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Abstract—In this paper, we aim to develop an efficient spec-
ulation framework for a heterogeneous cluster. Speculation is
a common mechanism that identifies ‘slow’ node in a cluster
and starts redundant tasks on other nodes to guarantee the
reliability. We consider MapReduce/Hadoop as a representative
computing platform, and our general goal is to accurately and
quickly identify the straggler nodes during the job execution. On
the one hand, our approach significantly reduces unnecessary
speculative executions that occupy system resources, but do not
get finished. On the other hand, when a node is prone to failure,
our solution is able to detect it at an early stage and effectively
launch a speculative task to avoid the delay in the job execution.
We implement our solution in Hadoop platform and evaluate it
with extensive experiments. The results show that our solution is
efficient and effective when handling the speculative execution.
The job execution time in our system is superior to that in the
current Hadoop distribution.

I. INTRODUCTION

In the past few years, we have all witnessed the rise of Big

Data. Processing platforms such as Hadoop [1] and Spark [2]

have been widely adopted for different applications. When

users deploy the platform in a large scale cluster, the data

processing performance is always crucial to the applications.

This paper aims to improve the data processing performance

by developing an efficient speculation scheme in a heteroge-

neous system.

In any large-scale computing cluster, node failures are

normality in practice. A usual omen is the straggling com-

puting performance on the node. Speculative execution is

a common and effective solution for mitigating the impact

of node failures, e.g., speculation is a built-in component

in Hadoop. Basically, once detecting a straggler node, the

cluster will launch a redundant copy of the task running

on the problematic node. Once either of them is finished,

the other one will be killed. The intuition is to trade the

resource efficiency with the reliability, especially if the delay

of one task may further postpone the whole data processing.

However, the traditional speculation does not work well in a

heterogeneous cluster, which consists of nodes with different

hardware profiles. The heterogeneous setting has become a

common environment in practice due to various reasons such

as incremental hardware upgrade and diverse demands from

different applications. Designing a speculation scheme in such

a heterogeneous cluster, however, is challenging because it is

very difficult to distinguish straggling nodes from naturally

slow nodes.

In this paper, we present ESPLASH, a Hadoop system with

an efficient speculation scheme specifically designed for het-

erogeneous clusters. We identify the problems in the existing

Hadoop system and develop the following major components:

(1) Cluster all the nodes into different levels according to

their computing performance; (2) Identify straggler nodes by

monitoring the task’s estimated finish time and progress rate;

(3) Submit speculative request with parameters that guide the

future execution. All the techniques presented in this paper are

implemented in Hadoop YARN system. We conduct extensive

experiments for evaluation, and the results show that ESPLASH

significantly improve the system performance.

II. RELATED WORK

MapReduce [3] is a programming model and an associ-

ated implementation for processing and generating large data

sets [4] [5]. Speculative Execution [6] predicts the ‘slow’ tasks

and launch redundant copies to re-execute.

However, due to system perturbations and equipment partial

upgrade, most clusters in industry are not homogeneous any-

more. Regarding to this truth, a large volume of work aiming at

improving performance of Hadoop in a heterogeneous cluster

has been done recently. B.T Rao, etc [7] provide guidelines

on how to overcome bottlenecks of heterogeneous clusters.

Based on previous suggestions, a hybrid solution [8] of FIFO,

FairSharing [9] and COSHH [10] is introduced based on

job classification. What’s more, J.X etc. [11] place data on

different nodes to assure a balanced load aiming at improving

performance by optimizing data locality. S.G etc. [12] propose

a ThroughputScheduler which dynamically selects nodes by

optimally matching job requirements to node capabilities.

Targeting on the problem that speculation mechanism degrades

predictability of a cluster, Hopper [13] finds a balance between

scheduling decision and speculation, also retrieves outstanding

result after testing on Hadoop, Spark [2] and Sparrow [14],

both centralized and decentralized schedulers.

Not only about scheduler, some other work also seeks the

opportunity to increase the usage of storages in a heteroge-

neous cluster. For instance, N.S.I and X.L [15] propose new

hybrid design and data placement policies to accelerate HDFS.

Similarly, Cura [16] optimizes global resource utilization by

configuring MapReduce jobs from the view of a service978-1-5090-5252-3/16/$31.00 c©2016 IEEE



provider. In addition, to improve the performance, recent work

FRESH [17] and OMO [18] have developed dynamically

resource allocation in Hadoop.

Nevertheless, previous work neglects that many unnecessary

speculative tasks generated by slow nodes is one of the

most important reasons for traditional Speculative Execution

strategy incapable of adapting heterogeneous environment.

LATE Scheduler [19] is created to solve the previous problem

by only speculatively execute a copy of task that will finish

farthest among all currently running tasks. Unfortunately the

estimation of tasks’ remaining execution time in LATE [19]

is not accurate enough, especially it is unable to make self-

adjustment to adapt the system. Inspired by preceding work,

we create eSplash, which labels nodes into levels for system

to accurately and quickly identify straggling nodes. Our eS-

plash not only shows high performance on YARN [20], Next

Generation MapReduce of Hadoop, but also can be integrated

into other cloud computing systems.

III. BACKGROUND AND MOTIVATION

A. Speculative Execution in Hadoop

Speculative execution is an important feature in a Hadoop

system. It aims to identify the unstable slave nodes in the

cluster and avoid the delay of the job execution caused by

these nodes. In a large scale Hadoop system, each node’s

status and performance may not be consistent for a long-term

process depending on a lot of hardware and software factors.

It is possible that some nodes are prone to a failure, and their

performance is degraded at the runtime. This laggard perfor-

mance could be temporary, or eventually require restarting the

Hadoop service or even a reboot. In the Hadoop system, the

centralized ApplicationMaster monitors the execution of every

task, and if it detects that a task is running slowly (more slowly

than the other same type of tasks), it will start a redundant task,

called speculative task, as an alternative. When one of them

is completed (either the original task or speculative task), the

other task will be killed.

Particularly, Hadoop runs a background speculator service

that maintains a statistics table to record all the execution times

of the identical tasks, i.e., all the map or reduce tasks in a job.

In other words, each MapReduce job has two entries in this

statistics table, one for its map tasks and the other for its reduce

task. The data in this table is updated upon the completion

of each task. The speculator service will periodically check

this table and the running tasks to find the candidate tasks

for speculative execution. Specifically, it enumerates all the

running tasks and estimate the finish time of each task ti based

on the elapsed time and the current progress as shown in Eq(1),

where Tnow is the current timestamp, Tstart(i) is the starting

time of task ti, and PG(i) indicates ti’s current progress. In

addition, the speculator service estimates the finish time of

the alternative speculative execution in Eq(2. The execution

time of the speculative task is estimated as the mean value

of the historic execution times of the same type of tasks

maintained in the statistic table. Fig. 1 shows an example

of estimating Eq(1) and Eq(2) in the current Hadoop system.

Apparently, if EstEnd is greater than EstRepEnd, the task

is expected to benefit from a speculative execution. When

there are multiple candidate tasks for speculative execution, the

speculator service will pick the one with the maximum value

of EstEnd−EstRepEnd. Finally, the speculator service will

create a new task attempt of the selected running task, and

submit it to the pending task queue as a regular task.

EstEnd =
Tnow − Tstart(i)

PG(i)
+ Tstart(i) (1)

EstRepEnd = mean( getTaskType(ti) ) + Tnow (2)

Job 1: Map

Job 1: Reduce

Job 2: Map

Job 2: Reduce

Statistic

Task ID Exe Time

j1_map0 20s

j1_map1 22s

j1_map2 18s

j1_map3 25s

j1_map4 23s

… … … … 

Statistic Table

j1_map5

… … …

Running Tasks

Elapsed time:  10s
Progress:         25%

EstEnd = now+30s

EstRepEnd = now+22s

Fig. 1: Hadoop records the historic execution times of each type of
tasks in each job for determining the candidate tasks for speculative
execution

B. Problems in a Heterogeneous System

The current speculative execution, however, is not effective

in a heterogeneous Hadoop system, and could even lead to

severe performance degradations. The main issue is that a het-

erogeneous cluster consists of ‘slow’ nodes and ‘fast’ nodes.

The mean value of the execution times is no longer a good

guideline to judge if a node is abnormally slow. In addition, it

is difficult to estimate the execution time of each speculative

task as it depends on what type of nodes the task will be

running on. Specifically, because of the diverse processing

performance across the cluster, there are the following two

major problems for the speculative execution.

First, the decision of starting or not starting a speculative

task for each running task may be wrong. The intuition of

the current design is to detect the running tasks that are far

behind the expected progress compared to other finished tasks

of the same type. This intuition, however, does not hold in a

heterogeneous system as a ‘slow’ node does need more time to

finish a task than a ‘fast’ node. If the current statistical data are

mainly from the same type of tasks finished on ‘fast’ nodes, the

speculator service may consider the task running on a ‘slow’

node behind the schedule and start a redundant speculative

task for it. However, this ‘slow’ node is behaving normally,

and the scheduled speculative execution is unnecessary. On

the other hand, if a ‘fast’ node gets some problems and halts

after executing a task for a while, the speculator service may

consider its progress still in the normal range compared to

the tasks finished on other nodes (especially on those ‘slow’

nodes). No speculative tasks will be created until this faulty

‘fast’ node has been hanging for a long time.

Second, the scheduled speculative tasks, when executed in

the system, may not be as effective as we expect. The benefit



of speculative execution is to mitigate the negative effects of

problematic nodes in the system and avoid the delay caused

by them. In a heterogeneous system, however, the execution

time of the speculative task depends on the node that hosts

its execution. If the task is assigned to a slower node, the

execution time would be longer than the original task. What

is even worse is that the speculative task might be assigned

to the same node that hosts the original task because of the

diverse resource capacities.

We conduct an experiment on a cluster of 4 nodes with

identical hardware settings. However, when configuring the

Hadoop service, we set the each node’s capacity of vcores

with different values as follows, slave1(32 vcores), slave2(16

vcores), slave3(8 vcores), slave4(4 vcores). As the number of

physical cores in each node is fixed, the node set more vcores

has worse performance for each vcore. In another words, for

the tasks in the same type and from the same job, the node

with more vcores configured takes more time to execute a task.

In this case, slave1 can be consider as the slowest node.

In the experiment, we execute 5 MapReduce jobs each

consisting of 38 map tasks and 10 reduce tasks. The statistics

of the speculative execution is listed in the following Table I.

Out of the total of 240 original tasks, the speculator service has

generated the redundant execution for 62 of them. All these 62

original tasks are initially assigned to the slowest node slave1.

Among all the 62 speculative tasks, 25 of them are assigned

back to slave1 and all of them get killed in the end.

Task Type slave1 slave2 slave3 slave4 Total

Finished
Map 0 19 5 5 28
Reduce 0 0 1 0 1

Killed
Map 25 7 1 0 33
Reduce 0 0 0 0 0

TABLE I: Speculative executions in an experiment

Above all, we aim to develop an efficient speculation

scheme ESPLASH for a heterogeneous cluster which can

accurately and quickly detect straggler nodes, effectively avoid

unnecessary speculative execution, submit speculative tasks to

the most appropriate nodes.

IV. DESIGN OF ESPLASH

In this section, we present the details of the design of

ESPLASH that aims to efficiently manage the speculative

execution in a large scale heterogeneous computing system.

It mainly includes the three components:

• Classify cluster nodes: To accommodate the hetero-

geneous environment, our solution classifies the cluster

nodes into different groups depending on their computing

capabilities. A centralized manager maintains the run-

time performance statistics for each individual group.

These per-group data will serve other components such

as detecting straggler nodes and submitting specula-

tive tasks. The classification of the nodes can be pre-

configured by the administrator, or dynamically deter-

mined based on run-time performance.

• Detect straggler nodes: The straggler nodes are the

‘slow’ nodes compared to other nodes in the same group,

and could be prone to a failure. The tasks running on a

straggler node are candidates for speculative execution.

In ESPLASH, we develop a scheme that accurately and

quickly detects straggler nodes in a large cluster.

• Submit speculative tasks: This is the most important

component in ESPLASH. Basically, we need to determine

whether a speculative task is worthwhile. The decision is

based on the comparison of the estimated complete time

of the current task (running on a straggler node), and

the estimated execution time of a new speculative task.

However, it is difficult to achieve an accurate estimation

in practice, and it is more challenging in a heterogeneous

cluster because the execution time of the speculative task

depends on the computing capability of the hosting node.

Our design in this component considers the practical

factors, derives accurate estimation, and provides asso-

ciated parameters for each speculative task for its future

execution.

A. Classify cluster nodes

In order to effectively identify the straggler node and launch

speculative tasks, the cluster manager has to compare a node’s

run-time performance to other nodes with similar hardware

that are executing the same task.

In our design, each node in the cluster is associated with

a level indicating its computation performance. Specifically,

we classify all the nodes into multiple groups according to

their performance, and the level value is the index number the

group the node belongs to. We define that a higher level value

represents a stronger computation ability. In other words, a

level i node will finish a task faster than a level j node for

i > j.

The node classification can be pre-configured by the cluster

manager based on each node’s hardware profile, or dynami-

cally adjusted based the nodes’ run-time performance. In this

subsection, we focus on the dynamic classification algorithm

at the run-time.

Performance vector: In our design, the cluster master main-

tains a performance vector PVi for each node i,

PVi = {e1, e2, . . . , eD},

where D is the number of distinct types of tasks node i has

finished, and each value in the vector is the execution time of

each type of tasks. For example, if there are five concurrent

MapReduce jobs running in the cluster with the Fair scheduler,

after finishing at least one map tasks from each job, every node

will have a performance vector of five values. If more than one

tasks have been finished for a particular type of tasks, then the

average execution time will be filled in the PV . Then we will

cluster all the nodes based on their PV s.

Clustering algorithm: We consider each node’s performance

represented by PVi is a data point in a D-dimensional space,

and our problem becomes similar to the traditional clustering

problem such as k-mean. However, in our setting, the resulting



clusters(levels) indicate the performance and require a lexico-

graphical order of the performance vectors. A node in a higher

level is supposed to dominate any other nodes in lower levels

for any type of tasks. Therefore, we present a new clustering

algorithm based on the traditional k-mean algorithm.

Our solution consists of a grouping algorithm and a group-

based k-mean clustering algorithm. The goal of the grouping

algorithm is to merge individual PV data points into a set of

groups that satisfy the lexicographic order. Then in our group-

based k-mean algorithm, each group is the smallest unit to be

assigned to a cluster, i.e., all the data points in a group will

always stay in the same cluster.

The details are presented in Algorithm 1 and Algorithm 2.

In Algorithm 1, we start with each data point as a group (line

1). Then the algorithm tries to merge the groups to enforce the

lexicographic order. For each group gi, we keep track of the

minimum and maximum values of each dimension, recorded

in mini and maxi (lines 3–6). Then the algorithm compares

every pair of groups, gi and gj , and merge them if they do not

dominate each other. In line 8, we present the condition for

the merging operation. If there exist two dimensions, where

each of the two groups performs better in one of them, then

we have to merge these two groups. After forming a new

group, we need to merge other groups that overlap with the

new group ([min,max] overlapping in any dimension), and

update the mini and maxi (lines 10–11). The resulting groups

are non-overlapping, and keep the lexicographic order between

any two of them.

Algorithm 1 Grouping Algorithm

1: Initial grouping: ∀i, gi = {PVi}
2: Merging groups: form final groups based the lexico-

graphical order

3: for gi do

4: mini(k) = min{ek ∈ PVl|PVl ∈ gi}, ∀k ∈ [1, D]
5: maxi(k) = max{ek ∈ PVl|PVl ∈ gi}, ∀k ∈ [1, D]
6: end for

7: for any gi and gj do

8: if ∃a, b, mini(a) > maxj(a) and minj(b) > maxi(b)
9: then merge gi and gj , gi → gi ∪ gj

10: Merge all other overlapping groups into gi
11: Update mini and maxi

12: end for

Based on the result of the grouping algorithm, we develop

the following clustering algorithm. The basic steps are similar

to the traditional k-mean algorithm. However, after each data

point calculates the distance to each cluster center (line 2),

it does not select the closest cluster center to join. In our

algorithm, the decision has to be made by the whole group,

not each individual data point. In particular, we adopt a voting

scheme in line 3, by counting the preferred cluster center of

every group member. The most popular cluster center will

become the group preferred cluster center. Then all the data

points in the group will be assigned to that cluster center.

The algorithm repeats this iterative process until there is no

reassignment.

Algorithm 2 Group-based k-mean Clustering Algorithm

1: Randomly select k cluster centers

2: For each PVi, calculate the distance to each center, and

pick the closest one as the preferred center

3: For each group gi, check the preferred center selected by

each member PV , and pick the center with the most votes

as the group preferred center.

4: Assign all the PV points in a group to the group preferred

center

5: Recalculate the cluster centers and repeat the process until

no PV /group is reassigned.

The following Fig. 2 shows a comparison of traditional

clustering algorithm and our group-based clustering algorithm.

The ground truth is that we configured 4 types of nodes,

each of 20 nodes. We conduct experiments with two jobs,

WordCount and TeraSort, and measure the execution time of

each job’s map tasks on every node. Apparently, our algorithm

accurately captures the pre-defined levels while the clustering

result from the traditional k-mean is not feasible in our

problem setting.
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Fig. 2: An example of clustering 80 nodes: we collect the execution
time of two types of tasks (the map tasks in WordCount and TeraSort),
thus each PV is a two dimensional data. The results of the clustering
algorithms are plotted here.

B. Detect straggler nodes

The traditional speculation scheme makes the decision

based on per-task performance and is not suitable for a hetero-

geneous system because of the naturally varying performance

across the cluster. In our design, detecting straggler nodes is

the first step for speculative execution. Only the tasks on a

straggler node are candidates for speculation.

Performance Statistics Table: With every node associated

with a level value, ESPLASH maintains a per-level performance

statistic table (ST ), and uses the data in this table to detect

the straggler nodes in the system. This table consists of L×D

cells, where L is the number of levels in the system and D is

the number of active task types. Each cell ST (i, j) represents

the performance statistics of task type j at a level i node,

ST (i, j) =< µ (mean), δ (variance), PR (progress rate) >,



where µ and δ are regular statistics for the task execution time,

and PR records the average progress increase of this type of

tasks in the past epoch. The table data is updated once the

master node receives the heartbeat messages from the slave

nodes.

Straggler Value: Based on the information in table ST ,

ESPLASH detects the abnormally slow node by comparing

the task performance on the node with the statistic data for

the level it belongs to. In particular, we assign each node

a straggler value (SV ) to indicate how likely the node is a

straggler. Once the value exceeds a threshold τ , the node is

marked as a straggler. The straggler value of a node is updated

with the task performance on the node, and the following two

aspects are included:

• Estimated execution time: For each running task on the

node, we estimate its execution time (denoted bt EstT )

by dividing the elapsed time by the task progress. Then,

we compare it with the mean and variance values stored

in table ST . Assume the node is in level i, the following

formula is applied to update SV ,

SV ← SV +
∑

running task j

EstT − µ(i, type(j))

δ(i, type(j))
,

where type(j) returns the task type index of j and we

exclude the running tasks whose EstT values are smaller

than the recorded mean values.

• Progress rate: While the estimated execution time is a

good indicator of the performance, sometimes it takes a

relatively long time for the system to detect a straggler

node. For example, if a node normally executes a task and

gets stuck when the task is almost finished, its estimated

execution time will stay in the normal range for quite

a long time. Therefore, we include the second metric,

progress rate, to help quickly identify a straggler node.

Let PRj represents the progress rate of task j running

on the node, we use the following formula to update SV ,

SV ← SV +
∑

running task j

PR(i, type(j))

PRj

,

Note that there are other approaches to aggregate these two

metrics to calculate SV , and their weights can be adjusted with

coefficient parameters. The current design in ESPLASH is an

empirical setting and out intuition is to pay more attention on

the deficit of the progress rate.

C. Submit speculative tasks

Once straggler nodes are identified, all the active tasks run-

ning on those nodes are candidates for speculative execution.

The goal of this module is to select one candidate task and

submit a speculative task for it. In the traditional speculation

scheme in Hadoop, we need to estimate the finish time of

the speculative task and compare to the currently running task

to determine if it is worthwhile. In a heterogeneous system,

however, the finish time of the speculative task depends on

which (level of) node will host the execution. For example,

given a candidate task, it is possible that running a speculative

task on a high level node will be faster, but running it on a low

level node will be even slower than the current task. Therefore,

when making the decision for speculative execution, we have

to consider the level of the prospective hosting node of the

speculative task. In addition, when submitting the speculation

request, the level constraint should be specified.

In ESPLASH, we require every speculation request to be

associated with a value of the minimum level (minL) to

execute the speculative task. Only the nodes in the minimum

level or higher level are eligible to host the speculative task.

The following Algorithm 3 is developed in ESPLASH to

determine the value of minL. When examining an active

Algorithm 3 Determine minL for a speculation request

1: Given a task running on a straggler node at level i

2: for l = i to HL do

3: ExpTl ←
∑

m∈[l,HL] Pr(m) · EstT (m)
4: end for

5: minL = min{ExpTl, ∀l ∈ [i,HL]}

task running on a node at level i, the possible values for minL

range from i to HL which represents the highest level in the

system. In the algorithm, we enumerate all the possible values,

and then decide the best choice. Assume the minL is set to

be l, the algorithm calculates an expected execution time of

the speculative task in line 3. The speculative task could be

executed on a node at level l or above. We use EstT (m) to

indicate the execution time if the speculative task is hosted

on a level m node, and Pr(m) is the probability of this case.

The value of EstT (m) can be set as the mean value in the

performance statistic table, and Pr(m) is derived as follows:

Pr(m) =
C(m)∑

j∈[l,HL] C(j)
,

where C(j) is the number of containers on all the nodes at

level j that can serve this type of task. The value of C(j)
can be pre-computed according to the resource capacity on

all the level j nodes and the resource demands of the task.

Eventually, in line 5, minL is set to the value that yields the

minimum expected execution time.

Finally, after every candidate task derives a minL value

with its speculative request, we need to pick one candidate

and submit its request. Following the Hadoop workflow, this

process will be repeated periodically, but every time only one

speculative request can be submitted. We inherit the Hadoop’s

design, and use a speculative value to indicate the priority

of each candidate task. However, this speculative value is re-

defined as follows:
∑

m∈[minL,HL] C(m) · (EstEnd− Tnow − EstT (m))
∑

m∈[1,HL] C(m)
,

where EstEnd is the estimated finish time of the original task,

and Tnow is the current timestamp. Essentially, this speculative

value is the expected benefit (execution time reduction) the



task can obtain. Therefore, the task with the highest speculative

value will be selected for speculative execution.

D. Other enhancements when executing speculative tasks

In ESPLASH, we developed a couple of other enhancements

to improve the performance. First, the marked straggler nodes

are excluded from hosting any speculative task. Second, if a

speculative task waits for a certain amount of time in the queue

of the pending task, we re-evaluate its estimated finish time

and compare to the original task to see if it is still worth

a speculative execution. Due to the page limit, the details

are omitted in this paper, but these enhancements are also

evaluated in our experiments.

V. SYSTEM IMPLEMENTATION

To support our solution, we implemented our new scheduler

ESPLASH on Hadoop YARN version 2.7.1 by creating a new

Speculator component and modifying the RMContainerAl-

locator component (Container Allocator) in MRAppMaster

(MapReduce Application Master). Fig. 3 shows the details of

the system implementation.

+ speculationValue
+ getEstimatedNewAttemptRuntimeList 
+ addSpeculativeAttempt
+ maybeScheduleASpeculation

DefaultSpeculator

+ getNodeLevel
ClusterInfo

+ getEstimatedNewAttemptRuntimePerLevel
+ getMeanProgressRatePerLevel
+ getNewProgressRatePerLevel

<<Interface>>
TaskRuntimeEstimator

+ newEstimatedNewAttempRuntimePerLevel
+ updateAttempt

StartEndTimeBase

+ getMeanProgressRate
+ getNewProgressRate

LegacyTaskRuntimeEstimator

+ addProgressRate
+ getMeanRate
+ getNewRate

ProgressRate

<<Interface>>
Task

TaskImpl
+ doubleCheckEstimatedNewRuntime 
+ updateMinLevelForTask
+ assignToReduce
+ assignMapsWithLocality
+ assignMapsWithoutLocality

RMContainerAllocator

+ addNewStatistics
+ getMeanPerLevel 
+ getVariancePerLevel 

NewDataStatistics

 Speculator

Fig. 3: System Implementation

First, to determine the speculative tasks, we create the

new Speculator component. Its architecture follows Speculate

component in native Hadoop. In Speculator, all modules in

green exist in native Hadoop and we create new methods

in them. And the modules in yellow are newly created by

us. NewDataStatistics statistics the average execution time of

each completed map/reduce task in each node level. According

to such statistics, StartEndTimeBase estimates the execution

time of every running task on the slave nodes in different

levels. In addition, the new component ProgressRate moni-

tors the progress variety of every running task in real time.

LegacyTaskRuntimeEstimator is the subclass of StartEndTime-

Base and it collects the information of the progress rate

per running task from ProgressRate. TaskRuntimeEstimator is

the interface for DefaultSpeculator to get all statistics above.

Based on the estimated execution time and the progress rate

of every running task, DefaultSpeculator firstly determines

the candidate tasks for the speculative execution. Then it

quantifies the speculative value of each candidate task and

marks the minimum node level where the speculation can be

executed. Finally, it selects the candidate task with the highest

speculative value and creates a speculative task for it.

Second, to allocate the appropriate containers for the specu-

lative tasks, we modify the RMContainerAllocator component.

Firstly, it re-calculates the estimated execution time of the

original tasks with pending speculative tasks to check whether

it is still worthy to execute these speculative tasks. Secondly,

it removes the unnecessary pending tasks and updates their

minimum node levels. In the end, it checks the node levels

that all available containers belong to and assigns the most

appropriate container to each pending speculative task.

In addition, we modified ClusterInfo to set the node level

for each slave node and the TaskImpl/Task in job to mark the

minimum node level that every task can be executed in.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of ESPLASH

and compare it with other alternative schemes.

A. Testbed Setup and Workloads

All the experiments are conducted on NSF CloudLab plat-

form at the University of Utah [21]. In each server, there are 8

ARMv8 cores at 2.4GHz, 64 GB memory and 120 GB storage.

We launched a cluster with 9 servers: 1 master node and 8

slave nodes. We create 4 node levels and assign two slave

nodes in each level. To create the heterogeneous environment,

we classify node levels by specifying different capacities of

servers in different levels. Specifically, we configure 32 vcores

in each slave node of level 1, 16 vcores of level 2, 8 vcores of

level 3 and 4 vcores of level 4. As the number of physical cores

is fixed in each server, the one configured by more vcores has

worse performance for each vcore. So the slave nodes in level

4 achieve the best performance in executing a map/reduce task

and the nodes in level 1 present the worst performance.

Our workloads for evaluation consider general Hadoop

benchmarks with large datasets as the input. In particular,

we use two datasets in our experiments including 20 GB

wiki category links data and 20 GB synthetic data. The

wiki data includes wiki page categories information, and the

synthetic data is generated by the tool TeraGen in Hadoop. We

choose the following four Hadoop benchmarks from Hadoop

examples library to evaluate the performance: (1) Terasort:

Sort (key,value) tuples on the key with the synthetic data as

input. (2) Word Count: Count the occurrences of each word

with a list of Wikipedia documents as input. (3) Grep: Take a

list of Wikipedia documents as input and search for a pattern

in the files. (4) Wordmean: Count the average length of the

words with a list of Wikipedia documents as input.

B. Performance Evaluation

Given a batch of MapReduce jobs, our performance metrics

are the increased makespan with stragglers and the accu-

mulated wasted time of killed speculative tasks. We mainly
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Fig. 4: The Speculative Tasks created under both LATE and eSplash: (1) without Straggler, (2) with one straggler on Node Level 1, (3)
with one straggler on Node Level 4

compare ESPLASH to the native speculation scheduler in

YARN (LATE [19]) and the one with speculation disabled

(Non-specu). We have conducted two categories of tests with

different workloads: simple workloads consist of the same type

of jobs and mixed workloads represent a set of hybrid jobs. For

each test of simple workloads, we generate 8 jobs of the same

benchmarks. For testing mixed workloads, we mix all four

benchmarks above and generate 2 jobs for each benchmark.

For each job of both simple and mixed workloads, the input

data is 20 GB. There are 80 map tasks and 10 reduce tasks

created by each job and each task requires 1 vcore and 2 GB

memory. In the rest of this subsection, we separately present

the evaluation results in the heterogeneous environment: (1)

without stragglers, (2) with stragglers which can be recovered,

and (3) with stragglers which cannot be recovered.
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Fig. 5: Makespan without Stragglers

1) Performance without stragglers: For our first experi-

ment, we test both single and mixed workloads in the het-

erogeneous cluster without any stragglers. The first graph

of Fig. 4 shows the number of speculative tasks created

during the experiments. The black parts represent all killed

speculative tasks and the white parts show all successful

ones. According to the principle of speculation, speculative

tasks are killed because of their original tasks are finished

earlier than the speculative ones. Ideally, there should be no

speculative tasks created during the experiments. However,

under LATE, there are 28 speculative tasks averagely created

in the experiments of simple workloads and 62 ones in mixed

workloads. The original tasks of such speculative ones are

all from the slave nodes on node level 1. As there is no

mechanism in assigning speculative tasks to appropriate slave

nodes in LATE, on average, 64.8% of the speculative tasks are

assigned back to the ’slow’ nodes on node level 1 and killed

when their original tasks are finished. We notice that there

are still about 5 speculative tasks created in each experiment

under ESPLASH. After tracing the logs of such tasks, we

found the reason. In ESPLASH, we revoke the function in

native YARN to report the estimated execution time of each

running task. With a very low probability, it may report

one extreme high value and ESPLASH mistakenly creates a

speculative task based on such value. We will try to fix this

issue in the future work. But still, ESPLASH reduces 80% -

91.9% unnecessary speculative tasks over LATE. In addition,

the average accumulated execution time of killed speculative

tasks in each experiment is 3536 seconds under LATE and

343 seconds under ESPLASH. And ESPLASH decreases 90.3%

wasted time cost in killed speculative tasks over LATE.

Fig. 5 shows the makespan performance of ESPLASH, LATE

and Non-specu. Although 64.8% speculative tasks are killed in

LATE, the remaining successful speculative tasks help to speed

up the finish of all jobs. There is no significant difference

in makespan between LATE and Non-specu. On average,

ESPLASH improves 5.89% and 4.58% of the performance on

makespan compared to Non-specu and LATE.

2) Performance with stragglers which can be recovered:

To evaluate the speculative execution with stragglers in the

cluster, we manually slow down a slave node by running

four CPU-intensive processes (the factorial of the integer

10,000) and four disk-intensive processes (dd tasks writing

large files in a loop). Such processes last 1000 seconds during

jobs execution and then the straggler will be recovered to

normal performance. We run experiments separately with the

straggler in ‘slow’ node (Level 1) and in ‘fast’ node (Level

4). The second and third graph of Fig. 4 shows the statistics

of speculative tasks created during the experiments with a

straggler in node level 1 and in node level 4. Killed in Straggler

represents the killed speculative tasks which are assigned to

the straggler node, Killed in slow node represents the killed

speculative tasks which are assigned to the slave nodes in the

same or lower node level compared to their original tasks.

From the test results, all killed speculative tasks in LATE are

either assigned to the straggler itself or a slower slave node.

While triggering a straggler on the slow node (in node level

1), 61.9% averagely of speculative tasks are killed in LATE.

Among all these killed speculative tasks, 50.4% of them are

assigned back to the straggler. When the straggler is a fast node

(in node level 4), on average 87.1% of speculative tasks are

killed under LATE and 47.7% of the killed ones are assigned to
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Fig. 8: Increased Makespan with a Straggler
which will be Restarted

the straggler. Meantime, there is no speculative task assigned

to the straggler or slower slave nodes under ESPLASH. Fig. 6

and Fig. 7 shows the increased makespan in both experiments.

Generally, since Non-specu cannot address the situation with

stragglers in the cluster, it represents the worst performance in

the increased makespan. However, in the test with the straggler

in a ‘fast’ node, as LATE assigns 13 out of 19 speculative tasks

to the slave nodes in node level 1, the increased makespan of

LATE is even 47.9% more than the one under Non-specu. With

the straggler in a ‘slow’ node, averagely, ESPLASH decreases

the increased makespan by 76.7% and 65.7% over Non-specu

and LATE. With the straggler in a ‘fast’ node, on average,

the increased makespan under ESPLASH is 69.4% and 66.7%

less than the ones under Non-specu and LATE. From the test

results, LATE cannot efficiently deal with the stragglers in a

heterogeneous cluster.

3) Performance with stragglers which cannot be recovered:

In practice, abnormally slow execution of a server is a sign of

the system failure. Rebooting the whole system is a common

operation to handle such failure. So we design an experiment

to check whether speculative executions can deal with this

issue. In the experiment, we set a slave node in the node level 4

as a straggler and slow down it by the same CPU-intensive and

disk-intensive processes above. After running these processes

for 1000 seconds, we manually shut down the processes of

NodeManager and DataNode of the slave node and restart

them after 600 seconds (to simulate the rebooting of the

straggler node). We run the same experiment under Non-specu,

LATE and ESPLASH. Fig. 8 illustrates the increased makespan

under each mechanism. As the straggler is considered as a

normal node and speculative tasks from other ‘slow’ nodes are

assigned to the straggler, for the benchmarks Wordcount and

Wordmean, the increased makespan under LATE is even more

than the one under Non-specu. Under ESPLASH, as all the

tasks running on the straggler have created speculative tasks on

other ‘faster’ nodes, nearly no time is wasted to recover failed

tasks on the straggler when it’s shut down. ESPLASH shows

the best performance and the increased makespan is averagely

42.4% less than Non-specu and 45.8% less than LATE.

VII. CONCLUSION

This paper studies the speculative execution in a large-

scale heterogeneous computing cluster. Our goal is to mitigate

the impact of node failures in the cluster. We develop a

new speculation scheme ESPLASH which can efficiently and

quickly identify the stragglers, submit the speculative tasks to

the most appropriate nodes and avoid resource waste on the

unnecessary speculative execution. We have implemented our

solution on Hadoop YARN platform and conducted extensive

experiments with various workloads. The results show a signif-

icant improvement on distinguishing the stragglers, assigning

speculative tasks, and reducing the impact of stragglers on the

makespan compared to a conventional YARN system.
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