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Abstract—With the widespread use of Internet, online adver-
tising, as a newly emerged way of delivering advertisements,
has become the focus of attention. Compared with traditional
ways of advertising, real-time targeted online advertising is
much more efficient and profitable, taking the advantage of
abundant online users’ profiles. Advertisements can be delivered
to potential users who are actually interested in the ad content,
which improves the accuracy of advertising, and thus potentially
increases advertisers’ profits.

However, targeted advertising makes use of online users’
personal profiles, which raises significant privacy concerns since
personal profiles may contain sensitive information. It is inter-
esting but challenging to design a privacy-preserving protocol,
which allows advertising platform to effectively deliver ads to
interested users, while protecting the users’ private information.
In this paper, we propose a Privacy-pReserving prOtocol for
real-time Targeted Advertising (PROTA). We theoretically prove
the privacy properties of PROTA, and show that the system
requirements are satisfied. Evaluations are also conducted to
demonstrate the feasibility of PROTA.

I. INTRODUCTION

As a major economic driver in the Internet economy, adver-

tising has already become an indispensable part of all kinds

of websites. With the help of online users’ browsing histories,

personal profiles and other related information, online targeted

advertising can deliver more relevant ads to online users,

which increases the click through rate (CTR) of the ads. As

a result, ad exchange appears as a platform to match ads and

targeted users. RightMedia, DoubleClick and AdECN are such

examples.

In a typical advertising profit model, there are mainly three

roles involved, namely publisher, advertiser and ad exchange.

Publisher is the owner of the web page which the user visits.

Advertisers are those who want to display their ads online

and are willing to pay for it. Ad exchange brings the above
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two together and provides a platform for them to negotiate

and transact ads. When the user visits a web page with an

empty ad slot, the publisher sends an ad request to the ad

exchange which it previously registered on. After receiving

the ad request, the ad exchange chooses a set of interested

advertisers according to the user’s profile, which can be formed

by browsing histories, cookies and other related information.

Then the ad exchange notifies the selected advertisers of the ad

slot and ask for a bid. In respond, advertisers send their bids

back, which indicate the amount of money they are willing to

pay for displaying their ads on the web page. Upon receiving

the bids, an auction is conducted by the ad exchange to decide

which ad to display based on the bids offered. After that,

the ad exchange sends the winning ad back to the publisher.

For every ad viewed in the pay-per-view (PPV) advertising

model or clicked in the pay-per-click (PPC) advertising model,

the advertiser pays the ad exchange the corresponding price.

Meanwhile the ad exchange in turn provides shares to the

publisher.

However, the utilization of personal information comes at

the cost of privacy leakage since the personal profile of a

user may contain some sensitive information that the user

is not willing to expose. The key problem is how to design

a privacy-preserving protocol which can keep the virtue of

targeted advertising, meanwhile guarantee the user’s privacy

is not compromised. The development of such a protocol

faces challenges mainly from two aspects. First, during the

matching between the ads and the users, personal profiles of

the users should be kept secret due to our privacy request.

The intuitive idea is to let the matching process be completed

totally on the client side, but it is actually impractical to

load the whole database. Second, the privacy request goes

throughout the whole process of advertising, which means that

related information such as which ad is actually displayed

should also be kept secret. This increases the difficulty of

bidding and charging for the ad exchange.

In this paper, we mainly focus on designing the privacy-

preserving protocol PROTA to comprehensively protect the

user’s privacy, while keeping the desiring properties of real-

time targeted advertising. PROTA utilizes Bloom filter to

enable the matching between the ad and the user to be
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completed totally on the client side, meanwhile uses homomor-

phic cryptograhy to make sure that the sensitive information

remains private later in the process. The essence of PROTA

lies in our delicate design which can protect the user’s privacy

in each step of targeted advertising.

Our contributions are summarized as follows:

• To the best of our knowledge, PROTA is the first compre-

hensive privacy-preserving protocol for real-time targeted

advertising which can protect users’ privacy thoroughly

without sacrificing the accuracy of advertising.

• We propose a well-designed ad delivery mechanism to

ensure the ad security in the delivering process, and the

charging correctness is guaranteed by the design of e-coin

which further enhances our privacy model.

• We implement PROTA and extensively evaluate its per-

formance, which perfectly demonstrates the feasibility of

PROTA.

The remainder of this paper is organized as follows. In

Section II, some necessary preliminaries are provided. In

Section III, we present the detailed system design of PROTA,

followed by performance evaluation and related analysis in

Section IV. In Section V, we introduce some related works

of privacy-preserving mechanism design. Finally, the work is

concluded in Section VI.

II. PRELIMINARIES

In this section, we first present the system model for our

design. Then we introduce two technical tools that will be used

in our design, namely Bloom filter [1] and Boneh-Goh-Nissim

cryptosystem (BGN) [2].

A. System Model

In PROTA, we model the procedure of advertising as a

typical targeted advertising pattern, which mainly includes the

following parts:

Client: Clients refer to all the online users visiting some

web pages. Each client c maintains a keywords profile of

their own, denoted as KWc = {kw1, · · · , kwnc
}, which can

be obtained by analyzing the client’s demographics, browsing

history, information stored in cookies and so on.

Publisher: Publishers own some web pages and are willing

to sell the ad slots. The role of the publisher is not vital in

our design and it only appears at the requesting and charging

stages, which have nothing to do with privacy issues.

Advertiser: Advertisers are those who want to display

online ads and are willing to pay for them. Similar to

the clients, each advertiser a maintains a keywords profiles

according to features of the ads they possess, denoted as

KWa = {kw1, · · · , kwna
}. Advertisers can upload their key-

words profile to the ad exchange and update them periodically.

Ad Exchange: Ad exchange brings together sellers and

buyers of ad slots, i.e., publishers and advertisers. It collects

ads (and payments) from advertisers and places them on

publishers’ web pages (along with paying the publishers).

Trusted Third Party (TTP): A trusted third party (TTP)

is introduced in our protocol. The TTP cooperates with the ad
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Fig. 1. Typical Model for Online Advertising

exchange to finish the whole process of targeted advertising

and supervises potential malicious actions. To make sure

that the TTP is secure and does not collude with other

parties, it should be ran by supervision organizations such

as privacy and consumer advocacy groups e.g., Electronic

Privacy Information Center. Moreover, since the TTP is not

the beneficiary in the pre-defined advertising profit model,

ad exchange should also provide shares to the TTP, which

motivates the supervision.

For the charging method, we adopt the pay-per-click (PPC)

model, which means for each ad clicked, the corresponding

advertiser will pay.

Fig. 1 illustrates the system framework, including the in-

formation flow (denoted by solid arrows) and money flow

(denoted as dashed arrows).

B. Bloom Filter

A Bloom filter is a space-efficient probabilistic data struc-

ture, first conceived by Burton Howard Bloom in 1970, which

provides a way to probabilistically encode set membership

using a small amount of space, even when the universe set is

huge. False positive matches are possible but false negatives

never happen, thus a Bloom filter can achieve 100% recall rate.

By setting relevant parameters carefully, the false positive rate

can be very low which can be totally neglected.

The definition of Bloom filter is as follows [3]:

Definition 1. A (k,m)-Bloom filter is a collection of hash

functions {hi}
k
i=1, with hi : {0, 1}

∗ → [m] for all i, together

with an m-bit array B = {bj}
m
j=1. If a ∈ {0, 1}∗, then to

insert the element a into this structure, for all i ∈ [k], bhi(a)

is set to be 1. Then to determine whether a ∈ S or not, one

examines the value of bhi(a) for each i ∈ [k] and returns true

if all have the value of 1, or returns false if any of bhi(a) is 0.

Bloom filter has a strong space advantage over other data

structures for representing sets at the cost of risking false

positives. Therefore, we need to analyze the total size of a

(k,m)-Bloom filter to estimate the parameter setting. In our



situation, the hash functions hi will be modeled as uniform,

independent randomness.

Theorem 1. Let ({hi}
k
i=1, {bj}

m
j=1) be a (k,m)-Bloom filter

as described in Definition 1. Suppose the filter has been initial-

ized to store some set S of size n. Assume also that m = ⌈cnk⌉
where c > 1 is a constant. Then for any a ∈ {0, 1}∗, the

following statement holds true with probability 1 − neg(k),
where the probability is over the uniform randomness used to

model the hi:

(a ∈ S) ⇔ (bhi(a) = 1, ∀i ∈ [k])

It can be easily proved by a series of independent Bernoulli

trials and the detailed proof is neglected. Guaranteed by the

theorem, Bloom filter can achieve high performance with

extremely low overheads and allowable errors.

C. Homomorphic Cryptosystem

Homomorphic cryptosystem is a special type of cryptosys-

tems, which enables specific types of computations to be

conducted on ciphertexts and obtains a new ciphertext, which

can be decrypted to match the result of computation applied

directly on the original plaintext.

In our study, we adopt BGN cryptosystem [2], which

belongs to partially homomorphic cryptosystems. The BGN

cryptosystem utilizes a bilinear pairing to allow the com-

putation of a single homomorphic multiplication of two ci-

phertexts, while still retaining the additively homomorphic

properties of earlier cryptosystems.

The definition of bilinear pairing is as follows:

Definition 2. Let G and GT be two cyclic groups of order n
with g, a generator of G. A map e : G × G → G1 is said to

be bilinear if e(g, g) is a generator of G1 and

e(ua, vb) = e(u, v)ab (1)

for all u, v ∈ G and all a, b ∈ Z.

Based on bilinear pairing, we can present the BGN cryp-

tosystem as follows [4]:

Definition 3. Boneh-Goh-Nissim (BGN) Cryptosystem

Randomly choose two distinct odd primes p and q and let

n = pq, then let G with a random generator of g, G1 be

two multiplicative groups of order n with a bilinear pairing

e : (G × G) → G1. Suppose h is a random generator of the

subgroup of G of order p, then let T < q, then P = ZT ,

C = G, R = Zn, and K = {(n, p, q, T,G,G1, e, g, h)} where

(n, p, q, T,G,G1, e, g, h) are defined as above.

• Gen: Given the security parameter ǫ, Gen(ǫ) generates

two distinct ǫ
2 -bit primes p, q, sets n = pq and selects

a positive integer T < q. Gen(ǫ) then generates two

multiplicative groups G, G1 of order n, that support a

bilinear pairing e : (G × G) → G1, as well as random

generators g, u ∈ G, and sets h = uq such that h is a

generator of the subgroup of order p. The public key is

(n, g, h,G,G1, e), and the private key is p.

• Enc: Given a message m ∈ P and a public key pk,

Enc(pk,m) chooses a random r ∈ R and the ciphertext

can be calculated as

c = gmhr mod n (2)

• Dec: Given a ciphertext c ∈ C and a private key sk,

Dec(sk, c) calculates the plaintext as

c′ = cp = (gp)m mod n (3)

and uses Pollard’s lambda method [5] to take the discrete

logarithm of c′ in base gp

There are some homomorphic properties of BGN cryptosys-

tem. Let c1 = gm1hr1 mod n and c2 = gm2hr2 mod n. Then

c1c2 mod n = gm1hr1gm2hr2 = gm1+m2hr1+r2 mod n (4)

is a valid encryption of m1 + m2, which demonstrates the

additive homomorphism of the BGN cryptosystem. Similarly,

substraction of encrypted messages and constants can be

accomplished by computing c1c
−1
2 mod n.

In addition to additive homomorphic operations, the BGN

cryptosystem also allows a single homomorphic multiplication

of plaintexts. With the bilinear pairing e, set g1 = e(g, g)
and h1 = e(g, h), since g generates G, it holds that h = gα

for some α. Given c1, c2, and a random r ∈ R, a ciphertext

representing the product m1m2 can be calculated by

e(c1, c2)h
r
1 = e(gm1hr1 , gm2hr2)hr

1

= e(gm1gαr1 , gm2gαr2)hr
1

= e(gm1+αr1 , gm2+αr2)hr
1

= e(g, g)(m1+αr1)(m2+αr2)hr
1

= gm1m2+m1αr2+m2αr1+α2r1r2
1 hr

1

= gm1m2

1 hm1r2+m2r1+αr1r2+r
1

= gm1m2

1 hr
1 (5)

where r is a uniformly random element of R. By replacing g
and h with g1 and h1 respectively, further additions are still

possible on the resulting ciphertext. Further multiplications are

not possible as there is no pairing defined from G1 to another

isomorphic group.
The ability to perform simple deterministic computations

on encrypted data makes homomorphic cryptosystems ideal

for creating privacy-preserving protocol.

III. SYSTEM DESIGN

In this section, we thoroughly introduce the design of

our privacy-preserving protocol PROTA. We first provide an

overview of our system with the design rationale. Then the

detailed design is presented step by step, followed by some

analysis.

A. Design Rationales

Upon the system level, we specify some system goals which

should be satisfied to make the system practical [6].
Performance: Performance always comes first and we must

guarantee the computation and communication overheads of

the system are acceptable.



The bottleneck of the system performance is at the client

side since the computational power of other parts is based on

large-scale web servers. Therefore, we adopt Bloom Filter to

accelerate the matching stage which much improves the system

performance.
Effectiveness of Data Acquisition: Since privacy-preserving

protocol inevitably hides some useful information from the

ad exchange, we should ensure that some data such as click-

through rate (CTR) of some specific ads should be possible

to calculate under the protocol setting without compromising

the clients’ privacy.
In our design, the final results of all clicked ads are

returned to the ad exchange in plaintext, but all the results

are anonymous since there is no client ID attached.
Click-Fraud Detection: Generally speaking, click-fraud de-

tection is inherently in conflict with privacy since privacy-

preserving protocol hides the client and preserves them from

being tracked.
In PROTA, the TTP can monitor the behavior of all clients

by checking the recieving e-coins, which can potentially help

click-fraud detection.
More importantly, we also formally define the privacy goals

of privacy-preserving targeted advertising [7].
Profile Privacy: No one can obtain exact information of

the client’s profile and no one in the system can associate any

unit of learned information (e.g., clicked ads) with any client’s

personally identifying information (PII).
Profile Unlinkability: Profile unlinkability refers to the

property that the adversary cannot associate separate units of

learned information with a single client.
Then we define security properties for the client and the

advertiser in the system.
Client: The keywords profile of the client is the pivotal issue

in the protocol. Besides the privacy of the keywords profile,

we are also supposed to guarantee that which ad the client

clicked on should be kept secret.
Advertiser: In [8], advertisers’ bids are also considered

as privacy since an advertiser’s bid can reflect his marketing

strategy. In our protocol, the security of advertisers’ bids is

not our primary task. However, the advertisers’ bids in our

protocol are secure and won’t be learned by other parties due

to the properties of homomorphic cryptosystem.

B. Detailed Designs

Before invoking PROTA, some initialization works need to

be accomplished for each party.
Client: As we described before, each client c maintains

a keywords profile, denoted as KWc = {kw1, · · · , kwnc
}.

The keywords profile of the client can be updated periodically

according to the client’s online history. The update does not

influence PROTA. Besides, before each round of advertising,

the client generates a symmetric key keyc for ad delivering

phase and keeps it secret.
Advertiser: Each advertiser is assigned a unique ID de-

noted as Adi. Similar to the client, each advertiser Adi
also maintains a keywords profile, denoted as KWAdi

=
{kw1, · · · , kwnAdi

}, which also can be updated periodically.
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Fig. 2. Matching Phase

Ad Exchange: The ad exchange holds the keywords

profile of all registered advertisers, denoted as KW =
{KWAd1

, · · · ,KWAdn
}. According to the BGN cryptosys-

tem, the ad exchange generates its public key pkAE and secret

key skAE .

TTP: Similar to the ad exchange, the TTP publishes its

public key pkTTP and keeps its secret key skTTP private.

What’s more, a secret symmetric key keyt is also required for

the TTP.

The size of the universal keywords set is denoted as Nkw.

The information each party holds before the protocol is evoked

is summarized in Table I

TABLE I
INFORMATION DISTRIBUTION

Information Possessed

System Part Public Private

Client c pkTTP , pkAE KWc, keyc
Ad Exchange pkTTP , pkAE ,KW skAE

Advertiser Adi pkTTP , pkAE ,KWAdi
Bidding Strategy

TTP pkTTP , pkAE skTTP , keyt

Now, we are ready to present the detailed designs of PROTA

in four phases: matching, bidding, delivering and charging,

which will be introduced one by one.

1) Matching Phase: When a client c visits a publisher’s

website with an ad slot, the publisher provides the client

with a page view and initiates the protocol (Fig. 2). Then the

client sends an ad request Ad requestc to the ad exchange.

Upon receiving Ad requestc, the ad exchange gathers the

keywords profile of current active advertisers, the amount of

which is represented as nact. The universal set of all the

keywords profiles of current active advertisers is represented

as KWact = {KWAdi
|Adi is active}.

Based on the definition of Bloom filter which is described

in Section II-B, the ad exchange generates k hash functions

Hc = {hi}
k
i=1 for client c. After obtaining the hash function

set, for each active advertiser, the ad exchange generates a

(k,m)-Bloom filter, where m = ⌈cNkwk⌉, c > 1 is a constant.

Now we have a set of Bloom filters for client c, denoted

as Bc = {BAd1
, · · · , BAdnact

}, where BAdi
= {bj}

m
j=1 is

the corresponding Bloom filter for the keywords profile of

advertiser Adi. Then the ad exchange sends {Hc||Bc} back

to the client c to allow the client to match the advertisers.



Once receiving {Hc||Bc}, the client c has the ability to

match the advertisers locally. First, the client generates the

Bloom filter Bc of his own keywords profile KWc according

to the hash function set Hc. Then for advertiser Adi, the client

determines for each kwj ∈ KWc whether kwj ∈ KWAdi
by

testing if the following statement stands:

bhi(kwj) = 1 for ∀i ∈ [k]

Suppose that there are in total fc,Adi
(out of nc) keywords of

client c found in advertiser Adi’s keywords profile, we can

calculate a score for the advertiser by the following method:

scc,Adi
=

fc,Adi

nc

(6)

scc,Adi
reflects the matching degree between client c and

advertiser Adi which ranges from 0 to 1. However, since BGN

encryption must be applied to integers, here we must transform

the scores into integers. We do the following alternation:

scc,Adi
= [

fc,Adi

nc

× 1000] (7)

By this method, we keep three decimal places, which pre-

serves the level of precision appropriately. Therefore, scc,Adi

indicates the potential click probability of client c on advertiser

Adi. Under normal conditions, clients are inclined not to

expose which advertisers they are interested in, which makes

the matching degree also a part of privacy. Therefore, instead

of directly sending the scores to the ad exchange, the client

sends the score information SCc = {scc,1, · · · , scc,nact
}

encrypted by the public key of the TTP to the ad exchange as

folllows:

(SCc)pkTTP
= (scc,1, · · · , scc,nact

)pkTTP

In this way, both the keywords profile and the matching

information of client c will not be leaked to any party during

the matching phase.

2) Bidding Phase: In fact, the bidding phase and the

matching phase can be conducted simultaneously. Once the

ad exchange sends {Hc||Bc} to client c, it can start the

bidding phase by sending each active advertiser a bid request

Bid requestAdi
, which includes the information of the pub-

lisher since advertisers can bid more reasonably according to

the publisher information.

In respond, each advertiser sends the bid back to the ad

exchange. Similar to the client, advertisers also send encrypted

bid by the public key of the TTP, denoted as (bidc,Adi
)pkTTP

.

So far, the ad exchange has gathered the “matching score”

and “paying bid” for each advertiser. These two together

form the “ultimate advantage” of each advertiser. Notice that

the “matching score” defined in Section III-B1 is already

normalized to the range of [0, 1000], we can just multiply

them together to get the “final bid” as shown in Eq. 8. The

multiplication perfectly makes sense since if an advertiser

has no keywords matching the client, the final bid of the

Client Ad ExchangeTTP

!"#$%&' ()*+,-!./01
2234)5

!678"()9:,;<,;*+,-!/<=>
2234)5

"#$%&'()*+,-!./01

678"()9:,;<,;*+,-!/<=>
22$ ? 8@47

Fig. 3. Delivering Phase

advertiser will be set to zero which makes him out of the

auction automatically.

(scc,Adi
)pkTTP

× (bidc,Adi
)pkTTP

= (scc,Adi
× bidc,Adi

)pkTTP
= (fbidc,Adi

)pkTTP
(8)

Then the ad exchange sends the final bids

{fbidc,Ad1
, · · · , fbidc,Adnact

} to the TTP.
Now TTP can decrypt the ciphertext and get the final bid by

skTTP . The TTP runs a second price auction and the one with

the highest fbid wins the auction. To ensure the truthfulness

of the auction, we need to make sure that the winner pays

less than his bid. To solve this problem, we can let the winner

pay fbidc,second/1000, which is the final bid of the second

highest bidder. The truthfulness is guaranteed by:

fbidc,second
1000

<
fbidc,win

1000
≤ bidc,win

So far the TTP already knows the winner of this round,

however, the TTP still has no information of the ad itself since

the only information it possesses is the ID of the winner, which

still preserves the privacy of the client c.
3) Delivering Phase: In the delivering phase, we use a

method similar to that used in [9] during the ad dissemination,

which keeps the ad delivered to the client secret both from the

TTP and the ad exchange. The delivering protocol is shown

in Fig. 3.
First of all, the TTP notifies the client c of the winning

advertiser’s ID Adwin. Recall that during the initialization,

each client generates a symmetric key keyc, the client c
encrypts the symmetric key along with the winning advertiser’s

ID by the public key of ad exchange to get the ciphertext as

(keyc, Adwin)pkAE
, then sends this message to the TTP. Upon

receiving the message, the TTP assigns the message a message

ID Mid and stores a mapping between Mid and client ID c.
Then the TTP appends the Mid to the message and forwards

it to the ad exchange, as {(keyc, Adwin)pkAE
||Mid}.

By the secret key skAE , the ad exchange can decrypt the

message and find the ad corresponding to the ID Adwin.

Then by the symmetric key keyc sent by the client c, the

ad exchange encrypts the ad content with it and sends it back

to the TTP along with the message ID Mid, which the TTP

uses to lookup the client to forward the ad to.
Now, the symmetric key possessed by the TTP is on the

stage. Since we require secret charging to protect the client’s

privacy, we design a “ e-coin” protocol as in [6] to help ensure

the correctness of the charging phase and preserve the privacy.

The e-coin is generated by the TTP as

e− coinwin = sig(Enc(Adwin, chargewin)keyt
, t)skTTP

It consists of a digital signature produced by the TTP on (i)
the ciphertext obtained by encrypting the winner’s ID Adwin



and the corresponding price calculated as fbidsecond/1000,

with the symmetric key keyt chosen by the TTP, and on (ii)
a timestamp t, which ensures the validity of the e-coin.

After generating the e-coin of the winning advertiser, the

TTP forwards the encrypted ad content sent from the ad

exchange along with the e-coin of the winner to the client

c. Finally, the client gets the encrypted ad content which can

be decrypted and displayed.

4) Charging Phase: According to the design goals of our

system, we aim at keeping the ad clicked by the client secret

to the ad exchange. However, the goal is in conflict with the

traditional charging method. Therefore, we design a “periodic”

charging method with the help of the e-coin we introduced

before.

In PROTA, once the client clicks on the ad displayed,

the client automatically sends the associated e-coin to the

ad exchange. The e-coin is actually the “receipt voucher” of

the ad exchange. Different from the normal way of collecting

money, the ad exchange has a billing period, which means that

it can only charge the advertisers at the end of each billing

period. When a billing period is over, the ad exchange sends

all of the e-coins gathered during this billing period to the TTP.

The TTP first verifies the validity of these e-coins and drops

those illegal ones, then decrypts them by the secret symmetric

key keyt to get the ad IDs and corresponding charges. Then

for each advertiser, the TTP calculates the amount of money

it has to pay for this period and sends the message to the ad

exchange. Finally, the ad exchange can collect money from

advertisers and provide shares to the publisher and the TTP.

C. Security Analysis

In Section III-A, we define the privacy goals of PROTA:

Profile Privacy and Profile Unlinkability. We will discuss them

respectively.

1) Profile Privacy: In terms of profile privacy, during the

matching phase, the matching process is completed totally on

the client side, the way of which will not leak any information

about the client to other parties in the system. Then the client

sends the matching score to the ad exchange in encrypted

form by the public key of the TTP, which means that the

ad exchange cannot learn any information about the matching

results of the client.

During the bidding phase, all of matching scores, bids

and final bids are in the ciphertext space, which makes it

impossible for the ad exchange to extranct any information

from the messages. The TTP can decrypt the final bids and

get the winner by running an auction but the advertiser ID

itself reveals nothing about the ad, which gurantees that the

client’s privacy is not compromised.

In the delivering phase, the delivery protocol can separate

the ad content and the client ID at the TTP. Hence, the TTP

knows the ID of the winning advertiser but cannot associate

the ad contents to the client’s PII, which in this case is the

client ID, satisfying the requirements of profile privacy. As for

the ad exchange, the only information it can get is someone

has requested for an ad.

For the charging phase, we adopt the e-coin method with

periodically charging. Due to the charging latency, which ad

is actually clicked by a particular client is unknown to the ad

exchange. It is interesting to observe that the degree of privacy

is determined by the number of e-coins that are provided by

non-compromised clients in the respective mixing procedure.

Notice that a malicious ad exchange could in principle derive

a particular client’s profile by allowing only the e-coins of that

honest client to reach the TTP. The resulting bill would reveal

the client’s profile, thus breaking the desired privacy property.

Typical ad exchanges, however, behave rationally, i.e., their

primary goal is to excel in commerce rather than to identify

clients at all cost. Therefore, PROTA can protect the privacy

of clients’ profiles against rationally-behaving ad exchange.

In conclusion, we can guarantee that profile privacy is

satisfied in the whole procedure.

2) Profile Unlinkability: In our design of PROTA, not only

is the ad exchange not able to learn which client clicks on

which ad, but it also cannot learn whether or not two or more

ads were seen by the same client. This property is enforced by

(i) the structure of the e-coins, which is unlinkable and does

not reveal any information about the client’s identity or profile,

and (ii) the mixing, which breaks the correlation between the

billed ads and received e-coins. Breaking this correlation is

crucial since the attacker may learn the correlation between

e-coins and clients by looking at the traffic on the non-

anonymous communication channel between clients and the

TTP.

In conclusion, all the design goals are met in our design.

IV. EVALUATION

In this section, we implement our design and evaluate the

performance of our system PROTA.

A. Methodology

We simulate the system of PROTA on a laptop with Intel®

Core™ i5-2410M 2.3GHz GPU. The operating system envi-

ronment of the experiment is Linux Ubuntu 12.04. The overall

configuration is in line with most client’s devices, which means

that the evaluation results can represent the average well.

In our design, we fully implement the BGN cryptosystem

with Paring-Based Cryptography library (PBC library) and we

simulate the computations and communications on the client,

the ad exchange and the TTP. Usually, the computational

power of the ad exchange and the TTP is based on large-scale

web servers, which means their computational power can be

regarded as ideal. Therefore, in our evaluation part, we mainly

concentrate on the client side, whose computational power is

often limited, and demonstrating the feasibility of our system

on the client side.

B. Simulation Results

During the matching phase, the ad exchange sends all

the Bloom filters of interested advertisers and the set of

hash functions to the client, which generates relatively large

communication costs. We simulate the whole matching phase

and measure the overall communication costs. The constant
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Fig. 4. Communication cost in matching phase

parameter c in Bloom filter is set to be 5 in all cases,

which is a reasonable presumption. We separately measure the

communication costs of the matching phase when the number

of hash functions is set to be 5, 10, 15 and 20. Under this

setting, we can guarantee that the false positive rate is lower

than 0.5% in the worst scenario (where c is set to be 5 and

k is set to be 5). Fig. 4 shows the communication costs of

different number of advertisers and different size of keywords

during the matching phase.
For Fig. 4(a), we set the size of universal keywords set

to be 100, which is a reasonable assumption since the top-

level categories on Google Ads are only 27. We suppose that

100 keywords can basically cover all the usual ad categories.

According to the figure, we can see that the communication

costs are strictly linear to the number of advertisers. Even in

the most extreme case, where k is set to be 10 and the number

of advertisers is 1000, the communication cost does not exceed

1.4MB, which can be handled by most networks. However,

setting k to be too large sometimes is useless, since it only

reduces the false positive rate a little with generating relatively

high communication and computation overheads to the client.

In average, the communication cost is about 200KB-600KB.
Similarly, in Fig. 4(b), we fix the number of advertisers

to be 500 and alter the size of the universal keywords set.

It is obvious that the communication cost is still within the

acceptable range even in the most extreme case.
To finish the matching, the computation on the client side

includes running the hash functions to match the advertisers

and encrypting the scores with BGN cryptosystem. To illus-

trate the difference of computation time in different parts, we

separately measure the computation time of the matching part

and the encrypting part. Fig. 5 shows the computation time

of the matching part. In Fig. 5(a), the size of the client’s

keywords profile is set to be 10 and in Fig. 5(b), the number

of advertisers is set to be 500. For both cases, the size of the
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universal keywords profile is 100.

Clearly, in all cases the matching time does not exceed

200ms which means the matching process doest not take long

time and doest not hamper the user experience.

Then we measure the total computation time during the

matching phase, as shown in Fig. 6.

We use the same setting as measuring the matching time.

In Fig. 6(a), we can observe that the total computation time

during the matching phase almost has nothing to do with

the choice of k, which means the encryption time dominates

the whole computation process. In Fig. 6(b), we can also

see that the total computation time is nearly irrelevant to the

choice of k and the size of the client’s keywords profile. The



inordinance is the result of the randomization introduced in

the cryptographic algorithm.

In conclusion, we implemente BGN cryptosystem based on

PBC library and simulate the process of PROTA. We evaluate

the computation time and communication costs on the client

side, which proves the feasibility of PROTA.

V. RELATED WORKS

Privacy issue in targeted advertising has always been a hot

topic since the day targeted advertising was born. Juels [10]

was the first one to explore the concept of privacy-preserving

targeted advertising and to propose several technical solutions.

Juels designed a full mix networks mainly based on private

information retrieval (PIR) [11], [12] between the client and

the broker, thus implementing a private distribution of the ads

delivered. However, the PIR scheme used was impractical for a

real-time use and made it impossible to retrieve ads on-the-fly.

Anonymous browsing solutions such as TOR [13] can

perfectly hide the client’s identity which satisfies the privacy

requirements. But such kind of implementations make it more

difficult for click-fraud and potential collusion detection.

Hardware design can be another effective solution. In [6],

the design was based on the usage of secure hardware-based

PIR which guaranteed strong privacy. But the evolvement of a

secure coprocessor was a very strong assumption which cannot

be satisfied in many situations.

Guha et al. proposed Privad which was a complete system

for privacy-preserving targeted advertising in [9], [14]. Privad

introduced a reference monitor to watch the client software

and to ensure that no data is sent by the client to the broker

by a covert channel, a dealer worked as an anonymizing proxy

between the client.

In [15], Toubiana et al. proposed Adnostic, which can

extract and categorize the keywords locally by a Firefox

extension. However, unlike Privad, Adnostic did not hide the

clients’ web browsing history from the broker, which made

the privacy model quite weak. Moreover, Adnostic protected

the client’s privacy via transmitting a bunch of ads which

inevitably increased network latency.

As a subset of targeted advertising, location-based adver-

tising has attracted much attention in recent years. In [17],

Guha et al. proposed Koi, a location-privacy platform for

smartphone apps. Koi delivered ads to the client utilizing

a matching protocol between different clients, thus keeping

the client’s location unknown to the broker. Koi can achieve

excellent performance when there are a lot of users in a

specific area, however, when users are sparsely distributed, the

performance of Koi will be influenced significantly. In [18],

Lu et al. introduced PLAM, a privacy-preserving framework

for location-based service. PLAM was mainly based on crypto-

graphic tools such as BV homomorphic encryption to achieve

k-anonymity [19] and l-diversity [20]. However, the main

drawback for PLAM is the same as that of Koi, which

means that the client intensity greatly affects the system’s

performance. In [8], Pang et al. designed a privacy-preserving

protocol for location-based advertising mainly based on PIR

and homomorphic encryption. However, the scope of applica-

tion of this method is quite limited to 2-dimensional location-

based advertising, which makes it hard to apply to other

scenarios.

VI. CONCLUSION

In this paper, we have a privacy-preserving protocol for

keyword-based real-time advertising, called PROTA. By the

highly efficient storage structure of the Bloom filter, we can

allow the client to match the corresponding advertisers on the

client side with acceptable computation and communication

overheads. The ad exchange cooperates with a trusted third

party to complete the bidding and delivering phase without

privacy leakage. We have also designe a “e-coin” mechanism

to ensure the correctness of the charging meanwhile preserving

the privacy properties. Our evaluation results have shown that

our protocol can perfectly protect the client’s privacy with

acceptable computation time and communication costs.
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