
Verifiable Privacy-Preserving Range Query in
Two-tiered Sensor Networks

Bo Sheng and Qun Li
Department of Computer Science

College of William and Mary

Abstract—We consider a sensor network that is not fully
trusted and ask the question how we preserve privacy for the
collected data and how we verify the data reply from the network.
We explore the problem in the context of a network augmented
with storage nodes and target at range query. We use bucketing
scheme to mix the data for a range, use message encryption
for data integrity, and employ encoding numbers to prevent the
storage nodes from dropping data.

I. INTRODUCTION

We believe that pervasive computing systems, touching
upon every aspect of our life, will be partially supported
by the sensor network infrastructure. This infrastructure will
monitor the environment surrounding us (also including us),
and provide information for us to analyze and respond. Since it
collects information about people, security and privacy become
a big concern. Indeed, security and privacy breaching can
happen in any link. For example, a sensor network may leak
information about people to an unauthorized party; it may
also lie about the collected data to a valid query making the
network dysfunctional. In deploying such a realistic sensor
network, a fundamental question is how much we should
trust the sensor network and how we prevent, or at least,
detect the misbehavior of the sensor network. Unfortunately,
little research work has managed to solve the problem. This
paper tries to address the problem in a two-tiered network
where some nodes are equipped with much larger storage than
regular sensors, which we call storage nodes. This network
setting, we believe, will be a natural enhancement to the future
sensor networks. Under this network architecture, we consider
range query, a typical sensor network operation, which is
very powerful to cover many interesting types of queries. We
feel that our model in this paper is generalized enough to
investigate the trust problem in a practical and also meaningful
environment.

The inclusion of storage nodes in this two tiered architecture
is owing to two considerations. First, transferring the collected
data to the base station consumes too much energy and
creates communication bottleneck close to the base station [1].
Thus, in-network storage is necessary. Second, provisioning all
sensors with large storage is less attractive because querying
the network is tantamount to searching all the sensors in the
network, which consumes much energy [1]. In addition, even
though the storage becomes quite inexpensive, large storage in

This project was supported in part by US National Science Foundation
award CCF-0514985 and CNS-0721443.

numerous sensors would still be a hurdle for realistic deploy-
ment. The integration of storage node is also substantiated by
the belief that the tiered architecture for sensor networks is
more practical [2] and the advent of the new storage-enriched
hardware [3]–[5].

In this paper, we consider general applications concerned
with data range query, which asks storage nodes to return the
data in a range specified by [a, b].1 Particularly, we are inter-
ested in the security issues under this two-tiered model. When
deployed in a hostile environment, storage nodes could easily
become the target for compromise due to their important role
in this accessing model. Two threats arise when storage nodes
are compromised. First, the compromised storage nodes may
disclose the data stored on them to the adversary and breach
data privacy. Resolving this threat is challenging because
storage nodes have to gain information about the collected
data to respond to a range query, which is in conflict with the
privacy requirement. Second, the compromised storage nodes
may lie about the collected data and send wrong information
as the reply. This attack is very hard to prevent, because the
compromised storage node may be fully controlled by the
adversary. In this paper, we propose solutions to solving these
two problems. For the first threat, our scheme strikes a balance
in how much information to release so that data query can be
performed while privacy will not be much harmed. For the
second threat, we propose a passive solution to enable the
user to verify whether the reply is intact.

Our major contributions are: (1) To the best of our knowl-
edge, this paper is the first that considers the privacy issue
when processing range query in sensor networks. Our work
explores the privacy concerns in sensor networks in a very
general setting and provides meaningful and interesting results
for data reply verification. (2) We propose a privacy-preserving
storage scheme, in which only coarse information is disclosed
to storage nodes while data can still be processed upon the
range query. (3) We introduce an encoding scheme, which
allows the sink to verify the reply of a range query with small
extra overheads incurred. (4) Finally, we evaluate our solutions
by comprehensive simulation based on synthetic and real data
sets, and our results show that the proposed schemes achieve
the privacy and security goals efficiently.

The rest of this paper is organized as follows. In Section II,

1Range query is a very powerful type of query, e.g., event detection can be
quantified as querying the range of the monitored variables associated with
the event.

2

we give a brief review of the related work. In Section III, we
describe the system model and the attack model. In Section IV,
we present our verifiable privacy-preserving storage scheme
and query protocol. In Section V, we discuss how to choose the
parameters for optimal performance in our proposed scheme.
We evaluate the performance of our approach in Section VI
and conclude this paper in Section VII.

II. RELATED WORK

Data storage models for sensor networks have been widely
discussed in prior research work. In [1], [6], new data storage
system is designed by introducing an intermediate tier between
the sink and sensors, which can cache data, process query and
provide a more efficient access to the data collected by sensor
networks. This paper considers the same system model, in
which some storage nodes are deployed as the intermediate
tier for data archival and query response. In practice, this kind
of special nodes have been manufactured. StarGate [5] and
RISE [3] are representative products. In [4], G. Mathur et al.
also attach external flash memory to sensor nodes and give a
comprehensive evaluation of the performance. Based on the
large storage hardware, file systems were implemented such
as MicroHash [7], and algorithms for optimal storage node
deployment were designed such as our previous work [8] and
[9].

Data privacy and security have attracted much attention
in database system [10]–[13]. In Section IV-A, we apply
the privacy measurements defined in [11] and [12] to sensor
networks. The prior work, however, assumes data providers are
merely curious about sensitive data, but not to act in a mali-
cious fashion. This paper considers more powerful malicious
attacks to a sensor network deployed in a hostile environment.
Prior research about privacy issue in sensor networks [17]–[21]
focuses on security and privacy for the location of the source
sensor, not the data information. Recently, M. Shao et al. [22]
and K. Ren et al. [23] apply cryptographic mechanism to
provide security and privacy protection for data centric sensor
networks and pervasive computing environment respectively.
However, they do not consider data processing at storage sites.

In sensor networks, secure aggregation [24]–[29] is a similar
topic to our work on reply verification. Their basic goal
is to prevent malicious aggregators from forging the result.
Our verification in this paper, however, tries to detect the
result from suspect data sources, i.e., the compromised storage
nodes. Additionly, some of the prior work is not suitable
for range query, for example, some protocols release data
information to other nodes, which breaches the privacy in our
problem.

III. MODELS

A. System Model

We consider a sensor network consisting of storage nodes
and regular sensors. The basic query/response model is il-
lustrated in Fig. 1. We assume that every sensor generates
environmental data values in a fixed rate and periodically
submits the collected data to the closest storage node. For

example, sensors monitor temperature every ten seconds and
submit the data to a storage nodes every one minute. Thus,
each submission contains six temperature readings. We define
an epoch, as the interval time between two submissions
(one minute in the above example). Assume all sensors are
synchronized so that they have agreement on the beginning
and end of an epoch. The data messages from sensor si contain
the following information:

si → Storage Node : i, t, {data1, data2, . . .},
where i is the sensor ID and t is the current value of the epoch
counter. Data query from a user is directed to the storage nodes
through the sink. In this paper, we consider range queries in
the following format RangeQuery = {t, [a, b]}, where t is
the time slot the user is interested in and [a, b] is the specified
data value range. For easy exposition, we only consider one-
dimensional data in this paper. In some applications, sensors
may generate data with multiple attributes, which yield more
complex range query. Our approach, however, can be easily
extended to the query with multiple data types.

Query

Reply

Reply

Query Sink

Storage Node

Storage Node

Fig. 1. Two-tiered System Model (with two storage nodes)

B. Adversary Model and Security Goals

We assume that the adversary tries to launch the following
two attacks. First, the adversary wants to obtain the sensitive
data information from the sensor network, which violates data
privacy. Leaking valuable data is a critical threat in many
applications. The second attack is to breach data fidelity.
For a user’s query, the adversary tries to reply with wrong
information and makes the user accept it. We consider that
both storage nodes and regular sensors might be compromised
in a hostile environment. In the rest of this subsection, we
discuss the impacts of the compromised storage nodes and
regular sensors, and propose our corresponding security goals.

1) Compromised Storage Nodes: Our major focus is on the
compromised storage nodes. Since storage nodes host a lot of
data collected from other regular sensors, compromising stor-
age nodes will cause great damages to the system. First, once
compromising a storage node, the adversary easily obtains
the privacy-sensitive data stored on the storage node. Second,
the compromised storage nodes can help the adversary launch
the data fidelity attack, because storage nodes are responsible

3

for answering queries from the sink. After receiving a query,
the compromised storage nodes may return arbitrary data as
the reply. Therefore, this paper has the following security
goals for the compromised storage nodes. We aim to protect
data privacy by designing a storage scheme, such that little
information is exposed to storage nodes while fulfilling data
queries. Data fidelity attack, however, is hard to prevent. Our
countermeasure is an approach to enabling the sink to detect
and reject the false reply.

2) Compromised Sensors: If one regular sensor is compro-
mised, the following readings of the sensor will be exposed
and the adversary may send forged data to storage nodes.
Unfortunately, it is hard to prevent the data privacy attack and
data fidelity attack in this scenario. However, the data from an
individual sensor is minor in the whole network. Unless the
adversary compromises a lot of regular sensors, this kind of
attack has a very limited impact.

IV. STORAGE SCHEME AND QUERY PROTOCOL

A. Privacy-Preserving Storage

We first discuss the protection of data privacy, i.e., pre-
venting data from being disclosed to storage nodes. For
this purpose, storing plaintext data on storage nodes is not
desirable. Instead, each sensor must encrypt the data before
sending them to the storage node. We assume that every sensor
shares a secret key with the sink for a certain epoch, which
makes up a one-way key chain. Let ki,t represent the secret key
of sensor si at epoch t, ki,t = hash(ki,t−1). After an epoch,
a new key is generated by the embedded hash function and
the old key is erased from the sensor. Thus, compromising a
sensor si as well as the nearby storage node does not lead
to the disclosure of the data from si generated before the
compromise. Each sensor possesses a distinct key chain so
that compromising one sensor does not affect the security of
another sensor’s data. After the sink receives the query reply
from storage nodes, the shared key between the sink and the
corresponding sensor aids to decrypt the received data.

Leaking no information to the storage nodes provides good
privacy, but does not help with replying a range query: the
storage nodes have to send all the stored data back to the sink
for a query request, which consumes too much energy. Our
solution is to expose some information to the storage nodes
while a good level of privacy is still maintained. We adopt the
bucketing scheme [10] and [11], and associate a tag with each
encrypted data. In this approach, the value domain is supposed
to be discrete and divided into multiple buckets. There is no
overlap or gap between consecutive buckets, and each bucket
is assigned with a tag. Sensors and the sink have agreed on
the same bucket partition. When sending data to the storage
nodes, sensors attach the corresponding tag to every encrypted
data based on which bucket the data falls into. The data values
with the same tag can be encrypted as a block. For example,
a sensor si may send the following to the storage node:

si → Storage Node : i, t, {Tag1, {data1, data2}ki,t
},

{Tag2, {data3}ki,t
}, . . . ,

where data1 and data2 are in the same bucket with Tag1.
For a user query {t, [a, b]}, the sink first translates the value

range into a list of tags which are associated to the smallest
set of buckets that cover the range [a, b]. Therefore, the query
sent to storage nodes is composed of this list of eligible tags,
instead of a and b, for example:

Sink → Storage Node : t, {Tag1, Tag2, . . .}.
Storage nodes will look up all the data generated in epoch t
and return those whose tags are listed in the query. We will
discuss how to define each bucket in the next section.

B. Verifiable Reply

As we mentioned earlier, if storage nodes behave mali-
ciously, they may send back arbitrary data as the query reply.
In this subsection, we discuss the counter schemes to detect
the false reply of a range query. More precisely, there are three
possibilities for a storage node to cheat on a range query reply.
First, a storage node can forge a non-existing data value for
the query reply. The forged data can be easily detected because
each valid data is encrypted by a key shared by the sink and the
sensor who generates the data. Second, the storage node may
reply with a valid encrypted data that lies out of the required
query range. The sink can also easily detect the cheating by
decrypting the data and comparing with the query range. Third,
a storage node may return partial portion of the desired data,
which constructs an incomplete reply. In this paper, we focus
on detecting the incomplete reply.

Assume there are m tags, labeled as T1, T2, · · · , Tm. Recall
that when a sensor si sends data at the end of an epoch, all
the data with the same tag are encrypted in a bulk. If a storage
node wants to drop the data with tag Tj , it has to drop the
entire data block and pretends that no data with tag Tj has been
received from sensor si in the specified epoch. In the next, we
propose to use encoding number to detect the incomplete reply.
We assume that the sink is aware of the association between
sensors and storage nodes. The basic idea is to require a sensor
to send the storage node a secret for a tag if the sensor has
no data associated with the tag. This secret will be requested
by the sink, when the storage node claims that the sensor has
no data with the tag. The sink can verify the authenticity of
the received secrets. In this way, if a compromised storage
node drops some data, it has to guess the secret to pass the
verification at the sink. With careful design, our scheme can
detect a false reply with high confidence.

The details of our design are as follows. For each tag Tj ,
every sensor si is able to generate a Dj-bit encoding number
based on a predefined hash function Hj . Here Dj is a system
parameter and we will discuss how to set this value in the next
section. Let num(i, j, t) represent si’s encoding number for
tag Tj after epoch t. The encoding number is defined as

num(i, j, t) = Hj(i||j||t||ki,t),

where || means concatenating operation. After sending all data
gathered during the past epoch to the storage node, each sensor
also generates and sends the encoding numbers for those tags

4

that have no data associated with to the closest storage node.
For example, assume si generates some data with tag T1, but
no data with T2 during epoch t. It will send to the storage
node data in the following format:

si → Storage Node : i, t, {T1, {data1, data2, · · ·}ki,t
},

{T2, num(i, 2, t)}, . . .
To respond to a range query, in addition to finding all

data matching the query range, a storage node generates a
certificate for the received encoding numbers. In fact, the
storage node can send all received encoding numbers as a
certificate. However, to save the message size, our scheme uses
a hashed value of the encoding numbers instead. First, for each
encoding number in epoch t (num(i, j, t)), the storage node
generates a hash value c(i, j, t) = H(i||j||t||num(i, j, t)).
Then, the storage node concatenates these hash values c(i, j, t)
in the order of (i, j) pair. This ordering is to enable the
sink to reconstruct the certificate later. Finally, the certificate
is obtained by applying another hash function H ′ on the
concatenation of c(i, j, t), Certificate = H ′(||c(i, j, t)). This
certificate is included in the return message to the sink. When
the sink receives the reply, it can reconstruct the certificate
based on the received data because it knows all secret keys.
The sink compares it with the received certificate and the
validity of the reply is verified if they match.

In this design, when a compromised storage node drops
some data, it does not have enough information to surely
generate a valid certificate for the incomplete reply. We set
the certificate to be sufficiently long, so that a direct guess of
the valid certificate is very unlikely to be correct. Thus, the
only alternative for the storage node is to guess the encoding
numbers for the data to be discarded and apply function H ′

to generate a certificate. We will discuss the possibility of
successfully forging encoding numbers in the next section.

It is possible that some regular sensors may be faulty,
dysfunctional, or even malicious after being compromised.
The encoding numbers from those sensors may be incorrect
or missing at storage nodes. In this case, storage nodes simply
report to the sink about those abnormal sensors when replying
a query. Since the main objective of this paper is to detect
malicious behavior, informing the sink of the faulty sensors is
sufficient for further actions.

V. FINDING THE OPTIMAL PARAMETERS

In the previous section, we introduced a bucketing scheme
to protect data privacy and encoding numbers to verify a reply.
How to divide the value range into buckets and determine the
length for encoding number is still a problem. In the rest of this
section, we formulate the problem as an optimization problem
with three system performance metrics, and show how to solve
the problem in this setting.

Assume that a storage node is in charge of n sensors
and each sensor generates s readings per epoch. Every data
value is considered discrete at some precision level. Also we
assume that the data generated by every sensor follows the
same distribution F (x) (the probability that a certain sensed

value is x), which can be obtained from theoretical models
or empirical data. In addition, the query characteristics, i.e.,
range specification and query frequency, need to be considered
as well to set the optimal parameters. A query in the complete
range query set can be represented as

Qi = {ti, [ai, bi]}, ai ∈ [vmin, vmax], bi ∈ [ai, vmax],

where vmin and vmax are the minimum and maximum values
of the collected data, and ti can be any past epoch, and there
does not exist another Qj , such that ai = aj and bi = bj .
Let L be the value range, L = vmax − vmin + 1. Thus, there
are L(L+1)

2 possible ranges in this set. For the purpose of a
generalized analysis, we assume that the sink has the same
possibility to receive a query for any range and it receives the
queries to all possible ranges during c epochs.

A. System Performance Metrics

Here we introduce three performance metrics, which are
crucial to the design of our scheme. Privacy and security
metrics describe the robustness to data privacy and data
fidelity attacks. Communication cost is the metric for energy
efficiency. We define these metrics mathematically as follows.

1) Privacy Constraints: While bucketing scheme enables
storage nodes to search data with tags, it may potentially lead
to privacy breach. Consider an extreme case in which every
distinct value has a unique tag. If a sensor is compromised,
the value-tag mapping will be exposed to the adversary. He
can derive all data values stored on the compromised storage
node, even if the data is encrypted.

In this paper, we use variance and entropy to measure the
privacy protection of a bucket as proposed in [11]. Larger
variance and entropy indicate better protection of privacy. Due
to page limit, we refer the interested readers to [11] for details.

For a given tag Ti defined by range [li, hi], li ≤ hi, the
variance and entropy can be calculated as follows. Let Ēi be
the expected value within this range and PTi be the probability
that a value belongs to this range,

Ēi =
hi∑

x=li

F (x) · x, PTi =
hi∑

x=li

F (x). (1)

According to the definitions of variance and entropy, we have

variance =
hi∑

x=li

F (x)(x − Ēi)2; (2)

entropy = −
hi∑

x=li

F (x)
PTi

log
F (x)
PTi

. (3)

Applications may specify the requirements of these two
metrics, indicated by V ARp and ENp respectively. In a valid
bucketing plan, for any bucket, the variance and entropy must
be greater than V ARp and ENp respectively. Thus, Ti is valid
if variance > V ARp and entropy > ENp.

5

2) Security Constraints: Encoding number scheme pro-
posed earlier is not perfectly secure. There is still some
probability that the adversary can forge encoding numbers
correctly to pass the verification. We define the security level
of a set of encoding numbers as follows:

Definition 1: α-valid/false reply: We say a reply is α-valid
if the dropped data is less than α portion of the total expected
data. A reply, which is not α-valid, is called a false reply.

Definition 2: (α, δ)-secure encoding numbers: We say
that a set of encoding numbers are (α, δ)-secure, if the
confidence of accepting an α-valid reply, i.e., the probability
of detecting false reply, is greater than δ.

The first parameter α defines data fidelity, which is the
fraction of data loss we can tolerate over the amount of
data that should be returned for a range query. Data reply
confidence δ, is the probability that we can detect a false reply.
Given user specified α and δ, our resulting encoding numbers
must be (α, δ)-secure.

3) Communication Cost: With security protection, extra
communication cost is incurred in data collection and query
reply. The objective in this problem is to minimize the
communication cost during c epochs, which includes the cost
of transferring data from sensors to storage nodes and from
storage nodes to the sink. In this section, we analyze the costs
and give an expression of the objective function.

First, bucketing scheme incurs a problem of false positive
[11]. Some useless data are sent back together with the desired
data. We define false positive as the total amount of the useless
data received by the sink. Consider a tag Ti defined by the
range of [li, hi]. For a range query [a, b], Ti yields no false
positive if there is no overlap between [a, b] and [li, hi], i.e.,
b < li or a > hi. However, if li ≤ b < hi, the data in the
range of [b+1, hi], which size is n ·s ·∑hi

x=b+1 F (x), are also
returned. Considering the complete query set, for a certain b, a
belongs to [vmin, b], which yields b− vmin +1 queries. Thus,
the false positive in [li, hi] due to the data out of a query’s
upper bound is

hi−1∑
b=li

(b − vmin + 1) · n · s ·
hi∑

x=b+1

F (x).

Similarly, if li < a ≤ hi, the data in [li, a − 1] becomes false
positive . In addition, we assume the cost of transferring data
is proportional to the data size and the distance between the
sender and receiver. Therefore, considering the complete query
set, the total cost for transferring the false positive incurred by
Ti, denoted by CFi, is

CFi = dss · n · s(
hi−1∑
j=li

(j − vmin + 1)
hi∑

x=j+1

F (x)

+
hi∑

j=li+1

(vmax − j + 1)
j−1∑
x=li

F (x)), (4)

where dss is the distance between the storage node and sink.
Similar to privacy protection, encoding number scheme

incurs extra costs, too. First, when storage nodes reply to a

query, a certificate is attached to the message. The sensors
relaying the message will consume more costs. This cost,
however, is constant in this scheme. We do not have to consider
it when determining buckets plan and encoding numbers.
Second, when sensors send data to storage nodes, they need
send the encoding numbers for the tags with no data associated
as well. The cost of transferring encoding numbers depends
on bucket partition, the length of each encoding number, the
number of sensors in the proximity, and the distance between
sensors and their closest storage nodes. For a tag Ti, the
probability that one sensor has no data with Ti is (1−PTi)s.
Thus, the expected number of those sensors which have no
data with Ti in an epoch is n · (1 − PTi)s. This is the
number of sensors that have to send the encoding number for
Ti to storage nodes. Therefore, for each epoch, the expected
communication cost for transferring the encoding numbers for
Ti is Di · n · (1 − PTi)s · davg, where davg is the average
distance between sensors and the storage node and recall Di is
the length of the encoding number for Ti. Let CEi be the cost
of transferring the encoding numbers of Ti during c epochs,

CEi = c · Di · n · (1 − PTi)s · davg. (5)

B. Problem Formulation

Considering all the metrics discussed above, our problem is
formally defined as follows:

Input: F, V ARp, ENp, α, δ

Output: Bucket partition (Ti) & encoding numbers (Di)

Objective: min
∑

i

(CFi + CEi) (6)

s.t. ∀Ti, variance> V ARp and entropy> ENp;
{Di} is (α, δ)-secure.

That is, given the sensed data distribution F (x), privacy
parameters V ARp and ENp, and security parameters α and
δ, we aim to find the optimal bucket partition (Ti) and
encoding numbers (Di), such that the communication cost
(
∑

i(CFi+CEi)) is minimized while the privacy requirements
(in terms of variance and entropy) and the security requirement
((α, δ)-secure) are guaranteed.

C. Algorithm to Find the Optimal Parameters

As shown above, our problem boils down to determining
the optimal bucket scheme and the optimal length for each
encoding number. We call the bit length of an encoding
number encoding length in the rest of this paper. Our main
algorithm uses dynamic programming to enumerate all bucket
partition schemes. For each bucket partition, we first check the
privacy constraints and call another algorithm to calculate the
encoding lengths which can guarantee the security constraints.
Then, we can obtain the communication cost incurred by the
bucket partition. After examining all bucket partition plans, our
algorithm can find the optimal one with the minimum cost.

6

1) Main Algorithm: In this subsection, we describe the
main algorithm to divide the value range into buckets such that
the communication cost is minimized while the security and
privacy constraints are satisfied. We use dynamic programming
to resolve the problem in the following Algorithm 1. It
basically is composed of two phases. In the first phase (lines
1-7), we enumerate all possible ranges [i, j] by two loops.
We first check if each range is eligible to be valid buckets
according to the privacy constraints and store the results in
a boolean array valid[i, j]. For each valid range [i, j], i.e.,
valid[i, j] is true, we calculate an encoding length D[i, j]
by another function EncodingLength. We will discuss the
details of this function in the next subsection. Basically, for
a given range, it returns the shortest encoding length that can
guarantee the security constraint. Then in line 7, we compute
the communication cost incurred by this range for transferring
false positive data (Eq.(4)) and encoding numbers (Eq.(5)).
The time complexity of this phase is O(L2 · max{L2, s}),
where L is the value range as defined earlier. In the second
phase, we define a two dimensional matrix M , where each
element M [i, j] stores the cost of the best solution to divide
range [i, j]. We use dynamic programming to fill matrix M
and finally M [vmin, vmax] is the cost of the optimal bucket
partition. We start from the smallest ranges with width 1 and
calculate M [i, j] in the ascending order of the range width
w = j − i. Dividing [i, j] can be regarded as a two-step
process: defining the first bucket and recursively dividing the
remaining range. Let [i, k] be the first bucket. We enumerate all
possible positions of k and M [i, j] is obtained by the following
equation,

M [i, j] = min{CE[i, k] + CF [i, k] + M [k + 1, j]},
where k ∈ [i, j] and valid[i, k] = true. Additionally, another
matrix P is used to record the pivot points of range partition.
By tracing back from P [vmin, vmax], we can obtain the
optimal bucket partition. The time complexity of the second
step is O(L3). Therefore, the algorithm terminates within
O(L2 · max{L2, s}) steps.

Algorithm 1 Optimal Solution (F, V ARp, ENp, α, δ)
1: for i = vmin to vmax do
2: for j = i to vmax do
3: Calculate Ē[i, j] and PT [i, j] by Eq.(1)
4: Calculate variance and entropy by Eq.(2) and Eq.(3)
5: if variance > V ARp and entropy > ENp then
6: valid[i, j] = true, D[i, j] = EncodingLength([i, j])
7: COST [i, j] = Eq.(5)+Eq.(4)
8: for w = 1 to vmax − vmin + 1 do
9: for i = 1 to vmax − w do

10: if valid[i, i + w] then
11: M [i, i + w] = COST [i, j]
12: for j = 1 to w − 1 do
13: if valid[i, i + j] then
14: cost = COST [i, i + j] + M [i + j + 1, i + w]
15: if cost < M [i, i + w] then
16: M [i, i + w] = cost, P [i, i + w] = j
17: return D, M and P

2) Optimal Encoding Length: In this subsection, we present
the details of Encodinglength. Apparently, a long bit length
increases the communication cost, and this increase is non-
negligible when a large number of sensors send encoding
numbers during many epochs. The security level, i.e., the
probability of detecting an incomplete reply, also increases
with a long bit length, which hardens the process for a storage
node to forge the encoding numbers. In this sub-problem,
therefore, our goal is to find the optimal set of encoding
lengths, which are (α, δ)-secure and yields the minimum
communication cost.

To resolve this sub-problem, we first analyze the behavior
of a malicious storage node, and then give an approximated
estimation of the required encoding lengths. Essentially, ma-
licious storage nodes intend to drop enough data to form a
false reply and forge the missing encoding numbers to pass
the verification at the sink. Let us consider a range query with
a tag list TQ = {Tq1 , Tq2 , · · · , Tqk

} for the data collected
in epoch t. Storage nodes are supposed to look up all data
generated during epoch t and return the data whose tag is in
TQ. We define two 2-dimension matrix SD and N , where
SDij represents the set of data from sensor si with tag Tj

and Nij is the size of SDij , i.e., Nij = |SDij |. Thus, the
size of reply data for TQ is

RN (TQ) =
n∑

i=1

∑
Tj∈TQ

Nij .

A successful attack requires a malicious storage node to drop
at least α · RN (TQ) data and forge the necessary encoding
numbers to get approved. Consider the malicious storage node
applies the optimal way to achieve this goal, i.e., drop those
data with the minimum probability being detected. Let us
regard all elements of SD as individual blocks and label those
blocks which should be returned for TQ as {b1, b2, · · · , br}.
For a block bj with tag Tq, we associate an encoding length
dj with it, where dj = Dq . One block is the minimum bulk
of data the storage node can drop and if bj is removed, the
probability of successfully forging the encoding number is 1

2dj
.

Thus, given B = {b1, b2, · · · , br} and {d1, d2, · · · , dr}, the
storage node need find a subset B′ of B to

maximize
∏

bi∈B′
1

2di

s.t.
∑

bi∈B′ |bi| ≥ α · RN (TQ).

The objective is equivalent to maximize

log
∏

bi∈B′

1
2di

=
∑

bi∈B′
log

1
2di

= −
∑

bi∈B′
di.

This problem is reducible to the 0/1 knapsack problem, which
is known to be NP-hard. Thus, to simplify the problem, we
assume that the storage node applies greedy algorithm as the
attack strategy to select victim blocks. It first orders all blocks
according to the values of di

|bi| , where |bi| is the number of
data in bi. In the ascending order, the storage node drops the
blocks with the smallest values until the total dropped data is
larger than α · RN (TQ).

7

Now, we present our algorithm to determine the optimal
encoding lengths that are (α, δ)-secure for any possible query.
We first give an algorithm to determine the optimal encoding
lengths for a special category of queries, called single tag
query, where the tag list in the query contains only one tag.
Later we extend it to more general queries with multiple tags.
Recall tag Ti is defined by a range [li, hi] and Di denotes the
encoding length of this tag. Algorithm 2 shows the detailed
function of deriving a proper value of Di. In the first step, we

Algorithm 2 EncodingLength (Ti = [li, hi])
for t = 1 to s do

Ei[t] = n ·
(

s
t

)
· PT t

i · (1 − PTi)
s−t

sumi = n · s · PTi, drop = 0, enum = 0
for t = s to 1 do

drop = drop + Ei[t] · t, enum = enum + Ei[t]
if drop > α · sumi then

enum = enum − (drop − α · sumi)/t
break

return �− log(1−δ)
enum

�

estimate the expected number of sensors which have t number
of data with Ti, where t ∈ [1, s], and store them in an array
Ei. According to binomial distribution,

Ei[t] = n ·
(

s

t

)
· PT t

i · (1 − PTi)s−t.

Also, we calculate the expected total number of data with Ti

as sumi = n · s · PTi. Secondly, we emulate the behavior of
malicious storage nodes, dropping data by the greedy strategy.
Since we are considering single tag queries, the encoding
length dj of every eligible block bj is the same as Di. Thus,
the dropping order only depends on 1

|bj | , i.e., the block with
the largest size |bj | will be dropped first. We start with the
sensors which have s data with Ti, because |bj | ≤ s. Totally,
they contribute s ·Ei[s] data, but to drop all of them, we have
to forge Ei[s] encoding numbers. We continue to drop the data
from the sensors which have s− 1 data with Ti, and stop the
procedure when the dropped data is greater than α · sumi.
During this process, variable drop indicates the total amount
of the dropped data, and variable enum records the number
of encoding numbers the adversary has to forge. Thus, the
estimated confidence of detecting a false reply is 1− 1

2Di·enum .
To make it greater than δ, we have

1 − 1
2Di·enum

> δ ⇒ Di >
− log(1 − δ)

enum
.

To minimize the communication cost, we set Di to
�− log(1−δ)

enum �. The time complexity of Algorithm 2 is O(s).
For multiple tag queries, we can apply the similar analysis

as above. However, this step can be skipped because of the
following lemma.

Lemma 1: If a set of encoding numbers are (α, δ)-secure
for every single tag query, they are also (α, δ)-secure for
multiple tag queries.

Proof: Assume that a vector of encoding lengths D =
{D1,D2, . . . , Dm} are (α, δ)-secure for any single tag query.

Now let us consider a multiple tag query for a list of
tags {Tt1 , Tt2 , . . .}. As in Algorithm 2, we can estimate
the expected total number of data for each tag, denoted
by {sumt1 , sumt2 , . . .}. The summary

∑
sumti

will be the
expected return size of this query. Then, we will apply the
greedy strategy to drop at least α ·∑ sumti

data. Meanwhile,
we need count the encoding numbers that have to be forged.
Let enumti

be the number of dropped blocks of tag Tti
.

The confidence will be 1 − ∏
1

2
Dti

·enumti
. However, in this

process, there must exist a tag Ttj
such that the dropped data

of Ttj
is greater than α · sumtj

. We already know that Dtj

guarantee the confidence of single tag query for Ttj
, which

implies 1 − 1

2
Dtj

·enumtj
> δ. Back to the confidence of this

multiple tag query,

1 −
∏ 1

2Dti
·enumti

> 1 − 1
2Dtj

·enumtj

> δ.

Therefore, D can also guarantee the required confidence for
multiple tag queries.
Thus, for any given bucket, Algorithm 2 can find the optimal
encoding length satisfying the security constraint.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our scheme based on sim-
ulations. We first examine Algorithm 2 to show that the
resulting encoding length is sufficient to protect query reply.
Furthermore, we use real data sets to simulate Algorithm 1
and show the communication cost incurred by this approach.
The following parameters are involved in the simulation:

n number of sensors a storage node is in charge of
s data generation rate

α/δ requirement of data lose ratio and confidence
V ARp/ENp requirement of variance and entropy

PTi probability that a data is associated with tag Ti

A. Suggested Encoding Length

We first run Algorithm 2 to estimate the optimal en-
coding length for a single tag query. By default, we set
{n, s, α, δ, PTi} to {100, 10, 0.1, 0.9, 0.1}. In the simulation,
we fix four of these parameters and make the other one
variable. The following figures (Fig. 2-Fig. 6) show the results
of the encoding lengths suggested by Algorithm 2. On the one
hand, higher confidence obviously requires longer encoding
numbers, as shown in Fig. 3. On the other hand, the encoding
length is also related to the tolerant size of the data loss. The
more data loss we can tolerate, the shorter encoding length we
require. To return a false reply, the adversary has to drop at
least α ·Ni data, where Ni is the total number of data with tag
Ti. We can use the expected value to express it, Ni = PTi·n·s.
Thus, the encoding length will be a non-increasing function
over α · PTi · n · s, which explains the trend of the curves in
Fig. 2, Fig. 4, Fig. 5 and Fig. 6.

Next, we examine the accuracy of this algorithm. We
evaluate it from two aspects. Let k be the suggested encoding
length and conf(i) be the confidence achieved by using i-bit
encoding numbers. First, we show the values of conf(k) based
on simulations to examine if k is sufficiently long to guarantee

8

the security requirements, i.e., if conf(k) > δ. Secondly, we
show the values of conf(k − 1) if k > 1 to test whether k is
unnecessarily long, which causes inefficient communication.
If conf(k) > δ and conf(k− 1) ≤ δ, k is a perfect choice of
the encoding length.

0 0.05 0.1 0.15 0.2

1

2

3

4

5

Probability of Tag

E
nc

od
in

g
Le

ng
th

Fig. 2. Encoding length vs. PTi

0.8 0.85 0.9 0.95 1

1

2

3

4

Confidence Requirement (δ)

E
nc

od
in

g
Le

ng
th

Fig. 3. Encoding length vs. δ

0 0.05 0.1 0.15 0.2

1

2

3

4

5

Data Loss Ratio(α)

E
nc

od
in

g
Le

ng
th

Fig. 4. Encoding length vs. α

0 5 10 15 20

1

2

3

4

5

Data Rate(s)

E
nc

od
in

g
Le

ng
th

Fig. 5. Encoding length vs. s

0 50 100 150

1

2

3

4

5

Number of Sensors(n)

E
nc

od
in

g
Le

ng
th

Fig. 6. Encoding length vs. n

0 50 100 150
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Number of Sensors (n)

C
on

fid
en

ce

Length = k
Length = k−1

Fig. 7. Confidence vs. n

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

Probability of Tag

C
on

fid
en

ce

Length = k
Length = k−1

Fig. 8. Confidence vs. PTi

0.8 0.85 0.9 0.95 1
0.8

0.85

0.9

0.95

1

Confidence Requirement (δ)

C
on

fid
en

ce

Length = k
Length = k−1

Fig. 9. Confidence vs. δ

0 0.05 0.1 0.15 0.2
0.75

0.8

0.85

0.9

0.95

1

Data Loss Ratio (α)

C
on

fid
an

ce

Length = k
Length = k−1

Fig. 10. Confidence vs. α

0 5 10 15 20
0.75

0.8

0.85

0.9

0.95

1

Data Rate (s)

C
on

fid
en

ce

Length = k
Length = k−1

Fig. 11. Confidence vs. s

In this simulation, we randomly generate data based on the
data distribution PTi and simulate the behaviors of a malicious
storage node. We run 10000 independent tests, and calculate

the confidence, i.e., the probability of detecting a false reply
at the sink. The simulation results are shown in Fig. 7-Fig. 11,
where we compare the values of conf(k) and conf(k−1), and
the dashed line without markers is the confidence requirement
δ. As we can see, conf(k) is always greater than δ while
conf(k − 1) is not in most cases, which indicates that k − 1
is not a proper length for security protection.

Therefore, we conclude that Algorithm 2 gives a good
guideline of selecting appropriate encoding lengths. Simula-
tions have shown that the suggested length value is sufficient
for security and also efficient in communication.

B. Communication Cost

In this section, we show the performance of communication
cost. We use a real data set from Intel Lab [30], which is
collected from 54 sensors during a one-month period. The
details of the data set can be found at Intel Lab’s web site [30].
After filtering incomplete and abnormal data, we adopt the
data from 44 nodes in our simulation. We evenly divide them
into 4 groups and place one storage node in each group, i.e.,
n = 11 for each storage node. We also adopt their location
coordinates and calculate dss and davg for Algorithm 1. We
select the temperature data during 03/01/2004-03/10/2004 as
the sensitive information and we set the precision degree of the
values to 0.5. In addition, we assume that the whole query set
is received in 24 hours. In the next, we show two extra costs
incurred by the protection scheme. First, during the periodical
data report, sensors need send encoding numbers to storage
nodes for verifying the reply. Secondly, when storage nodes
reply range queries, extra data (false positive) are transferred
to the sink due to the bucketing scheme. We evaluate the
efficiency of our approach based on the communication costs.

In our scheme, users need specify privacy requirements
(V ARp, ENp) and security requirements (α,δ). In this simula-
tion, we fix security requirements (α = 0.1, δ = 0.9), and vary
V ARp and ENp to test the performance. In the simulation,
we set ENp to {1, 1.5, 2}, and vary V ARp from 0.4 to 1.2
with an interval of 0.2. We also test different epoch lengths,
10 minutes, 20 minutes and 30 minutes. For each sensor, we
measure two costs, the cost of transferring encoding numbers
(CE) and the cost of transferring the encrypted data (CD). We
show the ratio of CE

CD , which indicates the impacts of sending
encoding numbers. This ratio varies for different sensors. The
average values are illustrated in Fig. 12-Fig. 14.

As we can see in these figures, the less restrict privacy
requirement leads to the higher cost of transferring encoding
numbers. In our simulation setting, every storage node is in
charge of 11 sensors, which make the false positive dominant
in the extra cost compared with the cost of sending encoding
numbers. Thus, when V ARp and ENp are small, our algo-
rithm obtains fine-grained buckets to reduce false positive. It
yields a large number of buckets and each sensor probably
has to send more encoding numbers every epoch. On the
other hand, the cost of encoding numbers decreases when the
length of epoch increases. When sensors collect more data
during an epoch, the number of non-data tags will probably be

9

reduced, which further reduces the cost of encoding numbers.
In summary, the encoding number scheme does not incur too
much extra cost. Even for 10-minute epoch, the extra cost
is less than 25% in most cases. The performance of the false

0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

30

35

Variance Requirement

C
os

t o
f e

nc
od

in
g

nu
m

be
rs

 (
%

)

epoch=10min
epoch=20min
epoch=30min

Fig. 12. Cost of encoding num-
bers vs. V ARp (ENp = 1)

0.4 0.6 0.8 1 1.2
0

5

10

15

20

25

Variance Requirement

C
os

t o
f e

nc
od

in
g

nu
m

be
rs

 (
%

)

epoch=10min
epoch=20min
epoch=30min

Fig. 13. Cost of encoding num-
bers vs. V ARp (ENp = 1.5)

0.4 0.6 0.8 1 1.2
0

5

10

15

20

Variance Requirement

C
os

t o
f e

nc
od

in
g

nu
m

be
rs

 (
%

)

epoch=10min
epoch=20min
epoch=30min

Fig. 14. Cost of encoding num-
bers vs. V ARp (ENp = 2)

0.4 0.6 0.8 1 1.2
10

15

20

25

30

Variance Requirement

F
al

se
 P

os
iti

ve
 (

%
)

EN
p
=1

EN
p
=1.5

EN
p
=2

Fig. 15. False Positive vs. V ARp

(epoch=10min)

positive is shown in Fig. 15. Similarly, we change the value of
V ARp and ENp to examine the performance. In this test, we
set epoch to 10 minutes. We count the number of useless data
received by the sink (NU), and the total number of data (TN).
The false positive is represented by the ratio of NU

TN and shown
in Fig. 15. We can see that the false positive increases when
the privacy requirements become more strict, because each of
the resulting buckets probably include more data in order to
yield the required variance and entropy. In fact, we also change
the epoch length in our simulation. However, we find there is
no big difference for varying epoch lengths. The reason is that
in our simulation setting (n = 11), the false positive (CF in
Eq.(6)) is much larger than the cost of encoding numbers (CE
in Eq.(6)). Different epoch lengths do not change CF , which
is the dominant factor of the objective function Eq.(6). Thus,
we obtain very similar bucket partitions for the varying epoch
lengths. Based on our simulation results, bucketing scheme
is an efficient protection against privacy breach. The false
positive takes less than 28% of the total data in all cases.

VII. CONCLUSION

In this paper, we consider an important problem in real
sensor network deployment: how do we preserve the privacy
and verify the query reply for a range query? We build our
scheme in a network augmented with storage nodes that are
equipped with more storage space. To preserve privacy, we use
bucketization to obscure the view of the storage node to the
data stored on it. To prevent the storage node from dropping
data, an encoding number is generated on each sensor if no
data in a range is collected on that sensor. The storage node
has to prove the awareness of the encoding number if it does

not send the data for a range from a sensor. We present the
algorithm, analysis, and simulation results on our scheme.

REFERENCES
[1] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin, and

F. Yu, “Data-centric storage in sensornets with GHT, a geographic hash
table,” Mob. Netw. Appl., vol. 8, no. 4, 2003.

[2] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira,
D. Estrin, R. Govindan, and E. Kohler, “The TENET architecture for
tiered sensor networks,” in SenSys ’06, Boulder, Colorado, USA, 2006.

[3] RISE project, [Online]. Available: http://www.cs.ucr.edu/∼rise/
[4] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low power

data storage for sensor networks,” in IPSN ’06, 2006.
[5] Stargate gateway (SPB400), [Online]. Available: http://www.xbow.com
[6] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy, “PRESTO: A

predictive storage architecture for sensor networks,” in HotOS ’05.
[7] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.

Najjar, “MicroHash: An efficient index structure for flash-based sensor
devices.” in FAST ’05, San Francisco, California, USA, December 2005.

[8] B. Sheng, Q. Li, and W. Mao, “Data storage placement in sensor
networks,” in MobiHoc ’06, Florence, Italy, May 2006, pp. 344–355.

[9] B. Sheng, C. C. Tan, Q. Li, and W. Mao, “An Approximation Algorithm
for Data Storage Placement in Sensor Networks,” in WASA ’07, 2007.

[10] H. Hacigumus, B. R. Iyer, C. Li, and S. Mehrotra, “Executing SQL over
encrypted data in the database service provider model,” in Sigmod ’02.

[11] B. Hore, S. Mehrotra, and G. Tsudik, “A privacy-preserving index for
range queries,” in VLDB ’04, 2004.

[12] D. Agrawal and C. C. Aggarwal, “On the design and quantification of
privacy preserving data mining algorithms,” in Symposium on Principles
of Database Systems, 2001.

[13] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Sigmod ’04, 2004.

[14] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in IEEE Symposium on Security and Privacy 2000.

[15] Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in ACNS, 2005.

[16] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in Proceedings of the 2004 Applied Cryptography
and Network Security Conference.

[17] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing source-
location privacy in sensor network routing,” in ICDCS ’05, 2005.

[18] M. Gruteser, G. Schell, A. Jain, R. Han, and D. Grunwald, “Privacy-
aware location sensor networks,” in Proceedings of Workshop on Hot
Topics in Operating Systems (HotOS), 2003.

[19] J. Zhou, W. Zhang, and D. Qiao, “Protecting storage location privacy
in sensor networks,” in QShine ’07, 2007.

[20] Y. Wei, Z. Yu, and Y. Guan, “Location verification algorithms for
wireless sensor networks,” in ICDCS ’07, 2007.

[21] Y. Zhang, W. Liu, Y. Fang, and D. Wu, “Secure localization and
authentication in ultra-wideband sensor networks,” IEEE Journal on
Selected Areas in Communications, 2006.

[22] M. Shao, S. Zhu, W. Zhang, and G. Cao, “pDCS: Security and privacy
support for data-centric sensor networks.” in Infocom ’07.

[23] K. Ren, W. Lou, K. Kim, and R. Deng, “A novel privacy preserving
authentication and access control scheme for pervasive computing envi-
ronment,” IEEE Transactions on Vehicular Technology, 2006.

[24] L. Hu and D. Evans, “Secure aggregation for wireless networks,”
in Proceedings of Workshop on Security and Assurance in Ad hoc
Networks, Jan. 2003.

[25] B. Przydatek, D. Song, and A. Perrig, “SIA: secure information aggre-
gation in sensor networks,” in SenSys ’03, 2003.

[26] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: a secure hop-by-hop
data aggregation protocol for sensor networks,” in MobiHoc ’06, 2006.

[27] H. Chan, A. Perrig, and D. Song, “Secure hierarchical in-network
aggregation in sensor networks,” in CCS ’06, 2006.

[28] W. He, X. Liu, H. Nguyen, K. Nahrstedt, and T. F. Abdelzaher, “PDA:
Privacy-preserving data aggregation in wireless sensor networks,” in
Infocom ’07, Anchorage, Alaska, USA, 2007.

[29] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical en-route detection and
filtering of injected false data in sensor networks,” in Infocom ’04.

[30] (2004, Apr.) Intel Lab Data, [Online]. Available: http://berkeley.intel-
research.net/labdata/

