
Int. J. Security and Networks, Vol. 1, Nos. 3/4, 2006 127

Elliptic curve cryptography-based access
control in sensor networks

Haodong Wang, Bo Sheng and Qun Li*
Department of Computer Science,
College of William and Mary,
Williamsburg, VA, USA
E-mail: wanghd@cs.wm.edu
E-mail: shengbo@cs.wm.edu
E-mail: liqun@cs.wm.edu
*Corresponding author

Abstract: Access control in sensor networks is used to authorise and grant users the right to
access the network and data collected by sensors. Different users have different access right
due to the access restriction implicated by the data security and confidentiality. Even though
symmetric-key scheme, which has been investigated extensively for sensor networks, can fulfil the
requirement, public-key cryptography is more flexible and simple rendering a clean interface for the
security component. Against the popular belief that a public key scheme is not practical for sensor
networks, this paper describes a public-key implementation of access control in a sensor network.
We detail the implementation of Elliptic Curve Cryptography (ECC) over primary field, a
public-key cryptography scheme, on TelosB, which is the latest sensor network platform.
We evaluate the performance of our implementation and compare with other implementations
we have ported to TelosB.

Keywords: Wireless Sensor Networs (WSNs); public-key crytography; Elliptic Curve
Crytography (ECC); access control.

Reference to this paper should be made as follows: Wang, H., Sheng, B. and Li, Q. (2006) ‘Elliptic
curve cryptography-based access control in sensor networks’, Int. J. Security and Networks, Vol. 1,
Nos. 3/4, pp.127–137.

Biographical notes: Haodong Wang is a current PhD candidate in Computer Scicence Department
of the college of William and Mary. His research area is security and privacy in wireless sensor
networks.

Bo Sheng is a current PhD candidate in Computer Scicence Department of the college of William
and Mary. His research area is wireless sensor networks.

Qun Li received the PhD in computer science from Dartmouth College. He is anAssistant Professor
in the Department of Computer Science at the College of William and Mary. His research interests
include wireless networks, sensor networks, security and privacy.

1 Introduction

The access control component in sensor networks is
responsible for authorising and granting users the right to
access the network and data collected by sensors. A sensor
network collects a variety of data shared by the users of the
network. Due to privacy reason or data clearance, access
restriction may be enforced for users with different access
rights. For example, in a sensor network deployed on a
battlefield, a high rank official may have more information
access right than a soldier: a soldier is given the access to the
data related to his task and a higher rank official necessarily
requires information gathering for an overall manoeuvre.
While much work on sensor network security has been
focusing on key management methods for symmetric key
scheme to support secure inter-sensor communication, little
attention has been paid to access control in sensor networks.

Public-key cryptography has been used extensively in
data encryption, digital signature, user authentication, etc.
Compared with the popular symmetric key cryptography
widely used in sensor network, public-key cryptography
provides a more flexible and simple interface requiring
no key predistribution, no pairwise key sharing, no
complicated one-way key chain scheme. It is a popular
belief, however, in the sensor network research community
that public-key cryptography is not practical because the
required computational intensity is not suitable for sensors
with limited computation capability and energy budget.
The nascent exploration seems to disabuse
this misconception. The recent progress in 160-bit Elliptic
Curve Cryptography (ECC) implementation on Atmel
ATmega128, a CPU of 8 Hz and 8 bits, shows that
an ECC point multiplication takes less than one second,
which proves public-key cryptography is feasible for sensor

Copyright © 2006 Inderscience Enterprises Ltd.

128 H. Wang, B. Sheng and Q. Li

network security related applications. This paper details
our different implementations of ECC schemes on TelosB
platform.

This paper describes our implementation of access control
based on ECC over primary field on TelosB, a sensor
network research platform. We give a framework for how
to use ECC to grant user access right to collected data and
show the experimental results. To compare with the similar
implementations, we also port the other two implementations
(NCSU (Liu and Ning, 2005) and Harvard (Malan et al.,
2004)) to TelosB and measure the performance of each
scheme, respectively. Our experiments demonstrate that our
implementation outperforms the other two implementations.
This work is especially important since TelosB mote platform
is becoming a standard testbed for sensor network research:
a public-key cryptography implementation and performance
evaluation and comparison are conducive to the research
progress of the community.

Our implementations are conducted on TelosB mote
(TPR2400), which is the latest product in the Mote family
designed by the University of California at Berkeley for
experimentation in sensor network research. It is of the
size of two AA batteries integrating USB programming
capability, an IEEE 802.15.4 radio with integrated antenna,
a low-power MCU with extended memory and an optional
sensor suite (TPR2420). Its detailed features include: IEEE
802.15.4/ZigBee compliant RF transceiver, 2.4 to 2.4835
GHz (a globally compatible ISM band), 250 kbps data rate,
integrated onboard antenna, 16 bit, 8 MHz TI MSP430
microcontroller with 10 kB RAM, low current consumption,
1 MB external flash for data logging, programming
and data collection via USB, optional sensor suite
including integrated light, temperature and humidity sensor
(TPR2420), supported by Berkeley’s TinyOS operating
system (Tinyos, 2005) and the NesC programming language
(Gay et al., 2003).

The rest of the paper is organised as follows. Section 3
gives an introduction to ECC. Section 4 describes the
framework for access control in a sensor network. Section 5
shows implementation details of ECC on TelosB mote.
Section 6 evaluates the performance of our implementation
and compares with other implementations. Section 7
concludes the paper.

2 Related work

NIST and SECG have specified example elliptic curves
domain parameters at required security levels (Certicom
Research, 2000; National Institute of Standards
Technology, 2000). As other implementations, we follow the
recommended parameters in our implementation.

Gura et al. (2004) implemented ECC and RSA on
8-bit microcontroller and compared their performance.
In their ECC implementation, the elliptic curves are
defined over standardised prime integer field GF(p). Some
optimisation techniques are applied for point multiplication,
such as projective coordinates, Non-Adjacent Forms (NAFs)
and curve-specific optimisation. Additionally, the paper
focuses on the optimisation of modular multiplication of
large integers, which is a critical operation for ECC. The
authors compared row-wise and column-wise multiplications

and further proposed a new hybrid strategy to improve the
performance. The experiments showed that 160-bit ECC
execution time was reduced to less than one second and much
faster than RSA-1024 operations.

Shantz (2001) presented an efficient technique to calculate
modular division, which is an important arithmetic operation
in ECC and other cryptography system. The idea is to
compute y/x in one operation, instead of the previous
method which first computes 1/x and then multiply it with y.
Thus, this scheme reduces one multiplication in the modular
division operation. The new algorithm can be applied in both
GF(p) and GF(2m) fields.

Woodbury et al. (2000) introduced another ECC system
over Optimal Extension Fields (OEFs) (Bailey and Paar,
1998) GF(pm), where p is chosen as the form of 2n ± c. The
authors present the implementation of a specific 134-bit ECC
in detail. The experiments indicate that point multiplication
can be performed within 2 sec.

Cohen et al. (1998) analysed the impact of coordinates
system in ECC implementation. The authors measured the
performance of Point Addition (PADD) and Point Doubling
(PDBL) of different coordinate systems and proposed a
new modified Jacobian coordinates which achieves the
fastest doubling operation. Moreover, they introduced a
mixed coordinates system, which divides exponentiation into
suboperations and chose the best coordinates representation
for each suboperation. Thus, this scheme combines the
advantages of different coordinates system and improves the
computation time significantly.

In Hasegawa et al. (1998), an implementation of
160-bit ECC cryptographic library for Elliptic Curve Digital
Signature Algorithm (ECDSA) over prime field GF(p) on
a CISC Microcontroller (MC16) was given. Experiments
obtain a speed of 150 ms for signature generation and
630 ms for verification.

EccM (Malan et al., 2004) is an ECC system implemented
over binary field GF(2p). The average time for public key
generation is claimed as 34 sec. In Benenson et al. (2005),
researchers design a user authentication protocol based on
EccM library and implements it on TelosB mote. However,
the verification takes several minutes. Sizzle (Gupta et al.,
2005) is another application of ECC system developed
recently. The standard internet security protocol(SSL) is
efficiently implemented in sensor motes by using ECC.

3 ECC introduction

In this section, we briefly give a background introduction
about ECC and corresponding elliptic curve Diffie-Hellman
and Digital Signature Algorithm.

3.1 Elliptic curve cryptography

In recent years, ECC has attracted much attention as the
security solutions for wireless networks due to the small key
size and low computational overhead. For example, 160-
bit ECC offers the comparable security to 1024-bit RSA.
An elliptic curve over a finite field GF (a Galois Field of
order q) is composed of a finite group of points (xi, yi), where
integer coordinates xi, yi satisfy the long Weierstrass form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1)

ECC-based access control 129

and the coefficients ai are elements in GF(q). Since the field
GF(q) (q is a prime) is generally used in cryptographic
applications, (1) can be simplified to:

y2 = x3 + ax2 + b (2)

where a, b ∈ GF(q).
The elliptic curve group operation is closed so that the

addition of any two points is a point in the group. Given
two points P and Q, with the coordinates (x1, y1), (x2, y2),
respectively, the addition results in a point R on the curve
with coordinate (x3, y3), where x3 and y3 satisfy

(x1, y1) + (x2, y2) = (x3, y3) (3)

such that

x3 = L2 + L + x1 + x2 + a (4)

y3 = L(x1 + x3) + x3 + y1 (5)

where

L = (y1 + y2)/(x1 + x2) (6)

If x1 = x2 (note x1 + x2 is 0), then R is defined as a point
at infinity, O. O is an identity element of the group. Each
element in the group has an inverse that satisfies P +(−P) =
O and (−P) + P = O. Also, P + O = O + P = P .
If P = Q, then R = P + P = 2P , and coordinate (x3, y3)

is derived by

x3 = L2 + L + a (7)

y3 = x1
2 + (L + 1)x3 (8)

where

L = x1 + y1/x1 (9)

The ECC relies on the difficulty of the Elliptic Curve Discrete
Logarithm Problem, that is, given points P and Q in the
group, it is hard to find a number k such that Q = kP .

3.2 ECDH and ECDSA

The original Diffie-Hellman secret sharing protocol (Diffie
and Hellman, 1976) requires a key of at least 1024 bits
to achieve sufficient security. Unfortunately, low-power
architecture, such as MSP430 andATMega128, cannot afford
the large memory overhead. Diffie–Hellman scheme based on
ECC, however, can achieve the same security level with only
160 bit key size. A typical Elliptic Curve Diffie–Hellman
(ECDH) scheme is shown in Figure 1. Initially, Alice and
Bob agree on system base point P and generate their own
public key QA and QB . To share a secret, Alice and Bob
exchange their public keys and then use their own private
key to multiply the other’s public key. The result point R
will be the secret. Eve, an eavesdropper, may overhear the
communication and learn the public keys from Alice and
Bob. However, with the knowledge of P, QA and QB , it
is computationally intractable for Eve to get Alice and Bob’s
private keys. As a result, she can not figure out secret R.

Figure 1 An example of ECC version of Diffie-Hellman
Protocol

QA k A * P=

QB k B= * P

k A k B

QBR = *k A QAR = *Bk

DiffieHellman (ECDH)

Alice
private key

Bob
private key

Compute Secret Compute Secret

ECC can also be used for Digital Signature Algorithm.
Similarly, Alice and Bob have to agree on a particular curve
with base point P . We assume the field is GF(p) and the order
of P is q. When Alice sends a message to Bob, she attaches a
digital signature (r, s) generated by following steps (suppose
Alice has a private key x and a public key Q = xP):

1 choose a random key k in [1, q − 1]
2 compute kP , results a point with coordinate (x1, y1).

Let r = x1. Check r (mod q), go back to the
first step if the result is zero

3 compute k−1 (mod q)

4 compute s = k−1(Hash(m) + xr), where Hash is
an one-way hash function. Again, check s, go back
to the first step if s = 0 and

5 (r, s) is the digital signature.

To verify the message m and the signature, Bob needs to do
following steps.

1 compute w = s−1 mod q and H(m)

2 compute u1 = H(m)w mod q and u2 = rw mod q

3 compute u1P + u2Q, get the result point (x2, y2) and

4 the signature is verified if x2 = r .

4 Sensor network access control

We consider a large scale wireless sensor network deployed
in a variety of environments, for example, at a hostile
battlefield, in an office building or in a national park. The
sensor nodes are battery-powered small devices which have
very limited processing capabilities and memory space,
such as the Berkeley MICA or MICA2 motes (Cressbow
Technology INC, 2003). The sensor network is managed
by a Key Distribution Center (KDC), which is responsible
for generating all security primitives (i.e. random numbers,
one-way hash function, Message Authentication Code
(MAC), access list) and revoking users’ access privilege if
necessary.

Besides collecting and reporting data, sensor nodes are
also capable of providing information services to users
through the wireless channel. We assume the sensor nodes are
densely deployed so that multiple sensor nodes can contact
a user at the same time. To access the sensor network,
users need to apply for the access permission from KDC.
KDC maintains a user access list pool and associated user
identifications. The access list defines the user’s access

130 H. Wang, B. Sheng and Q. Li

privilege. A typical access list is composed of uid, gid and
user access privilege mask. uid is a unique number to identify
the user. gid is group identification. Multiple users who have
similar task and access privilege can be organised into the
same group. user access privilege mask is a number of binary
bits, each bit represents a specific information or service.
An access list example is shown in Figure 2. KDC issues a
proper access list to each applicant. The information stored
at the sensor nodes is divided into multiple access privilege
levels. The user with a lower access privilege is not allowed to
get the information that requires the higher privilege. Once a
user passes the authentication check, the sensor nodes provide
their local information to the user according to the provided
access list.

Figure 2 An example of user access list. The access list is
composed of three parts: uid, gid and access privilege
mask. uid is a unique number assigned to each user.
gid is a unique number assigned to the group to which
the user belong access privilege mask is to define the
user’s access privilege to the system information

64238 : 23187 : 00 : 07 : E9 : 26 : F1 : A5

uid gid user access privilege mask

The essential part of access control is the authentication check
for user’s access list.

Initially, the KDC selects a particular elliptic curve over
a finite field GF(p) (where p is a prime) and publishes
a base point P with a large order q (where q is also a
prime). The KDC picks a random number x ∈ GF(p) as
the system private key, and publishes its corresponding public
key Q = x×P . To access the sensor network, Alice comes to
the KDC and gets her public key (QA), private key (qA), and
the certificate of her access list and public key (TA = CA|acA

where ’|’ means concatenation). The following shows how
to construct them in more detail. The KDC picks a random
number cA ∈ GF(p) and then calculates Alice’s public key
constructor CA = cA × P . Based on Alice’s request and her
background check, KDC issues a proper access control list
acA and attaches it to public constructor CA as the certificate
for Alice’s access list and public key. Meanwhile, a signature
eA is generated for the access list, where eA = H(TA)

(H is a {0, 1}∗ → {0, 1}q hash function). Then, the KDC
constructs Alice’s private key qA = eAcA + x and public key
QA = eA ×CA +Q. Note qA and QA satisfy QA = qA ×P .
Alice’s access list TA can be regarded as the certificate
of her public key QA. Finally, Alice holds qA, QA and TA

Figure 3 gives the definition of the notations.
Alice’s access list authentication protocol is described in

Figure 4. When Alice approaches a sensor node sl , she sends
her access request with access list TA. Given access list TA, sl

constructs Alice’s public key QA = eA × CA + Q. To verify
Alice indeed holds private key qA, node sl uses the challenge
as follows. sl selects a random number r ∈ GF(q) (to be
used as the session key with Alice) and calculate its
signature H(r) over mod(q). Node sl then generates
temporary public key Yr = H(r) × P and computes Zr =

H(r) × QA. Then sl encrypts the session key by doing
r ⊕ X(Zr), where X(Zr) is the X coordinate of point Zr .
Finally, sl sends ciphertext 〈zr , Yr〉 to Alice, attached with a
MAC of nonce NA.

Figure 3 Notations

A : User Alice

sl : a local sensor node

acA, TA : Alice’s access list and certification

qA, QA : Alice’s private and public key pair

P : system elliptic curve base point

x, Q : system private key and public key pair

With private key qA, Alice can regenerate Zr because qA ×
Yr = qA×H(r)×P = H(r)×QA = Zr . Alice then decrypts
session key r = zr ⊕ X(Zr), and verifies if Yr = H(r) × P .
If yes, Alice uses r as the session key to generate MAC for
nonce NA concatenated with her access privilege acA, and
sends to sl .

Local sensor sl decrypts the MAC message and verifies
NA and acA. A successful verification proves that Alice is
the owner of access list TA. Finally, sl replies the information
requested byAlice, which again is encrypted by session key r .

Figure 4 Alice’s access list authentication protocol

Alice → sl : TA = (CA|acA)

sl computes : QA = eA × CA + Q

: picks a random r ∈ GF(q)

: Zr = H(r) × QA,

: Yr = H(r) × P,

: zr = r ⊕ X(Zr),

: MAC(r, NA).

sl → Alice : zr , Yr , MAC(r, NA)

Alice computes : qA × Yr = qA × H(r) × P = Zr

: X(Zr) ⊕ zr = r

: decrypts MAC(r, NA)

Alice → sl : MAC(r, NA|acA)

sl → Alice : MAC(r, reply)

A careful reader may find Alice has not verified local
sensor sl yet. As a result, an adversary may impersonate sl

and provide misleading information to Alice. A quick fix
is to let sl send its certificate to Alice and allow Alice to
verify sl in the same way. But it causes higher communication
costs for local sensor node sl . Obviously, the problem is
beyond the access control covered in this paper because the
fact whether Alice receives right answer does not harm the
sensor network.

ECC-based access control 131

5 ECC implementation

We implement ECC cryptosystem on Telos-B mote powered
by MSP430 microcontroller. The MSP430 incorporates an
8 MHz, 16-bit RISC CPU, 48 K bytes flash memory
(ROM) and 10 K bytes RAM. This architecture provides 27
instructions and 7 addressing modes. The CPU also provides
sixteen 16-bit registers. The first four are dedicated for
special-purpose, such as programme counter, stack pointer
and status register. The rest of the twelve are available for
general use. Besides, the MSP430 also provides a peripheral
hardware multiplier, which is capable of conducting up to
16 × 16 bits multiplication.

Given the limited processor resources, we concentrate most
of our efforts on computation optimisation. The fundamental
ECC operation is large integer arithmetic over either prime
number finite field GF(p) or binary polynomial field GF(2m)

(where m is a prime). Because the two heavily used
operations: multiplication and modular reduction, can be
more effectively optimised if pseudo-Mersenne primes are
picked up for elliptic curves compared with those of binary
field (Gure et al., 2004), we limit our discussion in prime
number finite field GF(p) in this paper. Without further
clarification, our following discussion is based on SECG
recommended 160-bit elliptic curve: secp160r1.

5.1 Large integer operations

We implement a suite of large integer arithmetic operations,
including addition, subtraction, shift, multiplication, division
and modular reduction. Due to the space limit, we only
present three of the most important functions: multiplication,
division and modular reduction.

5.1.1 Multiplication

The efficiency of large integer multiplication dominates
the overall performance of ECC operation. Gura et al.
show that as much as 85% of execution time is spent on
multiplication for a typical point multiplication in ECC. That
means the optimisation on multiplication is critical for overall
performance of our implementation. We have compared
three different multiplication implementations (Gura et al.,
2004; Liu and Ning, 2005; Malan et al., 2004), and
finally decided to use Hybrid Multiplication proposed by
Gura et al. (2004). To ease our explanation, we use three
large integers as the examples for our following discussion:
A(an−1, an−2, . . . , a1, a0), B(bn−1, bn−2, . . . , b1, b0), and
C(n2n−1, c2n−2, . . . , c1, c0), where C = AB. A and B both
have length of n words, each word has k-bit size. The product
C has 2n words.

The Hybrid multiplication is the combination of
Row-wise multiplication and Column-wise multiplication.
The Row-wise method fixes the multiplier bi (0 ≤ i ≤ n) and
multiplies it with every word of multiplicandA. Partial results
are stored in n + 1 accumulator registers. Every time one
row is finished, the last accumulator register can be stored in
memory as part of the final results. On average, one memory
load is required for each k × k multiplication. When integer
size n is increased (integer size is 10 for curve secp160r1),
the required number registers increase linearly in Row-wise
method.

The Column-wise method, on the other side, computes the
partial results of aibj (where i + j = l) for column l. After
one column finishes, the last word of accumulator registers
is stored as the part of final result. The Column-wise method
only requires three accumulator registers and two more for
operands. However, two memory load operations are required
for each k × k multiplication. Considering a large number
of data in ECC operations, unnecessary memory operations
would lower the performance.

The Hybrid method takes advantage of Row-wise and
Column-wise strategies. To optimise the memory operation,
the Hybrid method merges a number (d) of columns together
and then conducts Row-wise multiplication in each merged
column. When d equals to 1, the Hybrid method becomes
the Column-wise multiplication. When d equals to n, then it
equals to Row-wise method. Therefore, a single memory load
operation can be used for several multiplications. A larger
d leads to fewer memory operations, but requires more
registers. Since the MSP430 microcontroller only has 12
general registers, we can only implement the Hybrid method
with column size d = 2, which requires 5 accumulator
registers, 3 operand register and other 4 registers for pointer,
temporary storage and loop control.

To achieve better performance and enable flexible control
over registers, we implement the Hybrid multiplication
in assembly language. Our experiments show that the
performance of point multiplication improves about 5% with
the Hybrid multiplication compared with the Column-wise
method and improves another 5% with assembly language
compared with original implementation with C.

5.1.2 Division

Modular division is another expensive operation in ECC.
In Affine coordinate, each ECC operation of PADD and
PDBL requires a modular inversion. The integer inversion
is also required for ECC digital signature generation and
verification. In our implementation, we adopt the Great
Divide scheme proposed by Shantz (2001). We briefly explain
the algorithm as follows.

Given a denominator x and numerator y, we want to
compute the modular division y/x over GF(p). This is
equivalent to find r , so that

r ≡ y

x
(mod q) (10)

To find r efficiently, we maintain following two invariant
relationship:

Ay ≡ Ux and By ≡ V x (11)

whereA, B, U andV are four auxiliary registers and assigned
with initial values x, q, y and 0, respectively. Note the
second invariant relationship is true even for v = 0 because
algebraically the value of modulus is equivalent to zero in
finite field. The division procedure repeatedly reduces the
values of A and B in the following way. In each iteration,
if either A or B is even, we divide by 2 both sides of the
equation. If U or V is not even at that time, we can make it
even by adding modulus q. If both A and B are odd, we add
two equations together and then divide by 2 at both sides.
By repeating this process, it is guaranteed that either value of

132 H. Wang, B. Sheng and Q. Li

A or B reduces one bit in one iteration. The procedure stops
when A = B = 1, the first equation becomes

y ≡ Ux (12)

The value of U is our final result. If we initialise U with
1, this routine can be used to calculate an inversion of x.
This algorithm works when x and q are relatively prime.
Otherwise, the routine would return the greatest common
divisor of A and B. The Great Divide finishes division or
inversion operation in 2(log(x) − 1) steps.

5.1.3 Reduction

The modular reduction operation is as important as modular
multiplication. Each multiplication must be followed by a
reduction operation. Note the Great Divide algorithm does
not work for modular reduction. Since we choose to use
pseudo-Mersenne primes as specified in NIST/SECG curves,
the modular reduction can be optimised by conducting a
fixed number of integer additions. Because the optimisation
is curve specific, we will explain in more detail in the section
of ECC operation. Now, we discuss the modular reductions
in digital signature generation and verification. In most cases,
the order of an elliptic curve is not a pseudo-Mersenne
prime, the optimisation cannot be applied for those reduction
calculation. We choose the classic long division method to
implement this operation. It may not be the most efficient
algorithm, but it does not affect the overall performance
much because very limited number of modular reductions are
required in digital signature algorithm. We briefly describe
the long division method as follows.

Given an integer x, we want to calculate

r ≡ x mod p (13)

where p is a prime.

1 Align the Most Significant Byte (MSB) of modulus p to
the MSB of x, the lower bytes of p can be filled with
zeros.

2 Starting with the MSB of x, divide the first two MSBs
of x by the MSB of modulus q and get the quotient.

3 Multiply the quotient with the modulus and get a
subproduct.

4 If the subproduct is greater than the remainder of x (over
estimation), subtract the modulus from the subproduct.

5 Then subtract the subproduct from the remainder of x.

6 The procedure continues and goes back to step 2 if the
MSB of the remainder becomes zero.

7 If the MSB of the remainder is not zero (under
estimation), subtract the modulus from the remainder,
and then go back to step 2.

8 The procedure stops when the remainder is less than
modulus q.

The long division producer reduces the remainder of x by one
byte in each iteration.

5.2 ECC Operations

In this section, we present our optimisation for ECC
operation. We first discuss ECC PADD and doubling. We
then introduce an optimized modular reduction for curve
secp160r1. Finally, we explain several different optimisations
for point multiplication.

5.2.1 ECC addition and doubling

The fundamental ECC operation is PADD and PDBL. The
point multiplication can be decomposed to a series of
addition and doubling operations. As discussed in previous
section, PADD and PDBL in Affine coordinate require
integer inversion, which is considered much slower than
integer multiplication. Cohen et al. (1995) showed that these
operations in Projective coordinate and Jacobian coordinate
yield better performance. They further found addition and
doubling in mixed coordinate, with the combination of
Modified Jacobian coordinate and Affine coordinate, led to
the best performance (Cohen et al., 1998). Consider an ECC
point in Modified Jacobian coordinate, P1(X1, Y1, Z1, aZ4

1)

and a point in Affine coordinate, P2(x2, y2), their addition
results in the third point P3 = (X3, Y3, Z3, aZ4

3) in Modified
Jacobian coordinate. The result is given by the following
equations.

X3 = − H 3 − 2X1H
2 + r2

Y3 = − Y1H
3 + r(X1H

2 − X3) (14)

Z3 = Z1H

aZ4
3 = aZ4

3

where H = x2Z
2
1 − X1 and r = y2Z

3
1 − Y1. The result of

PDBL for P3 = 2P1 is given by the following formula.

X3 = T

Y3 = M(S − T) − U

Z3 = 2Y1Z1 (15)

aZ3 = 2U(aZ4
1)

To estimate the computational complexity, we only consider
large integer multiplication and squaring operations, and
ignore those addition and subtraction since they are much
faster. According to Equations (14) and (15), PADD requires
9 large integer multiplications and 5 squaring and point
doubling requires 4 multiplications and 5 squaring.

The basic point operations can further be optimised for
specific elliptic curves. In our case, the curve parameter a

of secp160r1 equals to −3. For PDBL, M can further be
reduced to

M = 3X3
1 − 3Z4

1 = 3(X1 + Z2
1)(X1 − Z2

1) (16)

As a result, PDBL operation reduces to 4 multiplications and
4 squaring. Actually, aZ4

3 does not have to be calculated
in PADD, so the computational complexity reduces to 8
multiplications and 3 squaring. Our observation supports
the choice of mixed coordinate, the performance of point
multiplication improves around 6% compared with our
previous implementation in Jacobian coordinate.

ECC-based access control 133

5.2.2 Modular reduction on ECC curve

Recall that modular reduction has to be applied after every
large integer multiplication, it is also a performance critical
operation. By taking advantage of pseudo-Mersenne primes
specified in SECG curves, the complexity of the modular
reduction operation can be reduced to a negligible amount.
In this section, we use curve secp160r1 as an example to show
how to do efficient reduction.

Suppose we use the 16-bit architecture, the multiplication
result can be represented by

C(c19, . . . , c10, c9, . . . , c1, c0)

where ci (0 ≤ i ≤ 19) is a word with 16 bits and c19 is
the most significant word. The 20-word integer can also be
written as:

C = (c19, · · · , c10)2
160 + (c10, c9, · · · , c1, c0) (17)

Given the field of curve secp160r1 q = 2160 − 231 − 1, we
can have 2160 ≡ 231 + 1. Therefore,

C ≡ (c19, . . . , c10)(2
31 + 1) + (c10, c9, . . . , c1, c0)

≡ (c19, . . . , c10)2
31 + (c19, . . . , c10)

+ (c10, c9, . . . , c1, c0)

(18)

Since each word has 16 bits, the first term in the result of
Equation 18 can be further reduced to

(c19, . . . , c10)2
31

≡ c192175 + c182159 + (c17, . . . , c10)2
31

≡ c19215(231+1 + (d15, . . . , d1, d0)2
159

+ (c17, . . . , c10)2
31

≡ c19215 + c19246 + (d0) ∗ 2159

+ (d15, . . . , d1)(2
31 + 1)

+ (c17, . . . , c10)2
31

≡ c19215 + c19246 + (d0)2
159

+ (d15, . . . , d1)2
31 + (d15, . . . , d1)

+ (c17, . . . , c10)2
31

(19)

where (d15, . . . , d1, d0) are 16 bits of c18. Now, all terms
in Equations (18) and (19) have at most 159 bit length, the
reduction result is simply the addition of these terms.

5.2.3 Further optimisation

Examining the computational complexity, we notice that
PADD is more expensive than PDBL. As we have discussed,
point multiplication can be decomposed to a series of
PADD and doubling, we would rather use more PDBL than
point addition to compute the point multiplication. Morain
et al. found NAFs is an effective way to achieve the lightest
Hamming weight for scalar k in point multiplication kP ,
which results to use the least number of point additions to

calculate kP (Morain and Olivos, 1990). For example, 255P ,
or (11111111)P , requires 7 PADDs. But if we transform
it to (10000000 − 1)P , which is 256 × P − P , only
one addition is required. Note the point subtraction can be
replaced by PADD because the inverse of an Affine point
P = (x, y) is −P = (x, −y). We implement
NAFs technique in Random Point Multiplication (RPM).
According to our experiments, point multiplication with
NAFs contributes at least 5% performance improvement.

Recall in the digital signature procedure in ECDSA,
component r is generated by a point multiplication with
the fixed base point of a selected elliptic curve. To
further reduce the execution time, we precompute some
partial results and apply the sliding window method (Kac,
1994) to speed up fixed point multiplication. Different
from NAFs, sliding window scheme groups scalar k

into a number of s − bit bit-clusters, where s is
also called window size. So, k can be represented by
km2sm + km−12s(m−1) + · · · + k0, where ki is a bit-cluster.
If we precompute the point multiplication with every possible
value of ki , the number of point addition is bounded by
	160/s
−1. Note the sliding window method does not reduce
the number of PDBL operations. Obviously, this scheme
requires extra memory space for storing partial results.
In practice, we select window size s = 4. Correspondingly,
there are 16 entries in the partial result table. Our experiments
show that the sliding window method is more effective than
NAFs for fixed point multiplication, the performance of
sliding window method is more than 10% better than that
of NAFs.

6 Experiments and performance evaluation

We have implemented the ECC security primitive and the
proposed access control scheme on TelosB (TPR2420) motes,
the latest research oriented mote developed by UC Berkeley.
TelosB is powered by MSP430 microcontroller. MSP430
incorporates an 8 MHz, 16-bit RISC CPU, 48 K bytes flash
memory (ROM) and 10K RAM. The RF transceiver on
TelosB is IEEE 802.15.4/ZigBee compliant, and can have
250 kbps data rate.

In this Section, we first compare the performance of our
implementation with other two related works: TinyEcc (Liu
and Ning, 2005) and EccM (Malan et al., 2004). Then
we present our ECC-based access control implementation
and related experimental results. For comparison purpose,
we also implement a symmetric-key based access control
scheme and present the experimental result. We argue that
the symmetric-key scheme suffers a number of problems
even though it is computationally efficient for sensor
nodes. Finally, we give an overall analysis to quantify the
computation complexity.

6.1 Comparisons of the performance of ECC
implementation

In experiments, we measure execution time, power
consumption and code size of our implementation
and compare the performance with other two released
implementations, TinyEcc (Liu and Ning, 2005) and EccM

134 H. Wang, B. Sheng and Q. Li

(Malan et al., 2004). We make appropriate modifications on
their program to make them executable on TelosB platform.
We choose secp160r1 as the elliptic curves parameters in all
experiments.

We use the embedded system timer (32 kHz) to measure
the execution time of major operations in ECC, such as point
multiplication, point addition (PADD) and point doubling
(PDBL). The energy consumption E can be calculated by
E = UIt , where U is the voltage, I is the current and
t is the time duration. TelosB motes are powered by two
AA batteries, so U is approximated equal to 3.0 volts. The
current value varies in different operations as given in Table 1
(abstracted from Moteiv Co. Telos datasheet. (2005)).

Table 1 The amount of current draw on different operations for
TelosB motes

Operation Normal Max

MCU On, Radio Off 1.8 mA 2.4 mA

MCU On, Radio Rx 21.8 mA 23 mA

MCU On, Radio Tx 19.5 mA 21 mA

We first test point multiplication operation, which comprises
PADD and PDBL. We consider two cases in point
multiplication. One is multiplying large integer with a fixed
point (base point) and the other one is with a random point.
Fixed Point Multiplication (FPM) allows for optimisation
by precomputing. We apply sliding window technique
(Koc,1994) and set window size to 4, that is, precomputing
24 − 1 = 15 points. In experiments, we randomly generate
20 large integers to multiply with the point and measure the
average execution time.

Since ECC point multiplication consists of addition and
doubling operations, we further evaluate these two operations
individually. We generate random points and large integers
for tests. Since a single operation takes very little time,
to reduce the error of clock inaccuracy, we measure 100
operations every round and take the average value.

Table 2 gives the experimental results of execution time.
PADD and PDBL of our implementation is superior to the
other two implementations, which results in a faster point
multiplication. Since EccM has no precomputation, there is
no difference between the multiplications with base point and
random point. Comparing with TinyEcc, we achieve about
4.8 sec improvement in FPM, and about 6.3 sec improvement
in Random Point Multiplication (RPM).

Table 2 Execution time of point operations, including FPM,
RPM, PADD and PDBL

FPM RPM PADD PDBL

Our codes 3.13 s 3.51 s 0.133 s 0.137 s

TinyEcc 7.98 s 9.86 s 0.315 s 0.300 s

EccM 88.43 s 88.43 s 0.262 s 0.255 s

Next, we implement ECDSA signature scheme and compare
the performance with TinyEcc. The experimental results are
given in Table 3. In fact, when signing a message, one FPM

is the dominant operation. As we can see, the difference
of signature time is very close to the difference of FPM.
On the other hand, verification of ECDSA consists of one
FPM and one random point multiplication. According to
Table 2, we expect to achieve at least 11 sec improvement.
However, TinyEcc implemented ECDSA in a different way
with the assumption that the verifier is aware of the sender’s
public key. Thus, precomputation is conducted to optimise
the performance for the RPM. We think this assumption is
impractical for a scalable sensor network and we implement
pure RPM in the verification process. That explains why we
only gain less than 10 sec.

Table 3 Signature and verification execution time in ECDSA

Signature Verification

Our codes 3.35 s 6.78 s

TinyEcc 8.24 s 16.26 s

The power consumption is estimated by the formula E =
U It . Thus, it is linear to the execution time. TelosB uses
an ultra-low-power microcontroller MSP430. As given in
Table 1, the current is 1.8 mA in active model. We use two
new AA batteries, so the voltage is 3.0 V. Therefore, for our
ECDSA implementation, generating a signature consumes
roughly 18.09 mJ energy and verification costs 36.61 mJ.
The whole authentication protocol consumes about 54.70 mJ
for computation.

The following Table 4 compares the code size of
three implementations. Our program uses 42.3 KB
ROM and 1.6 KB RAM for ECDSA signature and
verification protocol, where SHA-1, occupying more than
30 KB memory space, takes a large portion of codes.
Compared with the ECDSA module in TinyECC, our
implementation requires 3 KB more space in ROM and
0.5 KB more space in RAM. The reason is that we
have implemented several optimisations in our assembly
code, such as loop unrolling, to improve the performance.
As the result, the code size is moderately inflated.

Table 4 Comparison of code size

ECC library ECDSA
ROM RAM ROM RAM

Our codes 13.8 k 1.3 k 42.3 k 1.6 k

TinyEcc 12.5 k 1.3 k 39.2 k 2.1 k

EccM 17.6 k 1.1 k – –

6.2 Performance of the access control protocol

To simplify the experiments, we have implemented the user
module on TelosB motes instead of PDAs. Considering the
authentication procedure is communication intensive and
does not require intensive computations, the experiment
results capture the performance characteristics in reality even
though TelosB motes (8 MHz) are much slower than normal
PDAs (400 MHz).

ECC-based access control 135

Our implementation strictly follows the access control
protocol presented in Section 4 except the data
encryption/decryption part is not implemented due to the
reason that TinySec (which provides block-cipher module)
does not work with CC2420 radio module on TelosB.
However, it does not affect our performance evaluation
because encryption/decryption overhead is negligible (e.g.
in RC5, the most expensive step (key setup) only costs 4 ms
on ATmega128 (Ganesan et al., 2003)) compared with ECC
exponentiation. The experiment is set-up as follows. Initially,
the sensor mote is powered on and waiting for user’s access
request. The user’s operations are divided into two stages.
In the first stage, the user generates system parameters
including system secret x and system public key Q, and then
generates user’s own access list, private key and certificate.
This step basically simulates the operation of KDC. In the
second stage, user communicates with the sensor and receives
the information services. We start to count the time as soon
as the sensor node receives the user’s access request. We use
challenge generation time and total transaction time as our
performance indicators. The challenge generation time is user
perceived delay from sending out the access request to receive
the challenge from the sensor. The total transaction time is
the amount of time for the sensor to approve the user, which
also includes user’s response time. We run the authentication
for 20 times. Our experiment results show that challenge
generation costs 10.12 s on the average with the standard
deviation of 0.08 s and the overall access control time is
14.13 s on the average with the standard deviation of 0.09
s. The result of challenge generation time is consistent with
our previous experimental results because the sensor has to
do two RPM and one FPM. There is about 3.5 sec difference
between the challenge generation time and the access control
time. The reason is that we implement the user module on
our sensor mode, and it takes around 3.5 sec for a sensor
to compute a random point multiplication. In reality, this
period of time should be much less because users are normally
equipped with more powerful devices.

The code size for access control implementation is
47,106 bytes in ROM and 2064 bytes in RAM. The
power consumption in TelosB combines the computational
cost and communication cost. Using the same power
consumption estimation as previous experiments, the
computation consumes around 54.5 mJ. Since the
current draw increases significantly when radio
transceiver is on, as shown in Table 1, we calculate the
communication cost as followings. Given 250 kbps radio
transmission rate and 38 bytes in each packet, it takes one
sensor node

38 × 8(bits)/250(kbps) = 1.2(ms) (20)

to transmit or receive a data packet. Without considering
packet collision, the total transmission time is the product
of Equation 20 with the number of packets. The energy cost
for receiving a packet is 3.0(v)21.8(mA) × 1.2(rmms) =
78.5(µJ). Similarly, the energy cost for transmitting a
packet is 3.0(v)19.5(mA)1.2(ms) = 70.2(µJ). During
the authentication, it takes three packets for the user to
send certification information to the sensor, four packets
for the sensor to send the challenge to the user and the
final packet for the user to respond the challenge. Totally,

it costs 594.8(µJ) for the sensor in communication.
Obviously, the computational cost dominates in the user
authentication.

6.3 Comparison with symmetric key based
authentication

To compare the performance of our ECC-based scheme with
that of symmetric-key–based scheme, we also implement
a symmetric key based access control scheme. The detail
access control scheme is described as following.

Initially, each sensor node si is pre-loaded with a unique
secret key xi . When a user applies for access service at
KDC, KDC issues a proper access list TA to the user. At the
same time, as shown in Figure 5, KDC also calculates and
gives user the authentication code set {χi} = {Hash(TA||xi)},
where 1 ≤ i ≤ n. A simple symmetric-key based access
control protocol is shown in Figure 6. Each χi is indexed by
sensor id si . When the user approaches a local sensor, she
first broadcasts an access request. An available local sensor
replies with its sensor id si with a nonce NB (NB is a random
number for the purpose of data freshness). The user looks up
her table and picks the right χi as the secret key to encrypt
her access list TA, nonce NB and a randomly generated nonce
NA (NA is used to guarantee the data freshness). The user
sends the encrypted message with a plaintext access list TA

to the local sensor. At the other side, the local sensor applies
the hash function on the provided access list TA with its
own secret key xi . If the result can successfully decrypt the
ciphertext from the user (by verifying NB), it is proved that
the access list is genuine and issued by KDC. Otherwise,
the user’s request will be rejected. Finally, local sensor si

replies the user with MAC(χi, NA||data), where data is the
user requested information. A successful decryption of NA

by the user automatically proves the sensor is genuine and
can be trusted.

Figure 5 A simple and effective access list authentication by
only one hash function: χi = H(TA||xi)

TA x i

χi

Similarly, we implement both user and sensor modules on
TelosB motes. We use 8-byte integer as user access list TA,
sensor secret xi and authentication code χi . For one-way
hash function, we choose 160-bit SHA-1. Since SHA-1 hash
function outputs a 20 byte result, we only keep the lower 8
bytes as the result.

We perform the local authentication experiment 20 times.
The average time duration for the sensor to authenticate the
user is 75 ms. There are two rounds of communications, so
the sensor spends 1.2ms × 2 in transmission and 1.2ms × 2
in receiving. Based on the time consumption and Table 1,
we can calculate the power consumption each component as
given in Table 5. When calculating the power consumption
for communication, we choose the maximum current draw
given in Table 5.

136 H. Wang, B. Sheng and Q. Li

For the comparison purpose, we also list the performance
of ECC-based scheme in Table. 5. Overall, it seems the
symmetric-key based scheme is much more efficient than
the ECC-based scheme. As we can see, our ECC-based
scheme costs 130 times longer in authentication time and
almost twice longer in communication delay. As a result, the
total energy cost of our ECC-based scheme is almost 80 times
more expensive than that of symmetric-key based scheme.
However, the symmetric-key based scheme suffers a number
of problems:

• Scalability issue: the symmetric-key based scheme does
not scale. The reason is that users have to carry all the
authentication codes. If the sensor nodes are pervasive
in the environment, it will be a heavy burden for KDC
to generate millions of authentication codes (one code
for each sensor node) for users. Meanwhile, users may
not afford the large storage space requirement.

• Storage issue: suppose each authentication code is
8 bytes. If there are 100,000 sensor nodes, any user has
to store 800 MB data just for the authentication codes.

• Re-deployment issue: the symmetric-key scheme also
has the problem in re-deployment. New sensors may be
inserted to the existing network due to replacement for
damages or network expansion. The problem comes
when users try to access those new-deployed sensors
because they do not have the authentication codes.

• Key distribution issue: normally, the symmetric-key
based security schemes require a complicated key
predistribution and a considerable memory space for
storing predistributed keys. Many times, the
key-distribution is difficult and problematic in pervasive
computing environment, especially after the network
has already been established.

Table 5 The performance comparison for the access control
between symmetric-key based scheme and ECC-based
scheme

Sym. Scheme ECC scheme

Auth. time 75.0 ms 10.1 s
Comp. cost 379.0 µ J 54.4 mJ
Comm. cost 316.8 µ J 594.8 µ J
Total cost 695.8 µ J 55.1 mJ

6.4 A performance anatomy of ECC point
multiplication on TelosB

Since ECC point multiplication dominates the computational
complexity in ECC operations, we are curious to analyse the
performance anatomy in ECC point multiplication.

This analysis is based on 160-bit ECC curves. We use
secp160r1 as the example. We also assume 4-bit sliding
window method is used and partial results are precomputed.
The computational cost for each window unit is 4 PDBL and
1 PADD. Given a 161 bit private key, there are 41 window
units. Totally , 164 PDBL and 41 PADD are required to finish
1 point multiplication.

Figure 6 A simple and efficient symmetric-key based access
control protocol

user → si : access request

si → user : sid||NB

user → si : MAC(χi, TA||NA||NB)||TA

si : compute χi = H(TA||xi)

si : TA||NA||NB = MAC−1(χi, TA||NA||NB)

si → user : MAC(χi, NA||data)

user : NA||data = MAC−1(χi, NA||data)

Large (160-bit) integer multiplication, squaring and
reduction are the most expensive operations in PDBL and
PADD. In the following analysis, we ignore the other
integer operations. Each optimised point addition (in mixed
coordinates) costs 8 large integer multiplications and 3
large integer squaring. Each optimised PDBL (in Jacobian
coordinate) costs 4 large integer multiplications and 4
large integer squaring. In addition, each multiplication,
squaring or shifting operation has to be followed by a
modular reduction. Our program shows the PADD requires
12 modular reductions, and the PDBL requires 11 modular
reductions. In total, each point multiplication costs 164×4+
41×8 = 984 large integer multiplications, 164×4+41×3 =
779 large integer squaring and 164 × 11 + 41 × 12 =
2296 large integer modular reductions. According to our
tests, the cost of squaring is 90–95% of multiplication,
and the optimised modular reduction costs about 25% of
execution time of the multiplication. Converting squaring
and reductions to multiplications by using above ratios, the
total cost for one ECC point multiplication is equivalent to
984 + 779 × 0.95 + 2296 × 0.25 = 2298 large integer
multiplications. Our experiments show that the execution
time of 1000 160 × 160 integer multiplications is 0.95 sec.
We conclude multiplication, squaring and reduction
operations in ECC point multiplication cost around 2.2 sec,
which is roughly 73% of the total time (3.1 s) tested in our
experiment. Based on the above analysis, we believe the
performance of ECC operations on TelosB can be further
improved by more refined and careful programming.

7 Conclusion

In this paper, we describe an ECC-based access control
scheme in sensor networks. We give the protocol for the
network to authorise a user to access the network and data
collected by the sensors. We show our implementation of
ECC on primary field on TelosB platform and compare the
performance with other implementations that are ported to
TelosB. Even though user access list authentication takes
10.1 sec, it is possible to further reduce the running time by
using more refined and careful programming. Our experiment
results demonstrate that public-key cryptography is feasible
for sensor network security applications including access
control. Our next step is to investigate more sophisticated
access control schemes to alleviate the harm incurred by
compromised sensor nodes.

ECC-based access control 137

Acknowledgment

We thank all the anonymous reviewers for their helpful
comments. We thank Nils Gura for answering some of our
questions. This project is partially supported by the US
National Science Foundation under grant CCF-0514985.

References

Bailey, D.V. and Paar, C. (1998) ‘Optimal extension fields
for fast arithmetic in public-key algorithms’, Advances in
Cryptography–CRYPTO’98, pp.472–485.

Benenson, Z., Gedicke, N. and Raivio, O. (2005) ‘Re-alizing
robust user authentication in sensor networks’, Worshop on
Real-World Wireless Sensor Networks.

Certicom Research. (2000) ‘SEC 2: Recommended elliptic curve
domain parameters’, Standards for Efficient Cryptography
Version 1.0, September.

Cohen, H., Miyaji, A. and Ono, T. (1997) ‘Efficient elliptic
curve exponentiation’, Advances in Crytology-Proceedings
of ICICS’97, Lecture Notes in Computer Science,
Springer-Verlag, pp.282–290.

Cohen, H., Miyaji, A. and Ono, T. (1998) ‘Efficient elliptic
curve exponentiation using mixed coordinates’, ASIACRYPT:
Advances in Cryptology.

Crossbow Technology INC. (2003) ‘Wireless sensor networks’,
Available at: http://www.xbo.com/Products/Wireless_Sensor_
Networks.htm.

Diffie, W. and Hellman, M.E. (1976) ‘New directions in
cryptography’, IEEE Transaction of Information and Theory,
Vol. IT-22, pp.644–654.

Ganesan, P., Venugopalan, R., Peddabachagari, P., Dean, A.,
Mueller, F. and Sichitiu, M. (2003) ‘Analyzing and modeling
encryption overhead for sensor network nodes’, WSNA03,
San Diego, CA, September.

Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E. and
Culler, D. (2003) ‘The nesC language: a holistic approach
to networked embedded systems’, Programming Language
Design and Implementation (PLDI), June.

Gupta, V., Millard, M., Fung, S., Zhu, Y., Gura, N.,
Eberle, H. and Shantz, S.C. (2005) ‘Sizzle: a standards-based
end-to-end security architecture for the embedded internet’,
Third IEEE International Conference on Pervasive Computing
and Communication (PerCom 2005), Kauai, March.

Gura, N., Patel, A., Wander, A., Eberle, H. and Shantz, S.C. (2004)
‘Comparing elliptic curve cryptography and rsa on 8-bit cpus’,
CHES, Boston, August.

Hasegawa, T., Nakajima, J. and Matsui, M. (1998) ‘A practical
implementation of elliptic curve cryptosystems over gf (p) on
a 16-bit microcomputer’, Public Key Cryptography PKC’98,
pp.182–194.

Koc, C.K. (1994) ‘High-speed RSA implementation’, RSA
Laboratories TR201, November.

Liu, A. and Ning, P. (2005) ‘Tinyecc: elliptic curve cryptography
for sensor networks’, 15 September.

Malan, D.J. Welsh, M. and Smith, M.D. (2004) ‘A public-key
infrastructure for key distribution in tinyos based on elliptic
curve cryptography’, In The First IEEE International
Conference on Sensor and Ad Hoc Communications and
Networks, Santa Clara, CA, October.

Morain, F. and Olivos, J. (1990) ‘Speeding up the computations
on an elliptic curve using addition-subtraction
chains’, Theoretical Informatics and Applications, Vol. 24,
pp.531–543.

Moteiv Co. Telos datasheet (2005) Available at: http://www.
moteiv.com/products/docs/tmote-sky-datasheet. pdf.

National Institute of Standards and Technology (1999)
‘Recommended elliptic curves for federal government use’,
August.

Shantz, S.C. (2001) ‘From euclid’s gcd to montgomery
multiplication to the great divide’, Technical Report, Sun
Microsystems Laboratories TR-2001-95, June.

Tinyos (2005) Available at: http//www.tinyos.net/.

Woodbury, A.D., Bailey, D.V. and Paar, C. (2000) ‘Elliptic
curve cryptography on smart cards without coprocessors’,
The Fourth Smart Card Research and Advanced Applications
(CARDIS2000) Conference, Bristol, UK, Septemper.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

