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Abstract—Apache Spark is an in-memory analytic framework
that has been adopted in the industry and research fields. Two
memory managers, Static and Unified, are available in Spark
to allocate memory for caching Resilient Distributed Datasets
(RDDs) and executing tasks. However, we found that the static
memory manager (SMM) lacks flexibility, while the unified
memory manager (UMM) puts heavy pressure on the garbage
collection of JVM on which Spark resides. To address these
issues, we design an auto-tuning memory manager (ATuMm)
to support dynamic memory allocation with the consideration
of both memory demands and latency introduced by garbage
collection. We implement our new memory manager in Spark
2.2.0 and evaluate it by conducting experiments in a real Spark
cluster. Our experimental results show that our auto-tuning
memory manager can reduce the total garbage collection time
and thus further improve the performance (i.e., reduced latency)
of Spark applications, compared to the existing Spark memory
management solutions.

I. INTRODUCTION

Large-scale data processing has been one of the most
concerned topics for engineers and scientists in recent years.
With the proliferation of availability to the dataset and the
need for scalable and containable mega-data processing frame-
works, various analytics stacks are becoming prevalent in both
industry and research fields. In the past years, processing a
massive volume of data has entirely relied on the performance
of computing facilities and efforts of users, and can only
achieve a suboptimal performance [1]. Thus, distributed frame-
works (e.g., Hadoop [2]) that share computational resources
on a cluster have been proposed to help users interact with
overwhelming data.

However, it has been noticed that in Apache Hadoop, many
I/O requests are generated for accessing the intermediate data,
To address this issue, in-memory analytic frameworks (e.g.,
Apache Spark [3]), have been developed to improve data-
processing performance. Apache Spark [3], as one of the most
successful in-memory analytic frameworks, has been going
through a boom in the past few years. Specifically, Apache
Spark implements an abstraction of data structure, called
Resilient Distributed Datasets (RDD) [4], which can be manip-
ulated in parallel on different executors. Each RDD is created
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from an input dataset or another RDD and immutable. Based
on these two features, Spark builds a lineage of an application
to track each stage of computation and recover from faults
in a tolerant way. Furthermore, Spark stores intermediate data
(i.e., RDDs) in RAM, which reduces communication overhead
between Spark executors, especially for some iterative and
interactive machine learning applications.

In this way, Spark avoids the overhead of I/O operations and
improves the overall performance. Therefore, in Spark, one
of the most crucial factors is the management of memory re-
sources. An effective memory management scheme can shrink
an application’s latency (i.e., the total execution length) and
improve the performance dramatically. Unfortunately, Apache
Spark hides the default scheme in memory management from
users, who have few opportunities to monitor and configure
the memory space.

In this work, we first investigate two existing Spark memory
managers: SMM (Static memory manager), and UMM (Uni-
fied memory manager). We run representative data processing
benchmarks to collect the latency of applications under these
two memory managers. We find that the Spark performance is
significantly affected by the memory partition, which may lead
to long Java garbage collection (GC). Based on the analysis of
the defects of the existing memory managers, we design and
implement a new memory manager, named ATuMm (Auto-
tuning Memory Manager), to improve Spark performance.

The main contributions of this work are as follows.

• Understanding of two existing memory managers in
Spark. We study the infrastructure of two Apache Spark
memory managers to understand how these two managers
allocate memory space to the storage and execution
pools. We further conduct real experiments to analyze
the performance of these two managers.

• Design and implementation of an auto-tuning memory
manager. We propose a new Spark memory manager,
named ATuMm, that dynamically tunes the size of storage
and execution memory pools based on the performance
of current and previous tasks. We implement and evaluate
ATuMm in Spark 2.2.0 and show that our new memory
manager significantly improve the Spark performance.
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• Analysis of memory usage and GC of Spark mem-
ory managers. We investigate the execution memory
usage and garbage collection of three memory managers
(i.e., SMM, UMM, and ATuMm). We discover that our
ATuMm decreases garbage collection time by preventing
overloaded execution memory.

In the remainder of this paper, we will discuss the issues of
two existing memory managers, which motivates our design of
a new manager in Sec. II. In Sec. III and Sec. IV, we present
the detailed algorithm and the evaluation of our new memory
manager. Sec. V introduces the related work of memory
management of parallel computing framework. Conclusion is
presented in Sec. VI.

II. MOTIVATION

In this section, we study the performance of Spark applica-
tions managed by two existing Spark memory managers (i.e.,
SMM and UMM). In both memory managers, as shown in
Fig. 1, a portion of Java heap (i.e., memory in dashed rect-
angle) is dedicated for processing Spark applications (called
Accessible Memory), while the rest of memory is reserved
for Java class references and metadata usage (called User
Memory). Accessible memory is further divides into two
partitions, Storage Memory and Execution Memory. The
boundary between the storage memory and execution memory
is fixed (i.e., static) in SMM, but flexible in UMM. Storage
memory is used for caching RDDs, while execution memory is
used for runtime task processing. If storage memory is already
fully utilized when a new RDD needs to be cached, then some
of the old RDDs will be evicted according to the LRU (Least
Recently Used) algorithm. On the other hand, if execution
memory is full, then all intermediate objects that are generated
at runtime will be serialized and spilled into the disk to release
memory space for subsequent task processing.

User
Memory

JVM Heap

Storage
Memory

Execution
Memory

Fig. 1. Memory Partition of Spark Memory Managers

A. SMM Study: Memory Partition Analysis

To understand how memory partition can affect Spark
performance, we conduct a set of experiments in a Spark
cluster consisting of four homogeneous workers (see the full
setup in Sec. IV-A), with PageRank [5] as a representative
benchmark. We set the boundary, which we also refer to as
storage fraction (i.e., the ratio of storage memory to accessible
memory), from 10% to 90% of accessible memory space
under the SMM. Since the total accessible memory dedicated
to Spark applications remains constant, execution memory is
decreased when storage memory is increased.

Fig. 2 first illustrates the experiment results for SMM with
different storage fractions. We can observe that the Spark per-
formance varies with different memory partitions. Intuitively,
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Fig. 2. Latency of application under SMM and UMM. SMM increases
storage fraction from 10% to 90%.

if the storage memory is too small, it is incapable of caching
RDDs that can be reused in following computations and thus
cannot save the RDD processing time. If we assign too much
space to storage memory, then the confined execution memory
pool may trigger high overhead of I/O communications. How-
ever, neither one of these two effects dominates the other, and
the resulting joint performance depends on the characteristics
of the workload. As shown in Fig. 2, the latency is not a
monotonic function of the storage memory size. Therefore, we
conclude that SSM yields varying performance with different
storage fractions and cannot achieve the optimal performance
automatically.

B. Static VS. Dynamic: Latency Comparison

It is obvious that SMM cannot fit all kinds of workloads
well because of its lack of flexibility. Compared with SMM,
UMM allocates memory resources dynamically according to
resource demands. Furthermore, UMM gives a higher priority
to execution memory than to storage memory. That is, execu-
tion memory can force the storage memory pool to shrink if
storage memory exceeds 50% of total accessible memory, even
it is fully utilized. Based on this mechanism, UMM guarantees
sufficient memory for executing on-time tasks, which avoids
the content of execution memory from being spilled into the
disk at the greatest extent.

We find that UMM still cannot always achieve the best
performance, although it strives to adjust the storage fraction
based on resource demands dynamically. For example, the
last bar in Fig. 2 further shows the latency of UMM. We
can see that UMM does help improve the performance by
obtaining lower latency than SMM with some storage fractions
(e.g., 10% and 50%). Whereas, UMM cannot beat SSM with
storage fraction of 20% and 70%∼90%, and thus not be able
to achieve the optimal performance.

C. UMM Limitation: GC Impact

To explore the cause of UMM’s ineffectiveness, we conduct
a set of experiments to investigate the impact of GC on Spark
application latency. We plot the GC times of SMM with
different storage fractions, and that of UMM in Fig. 3. We
observe that SMM has much lower GC time when storage
fraction is set to 20%, 30%, and ≥ 70%. In contrast, the
GC time under UMM is as high as 120 seconds, which is
about 6 times the lowest GC time obtained by SMM with

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:11:05 UTC from IEEE Xplore.  Restrictions apply. 



storage fraction of 90%. By combining the results in Fig. 3
and Fig. 2, we note that the GC time has considerable impacts
on Spark performance, and UMM’s performance degradation
results from such long GC time.

We discover that long GCs occur under UMM because
UMM expands the execution memory pool aggressively, which
may result in a large amount of intermediate data in execution
memory. The Java garbage collector then needs to maintain
these in-memory intermediate data and thus increases the
overall GC time. Such high GC time finally introduces extra
latency to a Spark application’s execution. Besides, there exist
no explicit methods to eliminate these long GCs by configuring
UMM by users. This observation motivates us to take both GC
time and execution time into consideration for dynamically
adjusting memory partition.
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Fig. 3. GC time comparison. SMM increases storage fraction from 10% to
90%.

III. AUTO TUNING MEMORY MANAGER DESIGN

In this section, we present a new Spark memory man-
ager, called Auto-Tuning Memory Manager (ATuMm), which
aims to improve the overall latency for Spark applications
by considering both resource demands and GC impact in
dynamic memory resource allocation. Fig. 4 shows the overall
block diagram illustrating the interaction of ATuMm with
other Spark modules on an ”Executor”. A Spark cluster often
consists of multiple “Executors”. Each “Executor” hosts a
set of running tasks, and the pools of storage and execution
memory are managed independently. In addition, there are two
managers in Spark that are responsible to the memory requests
sent from the “Executor” module. Specifically, the “Block
Manager” manages the storage memory requirements, and
the “Task Memory Manager” manages the execution memory
requirements.

As shown in Fig. 4, we develop two main components in
ATuMm: (1) Auto Tuning Algorithm, and (2) Memory Man-
agement Algorithm. The former is called by the “Executor”
module to adjust the storage fraction repeatedly and also set
the limit (or the maximum allowed) of execution memory. The
latter further responds to the memory requirements sent by
the “Block Manager” and “Task Memory Manager” modules
by considering both free storage/execution memory and the
decision made by the “Auto Tuning Algorithm”.

Upon the completion of each task, the “Auto Tuning Al-
gorithm” receives the runtime logs of the completed task as
well as the previously completed tasks from the “Executor”
module. Based on these logs, the algorithm adjusts the storage
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Fig. 4. ATuMm Architecture

fraction and then passes it to the “Executor” module for next
task execution. The adjustments of storage fraction repeatedly
occur until the last task in “Executor” is finished. The “Mem-
ory Requirement Algorithm” of ATuMm then reacts to the
memory requirements from “Executor” and allocates memory
space for RDD cache (i.e., storage memory) and task execution
(i.e., execution memory). The storage fraction is also updated
by this algorithm based on memory allocations.

A. Auto Tuning Algorithm

When a task on the “Executor” module is finished, the “Auto
Tuning Algorithm” takes the GC time, the execution time of
the completed task, and the current storage fraction as inputs,
and then compares the performance of the completed task (in
terms of the ratio of GC time to execution time) with that of
the prior tasks to make the adjustment decision. In particular,
the “Auto Tuning Algorithm” returns two variables: (1) a new
storage fraction (“curStorageFraction”) for the potential mem-
ory partition, and (2) a new “heapStorageMemory” variable
to indicate the least memory reserved for storage memory.
By using these two variables, ATuMm can adjust memory
partition with a limit on the maximum memory that can be
allocated to execution memory.Alg. 1 shows the pseudo code
of the “Auto Tuning Algorithm”.

Both setUp() and setDown() repartition the accessible mem-
ory to the storage and execution pools based on the decision
made by barChange(). We also remark that the variable “heap-
StorageMemory” is new in our design, which plays a critical
role to avoid long GC time resulting from over-allocated
execution memory. Later, we present how this variable is used
in the “Memory Requirement Algorithm” to control the actual
memory space for RRD caching and task execution.
– Procedure barChange() receives GC time and execution time
of the current task from the “Executor” module. We consider
the ratio of GC time to execution time as a measurement
of Spark performance. A low ratio indicates a “good perfor-
mance”, vise verse. Then, barChange() makes an adjustment
decision from one of three possible actions (i.e., keep still,
increase storage fraction, and decrease storage fraction). In
particular, we use two variables “preRatio” and “preUpOr-
Down” to record the ratio of GC time to the execution time of
previous tasks and the last adjustment decision respectively.
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Algorithm 1 Auto Tuning Algorithm.
Procedure barChange( GCTime, executionTime)

curRatio=GCTime/executionTime
if curRatio=preRatio then

return None
else if (curRatio<preRatio and preUpOrDown=true) or (curRatio>preRatio and
preUpOrDown=false) then

update preUpOrDown to ture, update preRatio
return (setUp(step))

else
update preUpOrDown to false, update preRatio
return (setDown(step))

endif
Procedure setUp(step, preStorageFraction)

if preStorageFraction+step<100% then
curStorageFraction=preStorageFraction+step
if usedStoragePoolSize/totalStoragePoolSize>80% then

heapStorageMemory=heapStorageMemory+step∗accessibleMemory

endif
endif
update preStorageFraction
return heapStorageMemory, curStorageFraction

Procedure setDown(step, preStorageFraction)
if preStorageFraction−step>0 then

curStorageFraction=preStorageFraction−step
memoryEvict=memoryUsed−curStorageFraction
if memoryEvict>0 then

freeStorageMemory(memoryEvict)

endif
heapStorageMemory=heapStorageMemory−step∗accessibleMemory
if heapStorageMemory>=curStorageFraction∗accessibleMemory then

heapStorageMemory=curStorageFraction∗accessibleMemory

endif
update preStorageFraction

endif
return heapStorageMemory, curStorageFraction

We compare “curRatio” with “preRatio” to calculate the
reward of the last adjustment. If the current task yields a
better performance (i.e., “curRatio” is lower than “preRatio”),
then the boundary-moving decision that we previously made
(i.e., “preUpOrDown”) gets a reward. Thus, we decide to keep
moving the boundary further in the same direction as that of
the last task. Otherwise, we move the boundary in the direction
that is opposite to that of the last adjustment. Besides these two
actions, if the Spark performance converges (i.e., the current
ratio is equal to the previous ratio), the boundary keeps still.
After taking the new action, the storage fraction changes, and
two variables (i.e., “preRatio” “preUpOrDown”) are updated
as well for the next decision.
–Procedures setUp() and setDown() control how to expand or
shrink the storage and execution memory pools base on the
decision made in barChange(). As mentioned in Sec. II, Spark
memory is divided into two pools, i.e., storage memory and
execution memory. We thus consider there exists a partition
“bar” between storage and execution memory in Spark. Setting
the bar up means enlarging the storage memory pool and
shrinking the execution memory pool while setting the bar
down means decreasing the storage memory pool and expand-
ing the execution memory pool. In ATuMm, users are allowed
to configure the percentage of accessible memory (indicated as
“step”) that will be increased or decreased in each adjustment.

It is challenging to move the partition bar if both storage
and execution memory pools are already fully utilized. A
mechanism is required to determine which objects should be

evicted. For storage memory, LRU (Least Recently Used),
an existing RDD caching algorithm, is applied by the Spark
block manager. We adopt this caching algorithm to manage the
RDD evictions from storage memory. For execution memory,
barChange() is called only when a task has finished its
computation and released all its occupied memory resources.
Thus, there is no need to evict objects from the execution
memory pool. This is also one of the reasons why we choose
to adjust the memory boundary after each task’s completion.

Procedure setUp() takes “preStorageFraction” and the pre-
defined parameter “step” (e.g., 5%) as inputs to determine a
new storage fraction (“curStorageFraction”) to repartition the
memory and a bound (“heapStorageMemory”) to reserve the
least storage memory space. In details, setUp() increases the
storage fraction by “step” (see lines 12 and 13 in Alg. 1)
if the new storage memory pool size is less than the overall
available memory space. Meanwhile, setUp() updates “heap-
StorageMemory” only if 80% of the storage memory is used
(see lines 14, and 15 in Alg. 1). The difference between the
storage memory pool size and “heapStorageMemory” will be
the potential memory space that can be allocated to execution
memory.

Procedure setDown() has the same inputs and outputs as
setUp() to shrink the storage memory pool. In details, set-
Down() decreases the storage fraction by “step” (see line 20
in Alg. 1). However, it needs to consider RDD evictions to
release the reduced storage memory additionally (see lines 21
and 22 in Alg. 1). For example, if the current storage memory
pool is 5GB with 4.5GB used, and the potential storage mem-
ory becomes 4GB, then the memory space (‘memoryEvict”)
that needs to be released is 0.5GB. setDown() then needs
to trigger the caching algorithm to evict cached RDDs to
shrink the storage memory pool. Finally, setDown() updates
(or decreases) “heapStorageMemory”by “step” of accessible
memory. If “heapStorageMemory” is more than the new
storage memory, then setDown() sets ‘heapStorageMemory”
to be equal to the new storage memory (see lines 25 in Alg. 1).

B. Memory Requirement Algorithm

The Memory Management Algorithm of ATuMm is de-
signed to allocate memory space for RDD caching and task
execution. In particular, this algorithm receives the online
memory requirements from the “Block Manager” and the
“Task Memory Manager” modules. According to the cur-
rent memory partition and the variable “heapStorageMemory”
determined by the “Auto Tuning Algorithm”, this algorithm
allocates available memory to the two manager modules (i.e.,
“Block Manager” and “Task Memory Manager”) to meet their
requirements. Alg. 2 describes the main procedures of this
memory management mechanism.
– Procedure requireExecutionMemory() takes “reqExe” as the
input, which is the execution memory size required by “Task
Memory Manager”, and returns the actual allocated execution
memory. Specifically, execution memory requirements can be
one of the three scenarios shown in Fig. 5. In the figure,
we plot the Spark memory pool on an ”Executor”, where a
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Algorithm 2 Memory Requirement Algorithm.
Procedure acquireExecutionMemory(reqExe)

extraNeed=reqExe-freeExecutionMemory
if extraNeed>0 then

memoryBorrow=min(extraNeeded,storageMemoryPoolSize-
heapStorageMemory,freeStorageMemory)
decreaseStoragePoolsize(memoryBorrow)
increaseExecutionPoolsize(memoryBorrow)
acquired = executionMemoryPool.acquire(freeExecution+memoryBorrow)

else
acquired=executionMemoryPool.acquire(reqExe)

endif
return acquired

Procedure acquireStorageMemory(reqSto)
memoryToFree=max(0, reqSto−freeStorageMemory)
if memoryToFree>0 then

freeStorageMemory(memoryToFree)

endif
acquired = storageMemoryPool.acquire(reqSto)
if heapStorageMemory<usedStorageMemory then

heapStorageMemory=usedStorageMemory
endif
return acquired

solid line represents the potential boundary between execution
memory and storage memory, and a dashed line represents
the value of “heapStorageMemory” that indicates the least
reserved space for storage memory. Besides, we also mark
the used execution and storage memory space. In the first
scenario, the required execution memory is less than the
free execution memory, see Fig. 5-(a). Then, the procedure
allocates all needed memory to “Task Memory Manager”. The
second scenario is shown in Fig. 5-(b), where the required
execution memory exceeds the free execution memory but
not beyond the limit of “heapStorageMemory”. Procedure
requireExecutionMemory() still allocates all needed memory
to “Task Memory Manager” and meanwhile expands the
execution memory pool by moving down the boundary bar
(see the solid line in the bottom plot of Fig. 5-(b)). Finally,
if the required execution memory exceeds the boundary of
“heapStorageMemory”, then the procedure only allocates the
memory up to “heapStorageMemory” (see the dashed line
in the bottom plot of Fig. 5-(c)) and also moves down
the boundary bar to “heapStorageMemory”. Our algorithm
prevents memory over-allocation for task execution by limiting
the memory that can be allocated to execution memory. For
example, in both scenarios (b) and (c), the execution memory
pool occupies part of storage memory after allocating memory
to the execution memory pool. However, in scenario (c), we
use “heapStroageMemory” to avoid the execution memory
pool invading the storage memory pool. By this way, GC time
can be reduced as discussed in Sec. II.
– Procedure requireStorageMemory() receives the required
storage memory size (“reqSto”) from the “Block Manager”
module for allocating actual memory to cache RRDs. Simi-
larly, we have three possible conditions of storage memory
requirements, depicted in Fig. 6. If the required storage
memory is less than free storage memory as shown in Fig. 6 (a)
and (b), then all required memory will be allocated to “Block
Manager” (no matter beyond “heapStorageMemory” or not).
In contrast, if the required storage memory is more than the

free storage memory (see Fig. 6(c)), then only the memory
space up to the boundary bar will be allocated to “Block
Manager” and meanwhile RDD eviction will be triggered to
release some memory for new RDDs. In both scenarios 2 and
3, we further update the variable “heapStorageMemory” to be
equal to the actual storage memory pool size.
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It is noticeable that “Memory Management Algorithm” does
change the storage fraction under some scenarios, such as the
ones shown in Fig. 5(b) and (c). Thus, the storage fraction is
jointly determined by both “Memory Management Algorithm”
and “Auto Tuning Algorithm”.

IV. EVALUATION

A. Spark Implementation

In this section, we introduce the implementation of our
ATuMm in a real Spark cluster and investigate Spark perfor-
mance under ATuMm. We conduct our evaluation in a Spark
cluster with 1 driver and 4 workers that are homogeneous to
each other. The cluster is deployed on the Dell PowerEdge
T310 and hypervised by VMware Workstation 12.5.0. Each
node in the Spark cluster is assigned 1 CPU, 1GB memory,
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TABLE I
TESTBED CONFIGURATION

Component Specs
Host Server Dell PowerEdge T310

Host Processor Speed 2.93GHz
Host Memory Capacity 16GB DIMM DDR3

Host Memory Data Rate 1333 MHz
Host Storage Device Western Digital WD20EURS
Host Disk Bandwidth SATA 3.0Gbps

Host Hypervisor VMware Workstation 12.5.0
Processor Core Per Node 1 Core
Memory Size Per Node 1 GB

Disk Size Per Node 50 GB

and 50GB disk space. Table I summarizes the details of our
testbed configuration.

We implement our ATuMm as a new portable mem-
ory manager module, besides SMM and UMM, in Apache
Spark 2.2.0, which contains functions interacting with
other Spark modules. It’s noticeable that our new mem-
ory manager can also be integrated into Spark from the
version of 1.6.0 to 2.4.0. The source code is available
on GitHub (https://github.com/DanlinJia/spark core ATMM).
Specifically, we develop functions acquireStorageMemory()
and acquireExecutionMemory() to allocate storage and ex-
ecution memory to “Block Manager” and “Task Memory
Manager”. We also integrate a profile collector in the “Execu-
tor” module to collect task logs. Then, function barChange()
receives these task logs and calls functions increaseStor-
ageFraction() or decreaseStorageFraction() to adjust memory
partition. Furthermore, we integrate a memory usage analyzer
in ATuMm to collect the runtime memory usage information.
Users can replace the existing Spark memory manager to
ATuMm by simply setting a configurable parameter before
submitting a Spark application.

In our experiments, we set the accessible memory and the
initial storage fraction of ATuMm as same as those of UMM
(i.e., accessible memory is 60% of JVM heap, and storage
memory is initialized as 50% of accessible memory). The step
to increase or decrease storage fraction in each adjustment is
configured as 5% of accessible memory by default. And the
window size representing the number of previous tasks is set
as 20% of activated tasks by default. Users are able to pre-
configure these parameters in ATuMm before launching any
Spark applications.

B. Results

We evaluate and compare the performance of Spark ap-
plications under three memory managers (SMM, UMM, and
ATuMm) by conducting experiments with different applica-
tions. We choose PageRank and K-means as benchmarks
because these two applications are two ubiquitous techniques,
which are widely applied in machine learning and data mining
applications [5], [6]. Considering the duration of experiments,
we report results for a workload of 1GB input data for
applications.

Fig. 7 (a) and (b) illustrate the latency of PageRank and
K-means under different memory managers. We set various
storage fraction under SMM manually, and compare the la-
tency of SMM with that of UMM and ATuMm. In Fig. 7-(a),
we observe that the performance of UMM beats SMM with
some storage fractions (e.g., 40% to 60%). However, when
SMM sets the storage fraction to 80%, it reaches the best
performance, which achieves 27% shorter latency compared to
UMM. More importantly, the latency of our ATuMm is close
to the lowest among all, and our ATuMm beats UMM as well.
Moreover, as shown in Fig. 7-(b), our ATuMm can achieve
the best performance (i.e., the lowest latency), compared with
both UMM and SMM. We conclude that ATuMm outperforms
the other two existing memory managers with the same
computation resources allocated.

We also conduct a set of experiments to investigate the sen-
sitivity of input data size, where we compare the performance
of PageRank under three memory managers in the default
mode with different input data sizes, such as 1GB, 2GB, 3GB
and 7GB. As shown in Fig. 7-(c), ATuMm achieves the best
performance when the input data sizes are 1GB, 2GB, and
3GB. Compared to UMM, ATuMM improves the latency by
25%. We interpret this improvement by observing that ATuMm
leverages the GC time to repeatedly adjust the boundary
between storage and execution memory, which prevents the
Spark applications from a long GC duration as UMM intro-
duced. When input data grows up to 7GB, the overwhelming
workload takes full usage of execution memory to process
input data. Both UMM and ATuMm expand the execution
memory pool aggressively to satisfy the massive execution
memory requirements. As a result, UMM and ATuMm obtain
similar performance (e.g., 78 minutes for 7GB input data),
which is better than that of SMM.

C. Memory Usage and Garbage Collection Analysis

We further look closely at the execution details of three
Spark memory managers by plotting their memory usages
in Fig. 8, where PageRank is running with 3GB input data.
Fig. 8-(a)∼(c) present the storage memory usage across time
under the three memory managers, while Fig. 8-(d)∼(f) depict
the corresponding execution memory usage. In each plot, the
dashed line is the maximum memory size accessible for the
corresponding memory (such as storage or execution), and the
solid line is the actual usage of the memory pool.

From Fig. 8-(a)∼(c), we observe that the storage memory
utilization is similar for all three memory managers, which
increases up to the maximum allowed storage pool size as
time goes by. This is because RDDs are cached periodically
in PageRank. Whereas, the storage memory pool sizes are
different under three memory managers at different times. That
is, both UMM and ATuMm dynamically change the storage
memory pool sizes instead of the fixed one as SMM does.
As shown in Fig. 8-(a), the static storage memory pool starts
to evict RDDs when the utilization of the storage memory
pool is full. However, in Fig. 8-(b), UMM drops the size of
its storage memory pool to almost zero and then increase its
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Fig. 9. GC Analysis of SMM, UMM and ATuMm

storage pool when RDDs are cached. The storage memory
pool changes more dynamically under ATuMM, as shown in
Fig. 8-(c). ATuMM first drops the storage fraction gradually
as the execution memory pool expands, and then increases it
as RDDs are cached. It is noticeable that ATuMm not only
increases the storage memory pool based on storage memory
requirements to cache RDDs, but also adjusts the pool size
more rapidly than UMM to limit the execution memory pool
size.

We further show our analysis of the execution memory
usage under three memory managers in Fig. 8-(d)∼(f). SMM
fixes the execution memory pool size regardless of work-
load diversity, while UMM and ATuMm alter the execution
memory pool size based on demands. Fig. 8-(e) shows that
the execution memory pool of UMM expands aggressively
and occupies almost all accessible memory when the first
execution requirement comes. Contrarily, in Fig. 8-(f), ATuMm
increases gradually across time until it satisfies all execution

requirements. This is because UMM expands the execution
memory pool only based on execution memory requirements,
while ATuMm further considers the impact of GC on Spark
performance to control the expansion of the execution memory
pool. In addition, as the execution memory usage drops,
UMM still gives the execution memory pool as much memory
space as possible (i.e., all memory except that for caching
RDDs). Conversely, ATuMm decreases the execution memory
pool size more rapidly to limit the memory allocated to the
execution memory pool. By this way, ATuMm can effectively
prevent Spark applications from long GC durations introduced
by overloaded execution memory. We can observe that the
execution memory pool size converges to around 200MB,
which guarantees enough memory for task execution and
further offers a relatively low GC time.

We next present our observation regarding GC time. To
show our observations, we use the PageRank application with
3GB input data as representative and compare GC time using
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three memory managers. Fig. 9 shows the duration of garbage
collection during the runtime of the application, where each
spike represents an occurrence of a full GC (i.e., JVM stops all
tasks and scans the whole heap to remove unreferred objects)
that majorly contributes to GC time [7]. Fig. 9-(a) shows that
the maximum full GC time of SMM is around 40 seconds.
While, under UMM, a full GC can take more than 70 seconds,
see Fig. 9-(b). More importantly, we can observe that the full
GCs under ATuMm are all below 30 seconds in Fig. 9-(c),
which is smaller than both SMM and UMM. Besides, We
observe that fewer spikes occurred under ATuMm than under
UMM and SMM, which means that the frequency of full
GCs under ATuMm is also lower than SMM and UMM. We
also record the total GC time of SMM, UMM, and ATuMm,
which is 14min, 20min and 8.4min, respectively. Thus, we
can conclude that ATuMm is able to significantly reduce
the maximum and the total time of GCs when compared to
SMM and UMM and thus accelerates the execution of Spark
applications with minimum makespan (i.e., total execution
length).

V. RELATED WORK

Deducting latency of Spark applications has been a con-
cerned topic since Spark was proposed. Several works have
been published, which focus on improving spark performance
by optimizing cache algorithm [8], [9] and task schedul-
ing [10] However, there does not exist any work on the new
Spark memory manager design. However, these works help
us obtain a deep understanding of how memory requirement
affects Spark performance, which in turn provides the perspec-
tive to design our memory manager.

MEMTUNE [11] presents an algorithm that adjusts memory
allocation based on the characterizations of tasks (i.e., storage-
sensitive or execution-sensitive). This work considers the im-
pact of JVM on Spark performance to decide how to balance
memory allocation for obtaining a good performance. But,
this work only focuses on analyzing the sensitivity of tasks
and takes different actions, such as reserving more memory
for storage requirement if tasks are storage-sensitive. Another
work Sparkle [12] designs and implements new Spark modules
to optimize Spark performance on a scale-up machine. It builds
a shared memory pool for each executor, which saves the
shuffle time between nodes of the Spark cluster and achieves
a performance improvement. This work leverages the shared
memory pool that allows each executor in the Spark cluster
to be aware of the location of each RDD partition, which
decreases the overhead of fetching data among each other.

Dynamic JVM heap management [13] enables multiple
JVMs to run on the host simultaneously with reduced con-
tention and analyzes the impact of JVM configuration and
GC on Spark performance. We leverage the knowledge and
experiments in these works to help design our algorithm. Also,
the Spark open source community provides suggestions on
Spark memory tuning and GC tuning for users. However, these
tuning suggestions need users to explore the characteristics of

applications and configure workloads based on their Spark run-
ning environment. We get perspectives from these suggestions
and propose the new Spark memory manager to tune memory
allocation automatically.

VI. CONCLUSION

Apache Spark speeds up large-scale data processing by
leveraging in-memory computation. However, the existing
Spark memory manager (UMM) incurs long garbage collec-
tions which degrades Spark performance significantly. In this
work, we design a new Spark memory manager (ATuMm)
that leverages the feedback of GC time and memory demands
to partition the memory pool dynamically. We implement
ATuMm in Spark 2.2.0 and construct experiments in a real
Spark cluster. We find that our ATuMm obtains around 25%
improvement of Spark performance, compared with existing
memory managers. We also find that one of the primary
sources of performance improvement lies in the reduction in
GC time.

Currently, our auto tuning algorithm only tracks one of
the local minimum storage fractions that can provide better
performances than the other two existing memory managers. In
the future, we plan to propose new algorithms to find optimal
performance globally. Besides, we plan to scale up the Spark
cluster and investigate ATuMm performance for more diverse
applications.
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