
GREM: Dynamic SSD Resource Allocation In Virtualized
Storage Systems With Heterogeneous IO Workloads

Zhengyu Yang∗, Jianzhe Tai∗, Janki Bhimani∗, Jiayin Wang‡, Ningfang Mi∗, and Bo Sheng‡
∗Dept. of Electrical & Computer Engineering, Northeastern University, 360 Huntington Ave., Boston, MA 02115
‡Dept. of Computer Science, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA

Abstract—In a shared virtualized storage system that runs
VMs with heterogeneous IO demands, it becomes a problem
for the hypervisor to cost-effectively partition and allocate SSD
resources among multiple VMs. There are two straightforward
approaches to solving this problem: equally assigning SSDs to
each VM or managing SSD resources in a fair competition
mode. Unfortunately, neither of these approaches can fully utilize
the benefits of SSD resources, particularly when the workloads
frequently change and bursty IOs occur from time to time. In this
paper, we design a Global SSD Resource Management solution
- GREM, which aims to fully utilize SSD resources as a second-
level cache under the consideration of performance isolation. In
particular, GREM takes dynamic IO demands of all VMs into
consideration to split the entire SSD space into a long-term zone
and a short-term zone, and cost-effectively updates the content
of SSDs in these two zones. GREM is able to adaptively adjust
the reservation for each VM inside the long-term zone based
on their IO changes. GREM can further dynamically partition
SSDs between the long- and short-term zones during runtime
by leveraging the feedbacks from both cache performance and
bursty workloads. Experimental results show that GREM can
capture the cross-VM IO changes to make correct decisions on
resource allocation, and thus obtain high IO hit ratio and low IO
management costs, compared with both traditional and state-of-
the-art caching algorithms.

Keywords—Solid State Drives, Resource Allocation, Virtualized
Storage Systems, Caching Algorithms, Bursty Detection, I/O Work-
load Characterization

I. INTRODUCTION

Virtualized systems nowadays are a basic supporting infras-
tructure in commercial cloud computing environments. In such
a virtualized system, multiple virtual machines (VMs) often
share storage services, and each VM has its own workload
pattern and IO requirements. It then becomes very important to
provide high performance and availability to virtual machines.
Therefore, flash-based Solid-State Drives (SSDs) are widely
being deployed as a per-virtual disk, second-level cache of
Hard Disk Drives (HDDs) in virtualized systems to improve
IO access performance (e.g., increasing IO throughput and
reducing IO latency), and achieve low power consumption. In
most of these shared virtualization platforms, SSD is statically
pre-allocated to each virtual disk (VMDK) for simplicity,
and the caching algorithm decides the cache admission and
eviction for each VM only based on IO requests from that
particular VM regardless of IOs from the others. It is difficult

This work was partially supported by National Science Foundation grant
CNS-1552525, National Science Foundation Career Award CNS-1452751, and
AFOSR grant FA9550-14-1-0160.

for the hypervisor to cost-effectively partition and allocate
SSD resources among multiple VMs, particularly under diverse
IO demands, because it lacks a global view of the cluster-
wide disk IO activities. Therefore, in this paper, we focus on
addressing a critical design problem for a virtualized storage
system, i.e., how to dynamically partition flash-based SSDs
among multiple VMs and cost-effectively update the content
of SSDs according to VM workload changes? The goal of
this design is to fully leverage the outstanding performance
of shared SSD resources under the global view of caching
management.

Typically, there are two straightforward approaches that
allocate SSD resources among VMs by either equally or
proportionally assigning SSDs to each VM or managing SSD
resources in a fair competition mode. In the former approach,
all VMs are purely isolated in using their own SSDs and the
caching management is fully affected by their own workload
changes. While, the second approach allows all VMs to
freely use or share the entire SSDs, such that the caching
management is centrally interfered by the intensity of all
workload changes. However, we found that neither of these
approaches can fully utilize the benefits of SSDs, especially
when the workloads frequently change and bursts or spikes of
IOs occur from time to time. For instance, if SSDs are equally
reserved and assigned to all VMs, then VMs with bursty IOs
cannot obtain more SSD resources. On the other hand, the
second approach solves this issue by allowing all VMs to
preempt or compete SSD resources based on their present
IO demands. As a result, VMs with higher IO demands can
occupy more SSDs by evicting less-accessed data from other
VMs. However, under this approach, VMs with bursty IOs
might occupy almost all the SSD resources, and then pollute
the critical caching of other VMs. It is even worse that bursty
workloads usually have less re-accesses in the long term.

In this paper, we strive to solve the above problems by
designing a new Global SSD Resource Management solution,
named “GREM”, which takes dynamic IO demands of all VMs
into consideration to split the entire SSD space into a long-term
zone and a short-term zone and update the content of SSDs in
these two zones cost-effectively. Intuitively, the long-term zone
is designed for reserving SSD resources for each VM, in order
to cache their own hottest data without any pollution from
other VMs. Such a long-term zone is expected to guarantee
high hit ratios from VMs that have cache-friendly workloads.
On the other side, the short-term zone is used to absorb and
handle bursty IOs (mostly from VMs with cache-unfriendly
workloads) by being fairly competed among VMs according
to their data popularities. In addition, we use a coarse temporal
(e.g., 5min) and spatial (e.g., 1MB) granularity to update the978-1-5090-5252-3/16$31.00 c© 2016 IEEE

contents of SSDs in the two zones for reducing the cost of
managing and operating SSD resources.

An important issue in the design of this new global Flash
manager is “how to dynamically partition SSD resources into
two zones?” and “how to further dynamically allocate SSD
resources in the long-term zone to different VMs?”. It is very
challenging to effectively address this issue because we often
have VMs with heterogeneous IO workloads (e.g., with a mix
of cache-friendly and cache-unfriendly workloads) to share
SSD resources and their IO access patterns can frequently
change across time. Equally partitioning SSDs in the long-
term zone to each VM can only improve the hit ratio for
each VM to some extent, but cannot best utilize the reserved
SSD resources in the long-term zone. Not all VMs keep fully
utilizing their reserved SSDs during their lifetime, as their
working data sets might be smaller than its reserved SSD
space, or IO popularities of their data blocks decrease during
some periods. Thus, GREM dynamically reserves SSDs in the
long-term zone for each VM based on its runtime workload
changes. Similarly, evenly splitting SSDs into the long- and
short-term zones does not consider the diversity and dynamics
in IO workloads. Therefore, we further develop D_GREM, a
dynamic version of GREM, which online monitors the changes
in IO demands of all VMs as well as the SSD allocation
performance (e.g., IO hit ratios) and uses this information to
dynamically partitioning SSD resources between two zones,
and reserving different amounts of SSD resources to each VM.

We conduct trace-driven experiments by replaying real
enterprise IO workloads, and evaluate the effectiveness of our
new global resource management scheme with respect to IO hit
ratio and IO cost. Experimental results show that our GREM
well utilizes the benefits of SSDs with the improvement of
IO hit ratios across different IO workloads. By dynamically
partitioning SSDs into two functional zones, D_GREM further
increases IO hit ratio, especially for those VMs with cache-
unfriendly workloads. Meanwhile, both GREM and D_GREM
are able to save the operational cost of SSDs by up to 85%.

The remainders of this paper is organized as follows.
Section II presents our understanding of IO access patterns
in real production systems, and discusses the limitations of
existing SSD resource allocation solutions. Section III intro-
duces the details of our algorithms that can dynamically assign
SSD resources to multiple VMs, considering both performance
isolation and workload changes. Section IV evaluates the
effectiveness of our algorithms. Section V describes the related
work. Finally, we summarize our findings and discuss the
future work in Section VI.

II. MOTIVATION

In a virtualized storage system, SSDs are commonly
shared by multiple VMs with heterogeneous IO workloads
and caching requirements. An effective resource management
scheme should absorb hot data in SSDs, ensure good perfor-
mance isolation across VMs, and maintain high resource uti-
lization of SSDs. To achieve this goal, we need to thoroughly
understand IO access patterns of heterogeneous VM workloads
and dynamically allocate SSDs among these VMs according
to IO workload changes. Therefore, in this section, we present
our analysis of IO access patterns in real production systems,
and discuss the limitations of two straightforward approaches.

A. Understanding IO Access Patterns
We studied a suite of real IO traces to analyze and

understand IO access patterns in enterprise production systems.

[MSR Cambridge] One week IO block traces collected by
MSR Cambridge in 2007 [1]. In these IO traces, each data
entry describes an IO request, including timestamp, disk num-
ber, logical block number (LBN), number of blocks and the
type of IO (i.e., read or write). There are 36 traces from MSR-
Cambridge, which includes a variety of workloads.
[FIU] Two sets of IO block traces collected by Florida
International University (FIU) [2]. FIU IODedup contains
collected downstream of an active page cache for three weeks
in 2008. FIU SRCMap covers IO accesses from an email
server, a virtual machine monitor running two web servers,
and a file server workload during 2008-2009.
[UMASS] Two financial IO traces (Fin1 and Fin2) from OLTP
applications running at large financial institutions and three IO
traces (WebSch1, WebSch2 and WebSch3) from a web search
engine [3].

Table I shows some statistical results of selected IO traces,
including:
• Hit Ratio: the percentage of IOs that are hit in SSDs under

the LRU algorithm with a fully associative cache of 4KB
cache line and 1GB cache size.
• Working Volume (WV) Size: the total amount of data (in

bytes) accessed in the disk.
• Working Set (WS) Size: the total address range (in bytes)

of accessed data, which is the unique set of WV . A large
working set covers more disk space. If the cache size is
larger than or equal to a workload’s WS, then the IO hit
ratio of this workload can be close or equal to 100% under
the LRU caching algorithm [4].
• Sequential Ratio (Seq): the amount (in bytes) of total

sequential IOs (both read and write) divided by the total IO
amount (in bytes). In general, SSDs have better performance
under sequential IOs than under random IOs.
• Write IO Ratio (Wr): the number of write IOs divided by

the total number of IOs.
• Peak Throughput (IOPS): the peak throughput of the IO

workload (with the sampling window of 5 min).

As shown in Table I, high variance can be found in IO
hit ratios across different IO workloads. For example, the IO
hit ratio is more than 90% under the MSR-hm0 workload
while the IO hit ratio under the MSR-src21 workload is less
than 3%. We thus coarsely classify these IO workloads into
two categories: (1) cache-friendly workloads (e.g., MSR-hm0,
UMASS-Fin1) always obtain high IO hit ratios, while (2)
cache-unfriendly workloads (e.g., MSR-web2, FIU-hm2i1)
have relatively low IO hit ratios. We observe that the working
set (i.e., the unique data blocks) in cache-friendly workloads
(denoted as "F" in Table I) is usually small, which indicates
high spatial locality (i.e., high reuse ratio, defined as WV

WS), and
thus is highly likely to be cached and hit in SSDs. In contrast,
cache-unfriendly workloads (denoted as "U" in Table I) often
have large working volume sizes (see the WV column in
Table I) and working set sizes (see the WS column in Table I).
This observation motivates that we should differentiate these
two classes of workloads by reserving a particular amount of
SSD resources for VMs that have cache-friendly workloads to
hold their popular data blocks. Moreover, the reserved SSDs

TABLE I. STATISTICS FOR SELECTED MSR-CAMBRIDGE, FIU AND
UMASS WORKLOADS.

Group Trace Hit WV WS Seq Wr Peak
Name (%) (GB) (GB) (%) (%) IOPS

MSR-F1

mds0 90.84 67.83 6.43 32.50 88.11 207.02
stg0 89.28 21.63 13.21 42.43 84.81 187.01
usr0 88.25 31.81 7.49 64.38 59.58 138.28
src12 85.63 16.00 5.14 42.45 74.63 143.51

MSR-F2

hm0 91.34 27.88 9.03 33.76 64.50 271.65
prn0 85.16 132.65 32.74 38.71 89.21 254.55
web0 77.14 67.82 14.91 40.37 70.12 249.67
web1 54.25 135.66 8.68 84.57 45.89 146.44

MSR-U

stg1 34.59 203.47 162.03 85.64 36.25 197.75
usr2 19.48 1060.78 763.12 77.64 18.87 584.50
web2 6.2 339.16 152.65 85.43 85.43 0.75
src21 2.82 339.15 41.63 89.50 2.14 303.64

FIU-F1

wbusr1 83.78 15.22 0.32 62.29 99.97 1.83
wbrsh5 74.92 15.75 0.41 73.23 100.00 31.64
wbmal4 70.8 36.48 5.87 48.28 85.20 136.25
wbmal5 70.18 36.35 4.39 49.89 87.26 156.63

FIU-F2

hm4t3 83.38 283.40 1.65 87.22 99.91 467.58
hm4t1 76.97 264.81 1.67 41.95 92.66 118.98
wbusr3 75.98 15.75 3.55 69.11 87.48 129.10
mal1c1 72.04 557.74 36.27 94.96 88.35 488.93

FIU-U

hm2i1 41.41 258.32 15.68 61.77 76.31 284.06
hm2i2 28.04 391.50 5.27 74.19 91.45 371.74

hm3m3 26.79 37.25 0.48 82.65 99.17 39.36
hm3m2 17.23 36.49 0.04 80.27 99.85 1.88

Umass-F Fin1 99.07 1289.06 1.08 32.52 76.84 218.59
Fin2 98.51 1.16 1.11 11.79 17.65 159.94

Umass-U
WebSch1 6.08 33.35 18.37 1.78 0.02 355.38
WebSch2 6.3 33.35 18.98 3.71 0.02 375.02
WebSch3 6.15 33.35 19.21 14.62 0.03 245.09

do not need to be too large to guarantee high hit ratios of VMs
with cache-friendly workloads since their working set sizes are
usually small.

0

2000

4000

6000

8000

10000

12000

14000

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1

10
24

10
57

10
90

11
23

11
56

11
89

12
22

12
55

12
88

13
21

13
54

13
87

14
20

14
53

14
86

15
19

15
52

15
85

16
18

16
51

16
84

17
17

17
50

17
83

18
16

18
49

18
82

19
15

19
48

19
81

20
14

0

500

1000

1500

2000

2500

3000

1 34 67 10
0

13
3

16
6

19
9

23
2

26
5

29
8

33
1

36
4

39
7

43
0

46
3

49
6

52
9

56
2

59
5

62
8

66
1

69
4

72
7

76
0

79
3

82
6

85
9

89
2

92
5

95
8

99
1

10
24

10
57

10
90

11
23

11
56

11
89

12
22

12
55

12
88

13
21

13
54

13
87

14
20

14
53

14
86

15
19

15
52

15
85

16
18

16
51

16
84

17
17

17
50

17
83

18
16

18
49

18
82

19
15

19
48

19
81

20
14

A
cc

es
se

d
D

at
a

(M
B

)
A

cc
es

se
d

D
at

a
(M

B
)

Epoch (5min)

(a) mds0

(b) usr2

Epoch (5min)

Fig. 1. Examples of bursty IOs (e.g., runtime working set sizes) under (a)
cache-friendly workload mds0 and (b) cache-unfriendly workload usr2 .

Fig. 1 further shows the runtime working set sizes (WS)
of two MSR workloads during every 5min epoch. We observe
that cache-unfriendly workloads (see plot (b) in Fig. 1) have
more IO spikes (i.e., a large amount of unique data blocks
accessed during a short period of time) than cache-friendly
workloads (see plot (a) in Fig. 1). These IO spikes in cache-
unfriendly workloads are much more frequent, which can
dramatically degrade IO hit ratios due to the first-time cache
miss and even worse pollute the critical data in SSDs. This
observation implies that VMs with cache-unfriendly workloads
need to be assigned with a large amount of SSDs during
their bursty periods to absorb and handle their bursty IOs
for improving their hit ratios. However, to avoid severe cache
pollution, allocated SSDs should not overlap the reserved SSDs
for cache-friendly workloads. Therefore, a new SSD resource
management scheme is needed to discriminate cache-friendly
and cache-unfriendly workloads and improve IO performance
for both types of workloads.

src12 stg0 usr0 stg1 usr2 web2 src21

Fair Competition
100

80

60

40

20

0

V
M

 O
cc

up
an

cy
 R

at
io

 (%
)

100 300 500 700 900 1100 1300 1500 1700 1900
Epoch (5min)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

(b) COMP

Fig. 2. Runtime SSD allocation among VMs under fair competition.

B. Limitations of Straightforward Approaches
Two straightforward approaches can be used to allocate

SSD resources among multiple VMs. The first approach
(referred to as “performance isolation”) is to proportionally
reserve SSD resources for each VM in the system such that
all VMs are purely isolated in using their own assigned SSD
resources. Different cache replacement algorithms (e.g., LRU
[5], CAR [6], DellFluid [7], Mercuy [8], and SCE [9]) can
be used by each VM to cache their recently accessed data
blocks and the caching management is fully affected by their
own workload changes. In contrast, the second approach [10],
[11] (referred to as “fair competition”) manages SSD resources
in a fair competition mode by allowing all VMs to freely
use or share the entire SSDs. A caching algorithm is usually
used to centrally decide which data blocks should be held in
SSDs for all VMs. Consequently, the caching management is
inevitably interfered by the intensity of all workload changes.
However, we found that neither of these approaches can fully
utilize the benefits of SSDs when some of VMs have bursty
IO workloads during runtime. To understand the limitations
of these two approaches, we run trace-driven simulations by
replaying a mix of real IO workloads and investigate the
assignment of SSD resources to each VM (or each workload)
across time duration about one week. We find that although
the first approach (i.e., performance isolation) is able to avoid
performance interference, VMs with bursty IOs unfortunately
have no chance to obtain more SSD resources during their
bursty periods. Each VM keeps the fixed amount of SSDs
during their runtime. On the other hand, the second approach
solves this issue by allowing all VMs to compete SSDs based
on their present IO demands. As shown in Fig. 2, VMs (e.g.,
cache-unfriendly workloads web2 and usr2) occupy more
SSD resources when there are IO spikes in their workload.
Thus, their IO hit ratios are improved and the overall utilization
of SSD resources is increased as well. However, we notice
that under this approach, VMs with bursty IOs might occupy
a large amount of the SSD resources (e.g., web2 at epoch 900
in Fig. 2) during their bursty periods by evicting other cached
data, which might pollute critical caching of VMs with cache-
friendly workloads and then degrade their IO hit ratios.

III. DESIGN AND ALGORITHMS

A. Basic Idea of GREM
As observed in Section II, VMs with cache-friendly work-

loads can usually achieve high hit ratios when only a small
amount of their critical data blocks (i.e., their working sets)
are cached in SSDs. However, VMs with cache-unfriendly
workloads often have spikes (i.e., a large amount of unique
data blocks) of IOs across time, which can incur a significant
amount of cache misses and further pollute the critical caching

of other VMs. In order to ensure all VMs benefit from
SSDs, we design a new resource management scheme, named
GREM, which strives to discriminate different workload types
(e.g., cache-friendly and cache-unfriendly workloads) by split-
ting SSDs into two zones (denoted as “ZL” and “ZS” see
Fig. 3) such that one zone is designed for reserving SSD
resources for each VM and the other zone is used to absorb and
handle bursty IOs. GREM manages SSD resources underlying
the VM page buffer layer, thus it does not need to (reversely)
interact with the VM page buffers.

In particular, we refer “ZL” to as a “Long-term Zone”,
which is expected to cache the most popular data blocks for
each VM based on their IO access frequency during a long
period. Furthermore, SSD resources in “ZL” are reserved for
each VM such that their critical and popular data blocks can
be kept in SSDs without any pollution from other VMs, which
thus guarantees a high hit ratio from VMs with cache-friendly
workloads. We refer “ZS” to as a “Short-term Zone”, where
SSD resources are fairly competed among VMs based on
the popularities of their recently accessed data during a short
period. Consequently, VMs with cache-unfriendly workloads
can have a high chance to get SSD resources in ZS to cache
data for their bursty IOs and achieve an improved IO hit ratio.
Given the total capacity of SSD resources CT , we have

CT = CZL + CZS , (1)

where CZL
and CZS

denote the capacities of ZL and ZS ,
respectively. Furthermore, given m VMs running in the system,
each VM i will be assigned with CZL

(i) SSD resources in ZL

such that
∑m

i=1 CZL
(i) = CZL

. Therefore, the design goal
of GREM is to determine the proper values of CZL

, CZS
,

and CZL
(i) in order to maximize the overall IO hit ratio and

minimize the IO cost for operating IO access and updating
SSD content.

B. Dynamically Partition of the Long-term Zone

As introduced in Sec. III-A, GREM attempts to reserve
SSD resources in ZL for each VM in order to ensure each VM
have their own private SSDs to cache their critical hot data.
One straightforward approach is to partition zone ZL among
VMs equally or proportionally, i.e., CZL

(i) = CZL
·wi, where

wi is a fixed weight based on the Service-Level Agreement
(SLA) for VM i and

∑m
i=1 wi = 1, and reserve a fixed amount

(i.e., CZL
(i)) of SSDs in ZL for VM i. However, we found that

this approach is ineffective when workloads frequently change
and spikes of IOs occur across time. Reserved SSD resources
cannot be fully utilized when some VMs start to have a low
IO access rate and meanwhile other VMs may not be able to
obtain sufficient SSDs when they experience bursty IOs that
need to access a large amount of unique data blocks (i.e., large
working sets). Therefore, we develop a dynamic partitioning
algorithm for GREM to dynamically decide the capacity (i.e.,
CZL

(i)) for each VM’s reserved SSDs in ZL based on not
only each VM’s access history in a long term but also their IO
workload changes. Here, we assume that the capacities of two
zones are fixed, e.g., CZL

= CZS
= CT

2 . Later, we present a
new version of GREM that adjusts the zone sizes in an online
mode.

[Dynamic ZL Partition and Cache Replacement Solution]
Alg. 1 describes the procedure of GREM, including how
GREM periodically updates the content in both ZL and ZS ,
and how GREM online adjusts the amount of reserved SSDs

Algorithm 1: Dynamic Partition in ZL

1 Procedure GREM()
2 UpdateLongTermZone();
3 UpdateShortTermZone();
4 flashBin = shortBin + longBin;
5 return flashBin;
6 Procedure UpdateLongTermZone()
7 if size(historyBin) ≤ size(longBin) then
8 longBin = historyBin.keys;
9 else

10 /* the max number of bins to be cached in ZL */
j = size(longBin);

11 /* the top j popular bins */
12 itemH = number of j bins in historyBin.keys

with highest historyBin.values;
13 /* the evicted bins due to newly cached bins */

evictBin = bins of longBin which are not in
itemH;

14 longBin = itemH;
15 return;
16 Procedure UpdateShortTermZone()
17 if size(longBin) < size(historyBin) ≤ CT then
18 /* Case 1: warming up period */
19 shortBin = the remaining bins of

historyBin.keys which are not in longBin;
20 else if size(historyBin) > size(flashBin) then
21 /* Case 2: historyBin, evictBin, currEpochBin

and existing bins in shortBin compete in the ZS */
22 shortBin − = bins of shortBin which are also in

longBin;
23 currEpochBin − = bins of currEpochBin which

are also in longBin;
24 if size(currEpochBin) ≥ size(shortBin) then
25 j = size(shortBin);
26 shortBin = number of j bins in

currEpochBin with highest IO popularity;
27 else
28 shortBin + = evictBin;
29 shortBin − = bins of shortBin which are also

in currEpochBin;
30 j = size(shortBin) − size(currEpochBin);
31 shortBin = number of j bins in shortBin

with highest IO popularity;
32 shortBin + = currEpochBin;
33 return;

in ZL for each VM. historyBin is a dictionary in which
key is bin IDs of all VMs and value is the relative access
count for each bin. currEpochBin is the accessed bins of all
VMs in current epoch. shortBin and longBin are the cached
bins of all VMs in ZS and in ZL, respectively. flashBin
is those bins need to be cached in Flash. Fig. 4 further
shows the procedures of GREM for cache admission and
cache eviction. The key idea of GREM is that the amount
of reserved SSDs in ZL for each VM should be proportional
to their long-term access behaviors. When the distribution of
data bin popularities changes, GREM dynamically adjusts the
reservation of SSD resources for each VM in order to fully
utilize the ZL zone. In detail, GREM maintains a long-term
IO access history for all running VMs (i.e., “historyBin”
in Fig. 4) to record the accumulative IO popularity statistics
for their bins (e.g., each bin size is 1MB). This historical
information can be saved in the RAM. Similarly, these long-

VM1 VM2 VM3 VM4

Long-term Zone (ZL) Short-term Zone (ZS)

Performance Isolation Fair Competition

CZL CZS

CT

Fig. 3. Basic structure of GREM.
Short-term ZoneLong-term Zone

(a)

Short-term ZoneLong-term Zone

EvictBin

currEpochBin

(b)

longBin

Lower Priority

longBin shortBin

currEpochBinhistoryBin

SSD

SSD

Evict to HDD

RAM

Higher Priority Lowest Priority

Fig. 4. High level idea of GREM: (a) cache admission and (b) cache eviction.

term IO access records are incrementally updated every time
epoch (e.g., every 5 min). An aging function is also used to
capture the variation of IO popularities over time. Recent IO
popularities (i.e., collecting IO activities in recent time epochs)
are assigned with higher weights for contributing more to the
accumulative IO popularity statistics. Once the IO popularity
statistics are updated, GREM selects the most popular bins
with their overall size is equal to CZL

, and then sets the amount
of reserved SSDs for VM i, i.e., CZL

(i), to the total size of
its popular bins that have been selected and cached in ZL (see
lines 6-15 in Alg. 1 and Fig. 4(a)). By this way, GREM also
updates the content of SSDs in ZL by caching the most popular
bins with total size of CZL

. On the other hand, GREM attempts
to leverage the recent data access information (e.g., the current
epoch) to update the short-term zone ZS (see lines 16-33 in
Alg. 1 and Fig. 4(b)). In particular, GREM also records the
IO popularity statistics for all bins that were accessed in the
last epoch (i.e., “lastEpochBin” in Fig. 4) in the RAM. The
most popular bins that have not been cached in ZL are then
cached in ZS . The total size of these cached bins is bounded
by CZS

. We notice that it is possible that all accessed bins in
the “lastEpochBin” might have the total size less than CZS

.
In such a case, GREM further considers to cache the bins that
are just evicted from ZL.

C. Dynamical Partition for ZL and ZS: D_GREM

GREM statically and equally partitions SSDs into two
zones, i.e., CZL

= CZS
= CT

2 . However, we find that such a
partitioning unfortunately may not be optimal to general cases.
For example, if workloads have a large number of bins being
popular only during a short period, then ZS may not be large
enough to handle bursty IOs that access those bins. This can
cause a very low IO hit ratio and increase the operational
costs for caching new bins in ZS . To solve this problem, we
design a bursty-detection based partition algorithm that allows
GREM to dynamically adjust the sizes of ZL and ZS . We
refer this new version of GREM to as D_GREM. Fig. 5(a)
depicts the high level sketch of D_GREM consisting of two
main components, i.e., bursty detector and strategy switcher.
The bursty detector takes the feedbacks of workload changes
and cache performance (e.g., IO hit or IO miss) as the input
to determine if the current workload is bursty or non-bursty.

Based on the detected result, the strategy switcher will make
different partitioning decisions for improving the SSD resource
utilization.

ZL ZS

SSD
CurrEpoch

RAM

SSD
NextEpoch

currEpochBin

Partition based on hit contribution ratio ρ

(i) Non-Bursty Case

(ii) Bursty Case

SWLt SlidingWindow

Hit in ZL Hit in ZS

ZL ZS
SSD

CurrEpoch

RAM

Hit in ZL

(descending sort)

Qualification Threshold

ZL ZS

SSD
NextEpoch

SWQf

Aggressively allocate ZS based on SWQf

Bursty

Workloads Change Cache Hit

Aggressive
Allocation

Conservative
AdjustmentStrategies

Non-bursty

Feedbacks

Next Epoch

Strategy Switcher

Bursty Detector

(a) (b)

Fig. 5. (a) The high level sketch of D_GREM. (b) Dynamic partition of ZL
and ZS of D_GREM.

1) Bursty Detection: Basically, bursts or spikes contain a
relatively high number of IO accesses on a large amount of
working set data. They often occur within a short time period.
The bursty detector is expected to help D_GREM decide (1)
when to adjust the partition of SSDs, and (2) how to divide
SSD resources between two zones. We find that the capacity
adjustment of two zones is needed when the number of popular
bins or the working set size significantly changes. Intuitively,
the new capacity of each zone should be related with the
number of popular bins in the current spike, the bin reuse
rates, the bin access history during previous epochs, and the hit
counts in the ZL and ZS . Therefore, D_GREM uses a sliding
window (SW), e.g., 5 min, to record IO access history for
all VMs in recent epochs. Again, this historical information
can be kept in the RAM. D_GREM tracks the changes in
the working set sizes between the current (i.e., |WScurSW |)
and previous (i.e., |WSprevSW |) sliding windows. The relative
difference between these two sliding windows is then defined
as bursty degree (denoted as Bd) as follows.

Bd = ∆(WScurSW ,WSprevSW) (2)

=
||WScurSW | − |WSprevSW ||

|WScurSW |
.

The value of Bd is a good indicator of working set changes
across time. The bursty detector claims the arrival of bursty
IOs when the value of Bd is beyond a predefined threshold β.
We set β to 0.6 in our experiments.

2) Non-Bursty Case Strategy: When there is no burstiness
in current IO workloads, i.e., Bd < β, D_GREM tunes
the splitting point between two zones (i.e., ZL and ZS) by
leveraging the feedback of each zone’s caching performance
under the present partition (as shown in Fig. 5(b)(i)). In
particular, we evaluate the importance of two zones (i.e., their
contributions to the overall IO performance) by recording the
total IO hit volumes (i.e., the amount of all cached data that
are hit by one or multiple IOs) in each zone during the recent
epoch (e.g., 5 min). We define a contribution ratio ρ as follows:

ρ = α× HVL
HVS

, (3)

where α ∈ [0, 1] is a tunable parameter of importance, and
HVL and HVS represent the IO hit volumes of ZL and ZS ,
respectively. By default, α = 0.35. Once ρ is updated at the
end of an epoch, D_GREM adjusts the capacities of two zones
for next epoch using Eq.(4).

{
CZS = CT

1+ρ
,

CZL = CT − CZS ,
(4)

where CT is the capacity of SSDs and CZS
and CZL

are
the new anticipated capacities of ZL and ZS , respectively.
Intuitively, the zone that contributes more to the overall hit
ratio is highly likely to get more SSD resources and the
allocation of SSDs is proportional to the contribution ratio.

3) Bursty Case Strategy: When bursty IOs are identified by
the bursty detector, D_GREM turns to aggressively shift SSD
resources from one zone to the other. Using the contribution
ratio as a feedback to reset the capacities of two zones
unfortunately does not work well under this case because
this approach cannot quickly adapt to workload changes. The
corresponding delay can further incur “cascade effect" (also
called “thrashing effect”) of insufficient capacity in one of the
zones. For example, when bursty IOs that access new bins
arrive, the IO hit volume of ZS in the current epoch might not
be large enough to get more SSDs for handling those bursty
IOs. Consequently, this zone’s IO hit volume becomes even
less in the next epoch, which indicates less importance and
then keeps reducing the capacity of ZS if we use Eq.(4). To
avoid such a cascade effect, we attempt to dynamically and
aggressively assign more SSDs to ZS when bursty IOs are
found in workloads, and further to minimize the penalty on
ZL’s caching performance. The general idea of our approach is
that if the working set size of accessed bins in the current epoch
increases dramatically compared with the previous epoch, then
it would also be helpful if we increase the size of ZS for
absorbing the spikes in the near future. Meanwhile, we should
ensure those popular bins, which are cached in ZL and are
recently hit, to keep staying in ZL, as shown in Fig. 5(b)(ii).
Therefore, we use the sliding window (SW) to record IO
popularity statistics for all bins that are accessed in recent
several epochs (instead of the latest one). D_GREM identifies
all bins that are recorded in the current sliding window and
are also cached in the ZL zone. We refer this set of bins to
as “BSWLt”. D_GREM uses the average number of accesses
(BSWLt) of all bins in BSWLt as a criterion to set the threshold
(ThSW) for choosing hot bins to be cached in ZS as follows.

ThSW = γ ×BSWLt, (5)

where γ is an adjustment parameter, and is set to 1.2 by default.
D_GREM then finds all the bins that have been accessed in
the current sliding window more than ThSW times but are not
currently cached in ZL. We refer this set of “qualified” bins
to as “BSWQf”, as:

BSWQf = {x|x ∈ SW, x /∈ BSWLt, x > ThSW }. (6)

We then set the anticipated capacity of ZS to the total size of
bins in BSWQf .

CZS = |BSWQf | . (7)

4) Dynamic Tuning Procedure: As shown in Fig. 5(a),
initially, capacities of both two zones are set to half of the
entire SSDs. D_GREM recalculates Bd, the present bursty
degree at the end of each sliding window and determines
if bursty IOs are arriving by comparing with the threshold
β. Under the bursty case, D_GREM aggressively enlarges
the capacity of ZS according to Eq.(7). On the other hand,
D_GREM bases on the contribution ratio of two zones to
adjust the allocation of SSDs to these zones when there is no
burstiness, as shown in lines. A boundary checking is further
considered to ensure the minimum capacity for each zone.

IV. EVALUATION

In this section, we conduct trace-driven evaluation by
replaying real enterprise IO workloads. We implement two
versions of our proposed algorithm: (1) GREM that assigns
50% of the total SSDs to each of two zones, and adaptively
adjusts partitions of each VM in ZL according to the workload
change; and (2) D_GREM that further dynamically adjusts
the sizes of ZL and ZS during runtime. For comparison,
we also implement conventional caching algorithms, such
as global LRU (GLRU) [5] and global CAR [6], and a
recently proposed tiering algorithm VFRM [10]. We evaluate
the effectiveness of GREM with respect to our primary goals,
i.e., maximizing the IO hit ratio and minimizing the IO cost
incurred in managing SSDs.

A. Testbed and Implementation Details
Our evaluation environment is calibrated based on the real

testbed specs summarized in TableII. In detail, to deal with
the management across physical nodes and multiple tiers, we
adopt the same hybrid file developed in our previous work [10],
which consists of two “files”: a base file on the spinning
disk tier and a corresponding peer file on the Flash tier.
Furthermore, we use the following three key techniques to
lower the overhead: (1) a “Pointer Block Cache” of the peer
file is used as the block look up table, which can eliminate the
need for an extra lookup table; (2) a “Heat Map” is used to
represent the IO popularity statistics of each "1MB block" of
the files on VMFS, and 1MB block only requires 16 bytes to
hold the popularity stats, which is only 0.0015% of the size of
the VMDK; and (3) a “Tiering Map” is used to represent the
placement of the blocks between tiers, whose space overhead is
about 0.00001% of the size of the VMDK. Moreover, both the
heat and tiering maps do not need to be pinned in memory
permanently. Lastly, based our observation in Sec. II and
our offline sensitivity analysis results, we set 1MB and 5min
as spatial and temporal granularities, respectively, to avoid
adverse impact from spikes as well as to reduce the caching
management overhead.

TABLE II. TESTBED SPECS.
Component Specs

Processor Intel Xeon E5-2430 2.20GHz
Processor Cores 6 Cores

Memory Capacity 48GB ECC DDR3 R-DIMMs
Operating system Ubuntu 12.04.5

Linux Kernel 3.14 Mainline
SSD Model Intel DC S3500 Series

SSD Capacity 80 GB
HDD Model Western Digital 20EURS-63S48Y0 (5400 RPM)

HDD Capacity 2 TB

B. IO Hit Ratio
Fig. 6 shows the overall (i.e., read & write) IO hit ratios

as a function of SSD cache size (in GB) under diverse work-
loads that are mixed with different MSR, FIU and UMASS
repositories. For example, “FIU-F1U” is a mixed workload
with the IO traces of “FIU-F1” and “FIU-U”, where “F” and
“U” refer to cache-friendly and cache-unfriendly workloads, as
summarized in Table I. In overall, we can see that GREM and
D_GREM are superior to other existing caching algorithms.
For instance, Fig. 6(a) presents the results under MSR-F1,
a cache friendly workload. When the cache size is smaller
than 2GB, VFRM, GREM and D_GREM all have lower IO
hit ratios than the conventional algorithms. However, as the

 50

 55

 60

 65

 70

4 8 10 12 16 20 24 32

H
it

Ra
tio

 (%
)

Cache Size (GB)

(f) FIU−F1U

 70

 75

 80

 85

4 8 10 12 16 20 24 32

H
it

Ra
tio

 (%
)

Cache Size (GB)

 40

 50

 60

 70

 80

 90

 100

4 8 10 12 16 20 24 32

H
it

Ra
tio

 (%
)

Cache Size (GB)

(h) UMASS

 25
 30
 35
 40
 45
 50
 55
 60

2 4 8 16 24 32 48 64 80 96 128

H
it

Ra
tio

 (%
)

Cache Size (GB)

(d) MSR−F1U

 30
 35
 40
 45
 50
 55
 60
 65

2 4 8 16 24 32 48 64 80 96 128

H
it

Ra
tio

 (%
)

Cache Size (GB)

(e) MSR−F2U

 75

 80

 85

 90

 95

 100

1 2 4 8 12 16 24 32

H
it

Ra
tio

 (%
)

Cache Size (GB)

(a) MSR−F1

 5
 10
 15
 20
 25
 30
 35
 40

1 2 4 8 12 16 24 32 40 48 64

H
it

Ra
tio

 (%
)

Cache Size (GB)

(c) MSR−U

GLRU CAR D_GREMGREM vFRM
Global
vFRM

 65
 70
 75
 80
 85
 90
 95

 100

1 2 4 8 12 16 24 32 40 48 64

H
it

R
at

io
 (%

)

Cache Size (GB)

(b) MSR−F2

(g) FIU−F2U

Fig. 6. IO hit ratio results of workload combinations of MSR, FIU and UMASS repositories under different cache sizes and caching algorithms.

Global−LRU vFRM GlobalLRU vFRM Global−vFRM GlobalD_GREMvFRM Global

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

4 8 10 12 16 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(a) F1U(d) FIU–F1U

86.38% 91.60% 92.08% 93.41% 94.47% 100.00%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

4 8 10 12 16 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(b) FIU−F2U(e) FIU–F2U

91.79%92.56% 92.59%89.82% 91.58% 97.58%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100
 110
 120

1 2 4 8 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

UMASS

Global−LRU
Global−CAR

vFRM
Global−vFRM

Global–SPFRM–Auto

25.53%
42.89%

53.65%
60.23%

22.33%

(f) UMASS

Global–STFRM–AutovFRM GlobalLRU vFRM GlobalLRU vFRM Global−vFRM Global

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 4 8 12 16 24 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(a) MSR−F1

61.32%
50.95%

58.00%

38.04% 38.81% 36.73% 36.49% 36.49%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

1 2 4 8 12 16 24 32

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(b) MSR−U

12.69% 12.69% 12.60% 12.94% 13.25% 14.04% 15.18% 15.09%

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

2 4 8 16 24 32 48 64

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Cache Size (GB)

(c) MSR−F1U

15.52%14.76% 14.66% 14.32% 14.20% 15.63% 15.96% 15.59%

D_GREM

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

(a) MSR–F1 (b) MSR–U (c) MSR–F1U

(e) FIU-F2U(d) FIU–F1U

(f) UMASS

a-c: d-e:Global

D_GREM

GREMvFRMGREMGLRU vFRM

vFRMLRU
CAR GREM_EQ

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

N
or

m
al

iz
ed

 IO
 C

os
t (

%
)

Fig. 7. Normalized IO cost of MSR, FIU and UMASS workloads, which is total latencies of read/write operations of SSD and HDD.

capacity of SSDs increases to 4GB, D_GREM outperforms
GLRU and CAR. When we have more than 8GB SSDs, the
IO hit ratios under both GREM and D_GREM are beyond
those of GLRU and CAR. More importantly, the conventional
algorithms cannot take advantage of a large SSD cache. Their
IO hit ratios reach to the converging point (i.e., about 94%)
when the cache size is 4GB. In contrast, GREM and D_GREM
can further use the benefits of the increasing SSD capacity
to improve IO hit ratios up to 98%. Moreover, due to large
working set sizes and bursty IOs, most caching algorithms,
including GREM, cannot achieve high IO hit ratios for cache-
unfriendly workloads (e.g., MSR-U in Fig. 6(c)) even when we
increase the SSD capacity. By dynamically adjusting the size
of the short-term zone (ZS) to absorb bursty IOs, D_GREM
keeps improving IO hit ratio up to 40% when we have 64GB
SSDs. We further notice that D_GREM still do not converge
even with 64GB SSDs„ which indicates that this algorithm is
able to further achieve better IO hit ratios.
C. IO Cost

Fig. 7 shows the normalized overall IO costs (SSD/HDD
access and SSD-HDD contents updating latencies [11]) based
on the measured data from an 80GB Intel DC S3500
Series SSD and a 2TB 5400 RPM Western Digital
WD20EURS-63S48Y0 HDD, e.g., IO latencies of SSD/HDD
read and write operations under 4KB and 128KB cache lines.
In our evaluation, the conventional caching algorithms (i.e.,

GLRU and CAR) use 4KB as the cache line size, while
other algorithms (i.e., VFRM, GREM and D_GREM) use the
cache line size of 128KB and group IOs into 1MB bins. We
observe that by using the coarse-update granularity, all these
algorithms (e.g., VFRM and D_GREM) significantly reduce
the overall IO costs compared to the conventional caching so-
lutions, especially when there are cache-unfriendly workloads
(e.g., MSR-U and MSR-F1U). Furthermore, D_GREM always
achieves the lowest cost in all these cases. For example, as
shown in Fig. 7(a), with 8GB cache size, the overall IO costs
of MSR with four cache-friendly workloads under D_GREM
are 61.96% lower than GLRU, 11.77% lower than VFRM and
7.62% lower than GREM. Similar observations can be found
under cache-unfriendly workloads, see Fig. 7(b).

In Fig. 7(c)-(d), we further investigate the IO costs under
different algorithms when we have workloads mixed with
both cache-friendly and cache-unfriendly workloads. Again, by
dynamically adjusting the sizes of ZL and ZS and updating
SSD content in the coarse granularity, D_GREM significantly
reduces cache pollution due to IO spikes, and avoids too
frequent SSD content updates, which thus achieves much lower
IO costs compared to the conventional caching algorithms, e.g.,
GLRU, CAR. Both GREM and D_GREM further slightly
reduce the IO costs compared to VFRM, which also adopts
the coarse granularity for SSD content updating, but cannot
avoid bursty IOs evicting the cached critical data.

V. RELATED WORK

Host-side caches are being widely accepted in modern
storage systems. ARC [12] and LRFU [13] are commonly used
caching algorithms that consider the frequency and recency of
workloads. Inspired by ARC and based on Clock [14], CAR
and CART [6] are developed to inherit virtually all advantages
of ARC, but not serialize cache hits behind a single global lock.
Studies [15], [16] investigated how to model the IO bandwidth
performance, and designed a NUMA-aware cache mechanism
to align cache memory with local NUMA nodes and threads.
mClock [17] follows the proportional-share fairness approach
which subjects to minimum reservations and maximum limits
on the IO allocations for VMs. VirtualFence [18] is a stor-
age system that provides predictable VM performance and
conducts space-partitioning of both the SSD cache and the
HDD. Studies [19]–[22] investigated SSD and NVMe storage-
related resource management problems, such as how to reduce
the total cost of ownership and how to increase the Flash
device utilization. A hypervisor-based design “S-CAVE”, was
presented in [23]. Its optimization is based on runtime working
set identification, while GREM explores a different dimension
by monitoring changes in data locality, burstiness and IO pop-
ularity. vCacheShare [24] presented a dynamic, self-adaptive
framework for automated server flash cache space allocation in
virtualization environments. However, it only treats SSD as a
read-only cache and bypasses write IOs to the disk, which
unfortunately degrades the overall hit ratio. Recently, [11]
presented a new VMware Flash Resource Manager, named
VFRM, which considers of both performance and incurred
cost for managing Flash resources, and updates the content
of SSDs in a lazy and asynchronous mode.

VI. CONCLUSION

In this paper, we presented GREM, a new global SSD
resource management scheme to allocate a suitable amount
of SSDs to heterogeneous VMs. The design goal is to best
utilize the SSD resources by maximizing the IO hit ratio and
minimizing the IO costs. GREM splits the entire SSD space
into the long-term and short-term zones and takes dynamic
IO demands of all VMs into consideration for reserving SSD
resources in the long-term zones to each VM. We further devel-
oped D_GREM to dynamically adjust the partition of SSDs
between two zones by leveraging the feedback of workload
changes and SSD performance. We show that our new schemes
allow VMs with different types of workloads to utilize the
benefits of SSDs and thus improve the overall IO hit ratio. We
also show that D_GREM successfully detects the changes (or
bursts) in IO workloads and quickly adapts to the changes by
shifting SSD resources between two zones. The IO hit ratio is
further improved under D_GREM.

REFERENCES

[1] D. Narayanan, A. Donnelly, and A. Rowstron, “Write off-loading:
Practical power management for enterprise storage,” ACM Transactions
on Storage, vol. 4, no. 3, pp. 10:1–10:23, 2008.

[2] R. Koller and R. Rangaswami, “I/O deduplication: Utilizing content
similarity to improve i/o performance,” ACM Transactions on Storage
(TOS), vol. 6, no. 3, p. 13, 2010.

[3] “UMass Trace Repository,” http://traces.cs.umass.edu/index.php/
Storage/Storage.

[4] C. Ding and Y. Zhong, “Predicting whole-program locality through
reuse distance analysis,” in ACM SIGPLAN Notices, vol. 38, no. 5.
ACM, 2003, pp. 245–257.

[5] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K page replacement
algorithm for database disk buffering,” in Proceedings of the 1993 ACM
SIGMOD international conference on Management of data, Washing-
ton, DC, 1993, pp. 297–306.

[6] S. Bansal and D. S. Modha, “CAR: Clock with adaptive replacement.”
in Proceedings of the 2th USENIX Conference on File and Storage
Technologies, vol. 4, 2004, pp. 187–200.

[7] “Dell fluid cache for storage area networks,” http://www.dell.com/learn/
us/en/04/solutions/fluid-cache-san.

[8] S. Byan, J. Lentini, A. Madan, L. Pabon, M. Condict, J. Kimmel,
S. Kleiman, C. Small, and M. Storer, “Mercury: Host-side flash caching
for the data center,” in IEEE 28th Symposium on Mass Storage Systems
and Technologies, Pacific Grove, CA, 2012, pp. 1–12.

[9] H. Kim, I. Koltsidas, N. Ioannou, S. Seshadri, P. Muench, C. L. Dickey,
and L. Chiu, “Flash-conscious cache population for enterprise database
workloads.” in ADMS@ VLDB, 2014, pp. 45–56.

[10] D. Liu, N. Mi, J. Tai, X. Zhu, and J. Lo, “VFRM: Flash resource man-
ager in vmware esx server,” in Network Operations and Management
Symposium (NOMS), 2014 IEEE. IEEE, 2014, pp. 1–7.

[11] J. Tai, D. Liu, Z. Yang, X. Zhu, J. Lo, and N. Mi, “Improving flash
resource utilization at minimal management cost in virtualized flash-
based storage systems.”

[12] N. Megiddo and D. Modha, “ARC: A self-tuning, low overhead
replacement cache,” in Proceedings of the 2nd USENIX Conference on
File and Storage Technologies, San Francisco, CA, 2003, pp. 115–130.

[13] D. Lee, J. Choi, J.-H. Kim, S. Noh, S. L. Min, Y. Cho, and C. S. Kim,
“LRFU: A spectrum of policies that subsumes the least recently used
and least frequently used policies,” IEEE Transactions on Computers,
vol. 50, no. 12, pp. 1352–1361, 2001.

[14] L. A. Belady, “A study of replacement algorithms for a virtual-storage
computer,” IBM Systems journal, vol. 5, no. 2, pp. 78–101, 1966.

[15] T. Li, Y. Ren, D. Yu, S. Jin, and T. Robertazzi, “Characterization of
input/output bandwidth performance models in numa architecture for
data intensive applications,” in 2013 42nd International Conference on
Parallel Processing. IEEE, 2013, pp. 369–378.

[16] Y. Ren, T. Li, D. Yu, S. Jin, and T. Robertazzi, “Design, implementation,
and evaluation of a numa-aware cache for iscsi storage servers,” IEEE
Transactions on Parallel and Distributed Systems, vol. 26, no. 2, pp.
413–422, 2015.

[17] A. Gulati, A. Merchant, and P. J. Varman, “mclock: handling throughput
variability for hypervisor io scheduling,” in Proceedings of the 9th
USENIX conference on Operating systems design and implementation.
USENIX Association, 2010, pp. 437–450.

[18] C. Li, Í. Goiri, A. Bhattacharjee, R. Bianchini, and T. D. Nguyen,
“Quantifying and improving i/o predictability in virtualized systems,”
in Quality of Service (IWQoS), 2013 IEEE/ACM 21st International
Symposium on. IEEE, 2013, pp. 1–6.

[19] Z. Yang, M. Awasthi, M. Ghosh, and N. Mi, “A fresh perspective
on total cost of ownership models for flash storage,” in 8th IEEE
International Conference on Cloud Computing Technology and Science.
IEEE, 2016.

[20] Z. Yang and M. Awasthi, “Online flash resource migration, allocation,
retire and replacement manager based on multiple workloads waf tco
model,” 2015, uS Patent, US15/094971.

[21] J. Roemer, M. Groman, Z. Yang, Y. Wang, C. C. Tan, and N. Mi,
“Improving virtual machine migration via deduplication,” in 2014 IEEE
11th International Conference on Mobile Ad Hoc and Sensor Systems
(MASS). IEEE, 2014, pp. 702–707.

[22] J. Bhimani, J. Yang, Z. Yang, N. Mi, Q. Xu, M. Awasthi, R. Pan-
durangan, and V. Balakrishnan, “Understanding Performance of I/O
Intensive Containerized Applications for NVMe SSDs,” in 35th IEEE
International Performance Computing and Communications Conference
(IPCCC). IEEE, 2016.

[23] T. Luo, S. Ma, R. Lee, X. Zhang, D. Liu, and L. Zhou, “S-CAVE:
Effective ssd caching to improve virtual machine storage performance,”
in Proceedings of the 22nd international conference on Parallel archi-
tectures and compilation techniques. IEEE Press, 2013, pp. 103–112.

[24] F. Meng, L. Zhou, X. Ma, S. Uttamchandani, and D. Liu, “vCacheShare:
automated server flash cache space management in a virtualization
environment,” in USENIX ATC, 2014.

