feature points. We use the AOV information to remove the
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feature points that may be obstructed or greatly altered because
of the AOV change. To further improve the accuracy, our
second technique is to consider the relative distance between
each pair of matching feature points in the two images. The
higher the distance is, the less likely the pair of matching
feature points are legitimate. Our evaluation is based on
experiments with a large set of images, and the results show
a significant improvement of the recognition accuracy.

II. RELATED WORK

There have been plenty of researches dedicated to numerous
aspects of scene recognition. The existing works could be
roughly classified into hand-crafted methods and learning-
based methods [1]. For hand-crafted methods, in [2], the
feature of neighboring appearance of local descriptors was
considered so as to enable their scheme Spatial-LTM to
exceed the bag of words model. On the other hand, learning-
based methods were used for complex scene recognition,
such as Hybrid-CNN in [3], ImageNet-CNN in [4], scale-
specific CNN in [5] and Fused DNN in [6]. Finally, there were
also researches combining the hand-crafted and learning-based
methods ( [7] and [8]). All these prior works do not consider
the exact scene and usually need a large training set.

Our solution is built upon feature extraction, and there
were some widely used existing methods, such as SIFT [9],
SURF [10], and ORB [11]. An early successful approach
to feature extraction was the Harris Corner Detection [12],
which was rotation-invariant. David G. Lowe introduced the
Scale-Invariant Feature Transform (SIFT), which enabled the
keypoints to be both invariant to the image rotation and scal-
ing [9]. Bay. H presented a speeded-up version of SIFT, named
SURF [10]. In [13], the authors proved this fact through an
evaluation on the changes of outdoor environment appearances
over seasons. In [11], the authors introduced a more enhanced
feature extraction method, Oriented FAST and Rotated BRIEF
(ORB). It was built on the FAST keypoint detector in [14] and
the BRIEF descriptor in [15], where both techniques were well
known for their efficient performance and low cost. There were
also attempts to complete the vision within the constraints
of today’s smart phones. In [16] and [17], authors offload
the computation to either the edge or nearby devices, which
provided useful platforms to compel mobile AR applications.

III. PROBLEM FORMULATION

We consider an application of scene recognition for mobile
phone users. The user pre-loads a set of images each represent-
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ing a different scene. This set of images can be downloaded
from a repository or transferred from other users. In this
application, the user holds phone to continuously capture
image frames through a camera view. Each frame is examined
and compared with the preloaded images for exact scene
recognition. In particular, our goal is to exactly recognize the
place that one of the preloaded images is taken.

In this paper, we aim to achieve exact scene recognition
by analyzing the features of the captured images and the
preloaded images. We also consider the additional information
the mobile phone provides. Specifically, we assume each im-
age is attached with the information of angle-of-views (AOV)
of the camera. Our approach uses the AOV information in
feature comparison to improve the accuracy of the application.

Assume a user’s phone has loaded a set of n images,
I = {I1, I2, · · · , In}, each Ij with its AOV information
Aj . Aj is represented by a tuple of three readings indicating
the horizontal, vertical, and rotation angles. To simplify the
algorithm description, we only consider the first two angles in
this paper. The last rotation angle can be easily incorporated.
Let C represent the image captured by the user’s phone. The
objective of our problem is to search I and find a matching
scene of C, or report none if there is no match.

IV. DESIGN OF FARES

In this section, we describe the details of our algorithms.
We first briefly introduce the main structure of our algorithm.
Then we present the details of three major components.

A. Sketch of the Solution

The main algorithm in FARES (Algorithm 1) enumerates
the images in the pre-loaded set I, and compares each of
them to the image captured by phone camera (C). Function
CompareImages returns the similarity of the two images, and
the maximum value is recorded in Lmax. At the end of the
loop, if Lmax is greater than a threshold, the corresponding
image R will be returned as the recognized scene. Otherwise,
none of the images matches the captured frame C.

Algorithm 1: Exact Scene Recognition
input : Image set I, Captured frame C

1 for image Ij in I do
2 L = CompareImages(C, Ij)
3 if L > Lmax then
4 Lmax = L, R = Ij
5 if Lmax > τ then return R
6 else return null

The core technical component in our algorithm is the
comparison of the two images. We aim to develop an efficient
algorithm that can quickly process the captured images. Our
main approach is based on the comparison of the feature
points of the two images. In the rest of the paper, we use
FP to represent “feature points”. The basic intuition of our
design is to apply simple but quick comparison of FPs with
the assistance of the AOV information to improve the accuracy.

In particular, our algorithm first uses the existing approaches
to extract FPs from both images for comparison. Then we

apply two new techniques to help improve the accuracy with
the assistance of the AOV information. In the first technique,
we consider the number of matching FPs between the two
images, and measure it as a ratio with the number of the FPs in
the pre-loaded image. This ratio, in practice, is quite low with
the existing feature extraction algorithms due to the difference
of AOVs. We develop a heuristic algorithm to reduce the FPs
of the pre-loaded image by eliminating the FPs that might be
obstructed or greatly changed because of the different AOV.
Our second technique considers the relative distance of a pair
of matching FPs in their images. Even if two images have
a large number of matching FPs, we use this technique to
further avoid the possibility of false positives. Our algorithm
calculates the average distance of all pairs of the matching FPs.
A higher value of the distance indicates a less likely match.

Algorithm 2 illustrates the main process of comparing two
images. This function returns a score indicating the likeliness
of being the same scene. The score value is between 0 and 1,
and the higher the score is, the more likely these two images
are taken at the same scene. In Algorithm 2, we first check
the matching FP ratio (function call “CalMFPRatio” in line
5), which is a fraction value. If the result is smaller than a
threshold τr, then the function returns 0 indicating ‘no match’.
Otherwise, we further examine the relative distances of the
matching FP pairs (function call “CalMFPDist” line 9), and
return the multiplication of the two fraction values as the score.
Algorithm 2: CompareImages(C, I)

1 F : Load the pre-processed FPs of I
2 CF : Identify the set of feature points in C
3 Ah, Av: the AOV differences of the horizontal and

vertical angles of I and C
4 Calculate the matching FPs,

MF = { (pi, pj) | pi ∈ F, pj ∈ CF}
5 r = CalMFPRatio(MF,F,CF,Ah, Av)
6 if r < τr then
7 return 0
8 else
9 return r· CalMFPDist(MF,F,CF )

Specifically, our solution consists of three components: pre-
processing of the image set, calculating the matching FP ratio,
and calculating the matching FP distance. We present them
separately in the following subsections.

B. Pre-Process the Image Set

This step basically serves the second component of calcu-
lating the matching FP ratio. Once a new image is received,
the user device will process the images to prepare for the
exact scene recognition. In this process, we first use the regular
feature extraction algorithms such as SIFT [9], SURF [10] and
ORB [11]. The user can configure to use a particular algorithm
or incorporate new algorithms in our framework.

After obtaining a set of FPs for each Ij , this component
builds four “neighbor” lists for each FP. Let FPj indicate the
set of FPs of Ij and pi denote the i-th FP in FPj . For each
pi, we create four neighbor lists of FPs representing other FPs
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in the four directions of pi, namely ‘up’, ‘down’, ‘left’, and
‘right’. For example, the FPs in the ‘left’ neighbor list are on
the left of pi in the image. In addition, we set another threshold
w to confine the FPs on the neighbor lists in a belt-shape
region. The definition of ‘left’ neighbor list is as follows:

pi(left) = { pj | pj .x < pi.x and |pj .y − pi.y| < w },
where (x, y) represent the coordinates of the FP. In the image,
the coordinates of the top-left corner and bottom-right corner
are (0,0) and (width, height) respectively. All the neighbor lists
are sorted according to the spatial distance to pi.

Fig. 1 illustrates an example of the four neighbor lists, each
with a different color, of an FP (marked by a big white circle).
Some FPs marked by two colors belong to two neighbor lists.

Fig. 1: An example of neighbor lists
The intuition of finding the neighbor lists is to identify the

FPs that may form a surface and block the given FP when AOV
changes. The details will be explained in the next subsection.

C. Calculate the Matching FP Ratio

In the first step, we consider the ratio of the matched
FPs and the total FPs in the pre-loaded image, i.e., |MF |

|F | .
Intuitively, the higher the ratio is, the more likely the captured
image is the same scene as the known image. However, the
high accuracy is not guaranteed because same scene may be
captured from different angels and different scenes may yield
a considerate set of matching FPs.

In this subsection, we present a new algorithm aiming to
improve the matching FP ratio of the images taken at the same
scene. We observe that with the change of AOV (the details
will be illustrated in Section V), the typical algorithms yield
low matching ratios. It is because the original FP set F no
longer effectively represents the image. Therefore, we apply
two approaches to reducing F and generating a more effective
FP set. First, some FPs in F may disappear in the captured
image’s FP set CF because obstruction may happen when
the AOV changes. Second, some FPs may still exist but their
descriptors have changed so significantly that the matching
algorithms do not identify them as the matching FPs.

Algorithm 3 presents the details of our solution. Basically,
we try to find a set of FPs that are blocked in the captured
image, which should not be counted in calculating the ratio.
BF represents this set of ‘blocked’ FPs. And, eventually we
use |MF |/(|F |−|BF |) to represent the matching FP ratio (r1
in line 12). We use a loop (lines 1–11) to examine each un-
matched FP pi. According to the AOV change, we identify the

related neighbor lists of pi. For example, if the camera view
moves to the left side, we will consider the ‘left’ neighbor
list of the given FP because this FP may be blocked by a
object on the left side, and this object may be represented by
some FPs in the ‘left’ neighbor list. Next, we scan the sorted
neighbor list and find the first FP that is in the matching FP
set (line 4). Starting from there, we suppose the area that is
blocked has passed. Then we use another loop (lines 5–8) to
continue scanning the neighbor list, and count the number of
matching FPs (variable c). The scan stops when c is over a
threshold Tn. Tn is set to be a small number, e.g., 5, to indicate
a reasonable number of FPs that can represent a surface or a
portion of an object. Then we check the total number of FPs
we have checked during the course of this scan. The ratio α is
calculated in lines 9–10. If those matching FPs in the neighbor
list are sparsely located, it is not the case we assume to be.
Otherwise, if the ratio is higher than a threshold, we add this
un-matched FP in the the set BF . Finally, we use r1 in line
15 to represent the adjusted matching FP ratio.
Algorithm 3: CalMFPRatio(MF,F,CF,Ah, Av)

1 for an unmatched FP pi ∈ F \MF do
2 Based on Ah and Av , determine the direction change

of the AOV, dc = [left|right|up|down]
3 NL = pi(dc) //fetch the pre-computed neighbor list
4 u = min{x,NL[x] ∈ MF} //first matched neighbor
5 for x = u to |NL| do
6 if NL[x] ∈ MF then
7 c ← c+ 1
8 if c ≥ Tn then break
9 if c < Tn then α = c

|NL|−u

10 else α = Tn

x−u+1

11 if α ≥ Tb then BF ← BF + pi
12 r1 = |MF |

|F |−|BF |
13 r2 = 90−|Ah|

90 · 90−|Av|
90

14 return r1 · r2
In addition, we consider the FP descriptor information may

change due to the AOV change, even if they are not blocked
by any other objects. Our algorithm uses a simple heuristic
reduction function that is reversely proportional to the angle
change. If the angle change is 90◦, all the original FPs will be
gone. For any change A between 0 and 90, we assume 90−A

90
portion of visible FPs will be identified as matching FPs (r2
in line 13). Eventually, r1 · r2 is returned as the result.

D. Calculate the Matching FP Distance

The last component in FARES is to calculate the relative
distance of matching FP pairs. While the previous component
calculating the matching FP ratio only considers the number
of matching FPs, it is possible for some false or similar images
to pass the threshold, especially if the pre-loaded image has
a small set of FPs. In this component, we further check the
coordinates of the matching FPs in their images.

The details are illustrated in Algorithm 4. We first calculate
the centroid points of the matching FPs in both F ∩ MF
and CF ∩MF (line 1). Then we consider these two centroid
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points as the origin in both images, and calculate the relative
coordinates of each matching FP (lines 2–4). Next, in lines
5-6, we calculate the spatial distance of each pair of matching
FPs according to their adjusted coordinates assuming that two
coordination systems are merged by aligning their origins. The
average distance D is derived in line 7. Finally, we develop
a scoring function on D. When the distance is smaller than
a threshold Td, we assume there is no loss on the score by
returning 1. When D exceeds Td, we use a exponentially
decreasing function to represent the penalty on the score
(line 11). β is a pivot parameter controlling the curve of the
function. In our default setting, β = 1.
Algorithm 4: CalMFPDist(MF,F,CF )

1 Calculate the centroid point of F ∩MF and CF ∩MF ,
indicated by CPF and CPC respectively

2 for pi ∈ F , pj ∈ CF do
3 pi.x ← pi.x− CPF .x, pi.y = pi.y − CPF .y
4 pj .x ← pj .x− CPC .x, pj .y = pj .y − CPC .y
5 for (pi, pj) ∈ MF do
6 D = D + dist(pi, pj)
7 D = D

|MF |
8 if D < Td then
9 return 1

10 else
11 return e

−D−Td
β·Td

Combining the value returned by Algorithm 4 with value of
Algorithm 3 in Algorithm 2, this component is proved effective
in helping filter the false positives in Section V.

V. PERFORMANCE EVALUATION

In this section, we present our evaluation results.
Implementation and workload. We implement the algo-
rithms with Python3 and OpenCV 3.4.1 [18]. The image set for
evaluation are several groups of object images from [19]. For
each object group, this library provides the image taken from
different angles with an interval of 5◦. We consider the image
taken at 0◦ as the pre-loaded image, and the images taken at
other angles as the captured images. Due to the page limit,
we only evaluate the images with horizontal AOV changes in
this paper. In addition, we impose one ‘false’ image that is not
relevant. Fig. 2 shows a subset of a group of our test images.

Fig. 2: A group of test images

Our experiments use ORB [11] to detect and describe FPs
extracted from each image. To test the effectivity of our
method without potential influence from the matcher, we use
Brute-Force matcher in the evaluation.
Evaluation of accuracy. Our metric is the accuracy, which
is commonly quantified by precision and recall. Here the
precision rate is defined as TP/(TP +FP ) and recall rate is
defined as TP/(TP +FN), where TP, FP , and FN is true
positive, false positive, and false negative respectively.

First, we randomly select 160 images from 7 groups in
[19]. If the AOV of the image is between −90◦ and 90◦, we
expect the scene can be recognized. And, we call those images
positive images. The images whose AOV is out of this range
and the irrelevant images we impose are called negative images
as we expect the recognition algorithms to return negative on
them. We apply FARES as well as regular ORB and SURF
feature points matching to recognize the scene. In FARES,
an image is labeled as positive if the score is higher than 0.3.
The other parameters in the experiment are set as follows:
Tb = 0.5, Tn = 5, Td = 150. For ORB and SURF alternative,
the similarity score is given by |MF |/|F |, i.e., the ratio of the
number of matching FPs and the number of the original FPs.

Table I compares the accuracy of the three schemes. We
observe that ORB and SURF have 100% precision rates, but
extremely low recall rates (< 11%). It is mainly because the
matching FP ratios are very low in both ORB and SURF, and
they only identify a small number of positive images. The
results are also reflected by the scores in Table I. For both
ORB and SURF, the average scores for positive and negative
images are low. FARES outperforms both alternative schemes
by yielding a very high recall ratio (> 97%) while keeping the
precision sufficiently high (79.67%). It indicates that FARES
is able to identify significantly more positive images.

Precision Recall Avg score for
positive images

Avg score for
negative images

FARES 79.67% 97.02% 0.83 0.36
ORB 100% 10.89% 0.10 0.003
SURF 100% 8.91% 0.13 0.02

TABLE I: Comparison of different algorithms on 160 images
Fig. 3 compares the scores given by FARES, ORB, and

SURF for the images taken at several discrete angles between
−45◦ and 45◦. It also shows the average score of the negative
images. Apparently, in FARES, all the legitimate images yield
high scores. And, we can easily set a cut-off line to distinguish
the positive images from the negative images. ORB and SURF,
however, both yield low scores in all the tested cases. The
scores of some positive images such as −45◦, −30◦ and 45◦

are very close to that of negative images.
Above all, FARES is superior to the traditional ORB and

SURF in terms of the accuracy.
Impact of matching FP ratio. In addition, we evaluate the
major function presented in Algorithm 3 that eliminates the
‘blocked’ FPs from the original FP set. In Algorithm 3, Tb is
an important parameter that determines if an FP needs to be
excluded in the ratio calculation. In this experiment, we select
three groups of images with a set of fixed angles. In Fig 4 we
vary the value of Tb and plotted the scores given by FARES.
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Fig. 3: Comparison of the scores

Again, we test the positive images taken with AOV change
in [−45◦, 45◦], and we impose a false image in each group.
In addition, we also test the image with 180◦ AOV change,
which is considered as a similar but not the same scene in
our evaluation. Because when taken from the opposite side,
the image is supposed to hold very few original FPs. In Fig 4,
we distinguish the curves of the false and 180◦ images with
dashed lines. We observe that there is wide space between the
positive and negative image for group ‘lamp’ and ‘clock’. The
gap for group ‘horse’ is narrower, but still considerablely wide
for us to set a threshold. And, this property holds for all the
values of Tb though a smaller value yields a bigger difference.

Fig. 4: Scores given by FARES with varying Tb
Impact of matching FP distance. Finally, we show the impact
of Algorithm 4. Due to the page limit, we use a case study to
demonstrate the effectiveness. Fig. 5 shows the matching FPs
of a positive image taken at angle 30◦, and false image, with
the pre-loaded template image on right side.

As we can tell, the traditional feature extraction algorithms
actually identify many matching FPs in the false image. How-
ever, these FPs’ coordinates do not match their counterparts
in the original figure. As a comparison, the matching FPs in
Fig. 5a are quite consistent. Our Algorithm 4 certainly gives
a high score for Fig. 5a, and very low score for Fig. 5b.

In summary, FARES can accurately recognize the exact
scene by comparing two images taken with different AOVs.
Both Algorithm 3 and Algorithm 4 are effective in improving
the accuracy of the traditional feature extraction algorithms.

VI. CONCLUSION

This paper targets on an application of exact scene recog-
nition. The main problem is to compare two images taken at

(a) Matches between 30◦ image and template image

(b) Matches between false image and template image

Fig. 5: Plot of matching FPs in two cases
the same scene but with different angle of views. Our solution
is built on the feature extraction algorithms, and we present
two new techniques to identify ‘blocked’ FPs and consider
the spatial distance between each pair of matching FPs.
The experimental results show that our solution significantly
improves the accuracy.
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