
CODS: Cloud-assisted Object Detection for
Streaming Videos on Edge Devices

Tengpeng Li∗, Xiaoqian Zhang∗, Nam Son Nguyen†, and Bo Sheng∗
∗University of Massachusetts Boston, Email:{tenpeng.li001,xiaoqian.zhang001,bo.sheng}@umb.edu

†University of Wisconsin Stout, Email: nguyens@uwstout.edu

Abstract—The advance of hardware has allowed edge de-
vices to carry out varying applications, including computation-
intensive machine learning tasks. This paper targets a real-
time application of detecting objects on streaming videos with
a tightened requirement on processing overhead. While the edge
device still lacks the computation power to apply the object
detection algorithm on every video frame, this paper integrates
cloud-side servers in the solution as much prior work has
attempted. However, our design is different from the conventional
off-loading solutions that delegate the computation tasks to
the cloud servers. We present a solution named CODS where
the computation tasks are still conducted by the edge devices
while the cloud server provides useful guidelines for choosing
appropriate analysis algorithms. We implement our solution
with the Jetson Nano device and evaluate it with videos from
representative datasets. The results show that CODS is quite
effective and superior to baseline alternatives.

I. INTRODUCTION

Edge computing has become a prevalent framework in many
applications. In this paper, we particularly consider object
detection on streaming video frames which is a representative
machine learning algorithm. We consider a system setting
where a surveillance camera is connected to an edge device
and a monitor. The captured video frames will be processed
by the edge device to detect the objects in the frames.
The recognized objects marked by rectangle regions will be
rendered with the video frames together to display on the
monitor. We consider real-time object detections that will help
people identify and track the objects on the screen, especially
suspicious or important objects.

In this paper, we present a solution for edge devices to
support real-time object detection on streaming video frames.
Our solution is also based on assistance from cloud-side
servers. We name it CODS (Cloud-assisted Object Detection
for Streaming Videos on Edge Devices). We consider that there
are multiple options of algorithms that can be applied on the
edge device and each of them yields varying performance in
terms of processing delay and detection accuracy. In CODS,
the cloud server will provide a guideline for the edge device
to choose the appropriate algorithm at run time by analyzing
the video frames in the past time window. In this way, the
network delay is not a performance issue as the edge device
is still processing the current frames, and the results of the past
frames from the cloud server are not expected to be displayed.

In particular, this paper considers a simplified model where
the edge device has two options for processing the video
frames. One is to apply an object detection algorithm in the
machine learning library, and the other is the tracking algo-
rithm in computer vision. Generally, the tracking algorithm
yields a small overhead, but the accuracy degrades when it
is consecutively repeated. In CODS, the cloud server helps
the edge device to determine the appropriate strategy. At
run time, deriving the optimal strategy and the corresponding
parameters is challenging for the edge device as it conducts
the computation tasks at the same time. Our design goal is
to leverage the computing resources on the server to provide
useful guidance that is not strictly delay-sensitive.

II. RELATED WORK

Object detection has made a great progress in recent work
However, the heavy computation restrains their deployment
on resource-inadequate devices, like mobile phones and reg-
ular IoT devices. Specifically tuned models like SSD [1],
MobileNet [2], YOLO [3] are designed to consume fewer
resources, but their accuracy is also harmed collaterally. In [4],
the author shows that more accurate models require more time
on inference in general.

To take the advantage of state-of-the-art machine learning
models in real-time applications running on resource-limited
devices, researchers offload the heavy computation process to
the cloud server. The approaches can be dichotomized into
two categories: (1) Decreasing data packet size. In [5], the
authors decrease the data size by applying different encoding
algorithms on different regions of the image. Grassi et al. [6]
conducts image recognition locally and only uploads processed
data for further processing on the cloud. Wang et al. [7]
take the advantage of video encoders. Hu et al. [8] reduce
the time cost by decreasing video resolution in real-time. (2)
Selectively sending data. Satyanarayanan et al. [9], send every
frame to the cloud server, the delay coming from the network
and server processing makes the detection result hard to be
updated in real-time. In contrast, recent systems send frames
selectively to get a better user experience. The solutions in [10]
and [5] only send the frame which is significantly different
from the previous frame and locally track the recognized
object. Other work in [7] and [11] introduces a content-
aware frame selecting algorithm to filter the image with prior
knowledge about the task.

978-1-6654-4331-9/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l P
er

fo
rm

an
ce

, C
om

pu
tin

g,
 a

nd
 C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
(I

PC
C

C
) |

 9
78

-1
-6

65
4-

43
31

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

C
C

C
51

48
3.

20
21

.9
67

93
95

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

2

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this paper, we target a real-time object detection appli-
cation that analyzes streaming videos. The real-time video
frames are captured, analyzed by the edge device, and dis-
played with the objects recognized and marked on a screen.

A. Actions on Edge Devices

In our system model, we assume that the edge device can
conduct two types of analysis on each video frame, object
detection algorithm and tracking algorithm. Object detection
refers to detecting instances of objects from a particular class
in an image, such as finding dogs, humans in a given image.
It requires a training phase to build models, and there have
been object detection algorithms and models suitable for edge
devices. The tracking algorithm, is a computer vision method
that requires a completed object detection beforehand. After
the detected objects are indicated by regions on a frame, the
algorithm will process the successive frames to “track” the
movement of those regions by comparing the image features.
The result of either tracking or object detection would be
rectangles surrounding the objects being detected or tracked.
The edge devices will display the captured frame with those
rectangles drawn on it. We assume the edge device can conduct
either one of these two image analyses, but not both in parallel
because of the computation limitation.

B. Representation of Analysis Result and Accuracy

Generally, tracking is much faster than object detection.
To simplify the problem setting, we assume that the input
video frames are captured at a constant rate where the interval
between two consecutive frames is sufficient for tracking
analysis. Therefore, if the edge device conducts a tracking
analysis on the current frame, the results will be displayed on
the next frame. During an object detection analysis, however,
the edge device will continue to display the frames with the
rectangles derived when the analysis starts (i.e., no update).
We use Nod to represent the overhead of an object detection
process in terms of the number of frames. The following Fig. 1
illustrates an example where Nod = 4 (an object detection
process starts at frame 6 and ends at frame 10).

Tracking TrackingObject detection

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5

Frame 6Frame 7Frame 8Frame 9Frame 10

Object detection

No updateNo updateNo update

Tracking Tracking

Tracking

Fig. 1: An example of video processing at the edge device

Intuitively, object detection would yield the most accurate
recognition results, and the following tracking processes could
lead to errors. We define the following two types of results (the
rectangles identifying objects) and their associated parameters:
Tracking result: We use this general term to represent the
results obtained by object detection analysis or a tracking

analysis following an object detection. The accuracy usually
depends on the number of tracking processes after the last
object detection. We call it the tracking distance. The result
directly from an object detection analysis has a tracking
distance of 0, then the distance value increments for the
following continuous tracking analyses.
Stale result: This is the result the edge device uses during an
object detection. It is derived from a tracking analysis but has
been stale for a while. Two parameters are needed to describe
its accuracy. First, we need the tracking distance value for
the result because it is a tracking result. Second, we need to
consider how long the result has not been updated. We call
it the stale distance indicating the number of frames between
the last tracking result and the current frame.

Therefore, when displaying a result Rt on a frame ft, we use
two parameters to describe its properties Rt = {TDt, SDt},
where TDt indicates its tracking distance, and SDt is the
stale distance. Referring to Fig. 1, for frame 5 and frame
8, the displayed results are R5 = {4, 0} and R8 = {5, 2}
respectively. With the input frame rate and the parameter Nod,
the overheads of the tracking and object detection algorithms
have been considered in our problem setting. Another critical
performance metric is the detection accuracy. Let A(Rt)
denote the accuracy of Rt. Generally, A(Rt) is a fractional
value between 0 and 1, and the higher value indicates more
accurate results.

IV. DESIGN OF CODS

In this section, we present our solution CODS. Essentially,
there are two processes running on the edge device, analyzing
the captured frames to identify objects, and displaying the
results overlaid with the frames.

The displaying process is straightforward as introduced in
Section III. The edge device will merge two layers: one is
the current frame captured by the camera and the other is the
recognized objects represented by a set of rectangles, and show
them on a screen (illustrated in Fig. 2). If the edge device has
just derived a result from tracking analysis on the previous
frame, it will display the result with the current frame. If the
edge device is conducting the object detection analysis, then
the current frame will be displayed with the most recent result
obtained before the ongoing object detection.

Detection result Current frame Display

Fig. 2: Display on edge devices: Merge of a recognition result
and a video frame

A. Statistics from Cloud Servers

In CODS, cloud servers play an important role of providing
accuracy statistics to help the edge device make decisions.
Specifically, the edge device sends the captured frames to
a cloud server which applies the same object detection and
tracking analysis as conducted by the edge device, but at a

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

3

much faster rate. The object detection algorithm is applied on
every frame, and the result is considered as ground truth. Based
on these ground truths, the cloud server further conducts the
tracking algorithm and records its accuracy.

The following two pieces of information are derived and
supplied to the edge device to help make the decision.
(1) Accuracy Matrix. The accuracy matrix is the most
important statistical information from the cloud server. It is a
two-dimensional matrix, one dimension for tracking distance
and the other dimension for stale distance, and each element
indicates the quantitative accuracy value. When the edge
device displays the result Rt = {TDt, SDt} on a frame ft,
we use A(TDt, SDt) to represent the accuracy of the marked
objects, where TDt and SDt indicate the tracking distance and
stale distance respectively. Intuitively, A(x, y) is a decreasing
function on x and y. With this definition, the result from
an object detection analysis has an accuracy of A(0, 0), and
the accuracy value of the first tracking after it is A(1, 0). In
particular, we consider an upper bound of the tracking times
Tmax, and then build a TmaxxNod accuracy matrix.

Once the cloud server receives a new frame from the
edge device, it will calculate an accuracy matrix A′ based
on this new frame and the historical frames. For example,
when the server receives the t-th frame ft, it can apply object
detection on the frame and assign the resulting accuracy value
to A′(0, 0). It can also apply object detection on frame ft−1
that was received earlier and then use the result to conduct
the tracking algorithm on ft. The resulting accuracy will be
assigned to A′(1, 0). Similarly, the server can use different
tracking distance and stale distance to test the accuracy of the
analysis involving this new frame ft, and derive a TmaxxNod

matrix A′. Finally, the server updates the main accuracy matrix
A by merging the new information from A′. In CODS, we
use exponentially weighted moving average (EWMA) for the
update as follows,

A(i, j) = (1− w) ·A(i, j) + w ·A′(i, j), (1)

where w ∈ [0, 1] represents the weight of the new information.
(2) Optimal Tracking Times. In CODS, the other important
parameter the cloud server calculates is called optimal tracking
times (OTT). OTT is supposed to be a guideline for the edge
device to estimate how many times of tracking analysis should
be conducted between two consecutive object detections.

OTT value is tightly related to and derived from the ac-
curacy matrix A(x, y). In fact, A(x, y) varies for different
objects, so is the OTT. The OTT value sent by the server
is the average value of all the recognized objects. Here we
first introduce the OTT’s definition for a particular object. Let
OTTO denote the optimal tracking number between two object
detection for object O. OTTO is derived as

OTTO = argmax
x

∑
i∈[0,x]A(i, 0) +

∑
j∈[1,Nod]

A(x, j)

x+Nod
.

(2)
Essentially, we consider a cycle of object detection and the
following tracking analysis. We consider the end of an object

detection as the starting point of the cycle which ends when
the edge device finishes the next object detection, as illustrated
in Fig. 3. Assume tracking is applied x times, then the sum
of the accuracy of those x frames is

∑
i∈[0,x]A(i, 0) because

the tracking distance is incremental and the stale distance is
always 0. When we conduct the next object detection, stale
results will be used as shown in Fig. 3. There will be Nod

frames using the same stale results, and their accuracy sum is∑
j∈[1,Nod]

A(x, j), where only the stale distance is changing
from 1 to Nod. Therefore, there are totally x+Nod frames in
the cycle, and we can represent the average accuracy as the
function in Eq. 2. The cloud server can enumerate all possible
values for x, and derive the optimal one as OTTO.

Tracking
Object detection Object detection

Stale results

A cycle of object detection and tracking

Fig. 3: Optimal Tracking Times

After calculating OTTO for every recognized object O at
the moment, the cloud server will send the average value as
OTT to the edge device.

B. Optimal Processing Strategy for Edge Devices

In CODS, the major component is the algorithm running
on the edge devices that determines the next image analysis
approach. Considering the type of the analysis that has just
been finished and the possible analysis for the next step, there
are the following four possible cases:
Case 1: The edge device has just finished an object detection
analysis and will continue to apply object detection.
Case 2: The edge device has just finished an object detection
analysis and will continue to apply tracking.
Case 3: The edge device has just finished a tracking analysis
and will continue to apply object detection.
Case 4: The edge device has just finished a tracking analysis
and will continue to apply tracking.

The first two cases happen when the edge device has just
finished an object detection analysis. In case 1, there is no
tracking analysis. A cycle is represented by an object detection
process during which the Nod frames will use the stale result.
Therefore, the average accuracy is

AA1 =

∑
j∈[0,Nod−1]A(0, j)

Nod
. (3)

In case 2, an object detection is followed by a sequence
of tracking analysis. To estimate the average accuracy, we
use OTT as the expected number of tracking operations.
Therefore, a cycle in this case includes OTT + Nod frames,
and their average accuracy is

AA2 =

∑
i∈[0,OTT]A(i, 0) +

∑
j∈[1,Nod]

A(OTT, j)

OTT +Nod
. (4)

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

4

We consider that the case yielding a higher average accuracy
value is the better choice.

Similarly, case 3 and case 4 are the options when the
edge device has just finished a tracking analysis. We also
calculate the average accuracy for a comparison. However, in
stead of using a periodical cycle, we consider the phase from
the current frame until the end of the next object detection
analysis. In case 3, this phase does not include any tracking,
and the average accuracy is simply calculated as

AA3 =

∑
j∈[0,Nod−1]A(TD, j)

Nod
, (5)

where TD is the tracking distance of the current result. In
case 4, the estimation is also based on the parameter OTT .
The tracking is expected to continue for max{OTT −TD, 1}
times. And then an object detection will be conducted. Let
RT = max{OTT − TD, 1} indicate the remaining tracking
times. The average accuracy of our target phase will be

AA4 =

∑
i∈[1,RT]A(TD + i, 0) +

∑
j∈[1,Nod]

A(OTT, j)

RT +Nod
).

(6)
The following Algorithm 1 illustrates the main steps of the

edge device. Depending on the previous action PreA, the edge
device will calculate and compare either AA1 and AA2 or
AA3 and AA4. The option yielding a higher accuracy will be
returned as the choice for analyzing the next frame.

Algorithm 1: Determine the next analysis type
Input: Accuracy matrix A(x, y), the optimal tracking

times OTT , and the type of the previous
analysis PreA

Output: The next analysis type
1 if PreA is object detection then
2 Calculate AA1 (Eq. 3) and AA2 (Eq. 4)
3 if AA1 > AA2 then
4 return object detection
5 else
6 return tracking
7 if PreA is tracking then
8 Calculate AA3 (Eq. 5) and AA4 (Eq. 6)
9 if AA3 > AA4 then

10 return object detection
11 else
12 return tracking

In our implementation, when comparing two average ac-
curacy (AA) values, the algorithm consider a weight value
for each of them to tolerate the estimation errors and biases.
The server also repeats the same algorithm and observes the
correctness of the decision based on the ground truths. Then,
the server will adaptively adjust the weight values and notify
the edge device. We omit the details of this part to simplify
the description in Algorithm 1. In addition, we only consider
two options for the edge device in this paper. Our approach in
Algorithm 1, however, can be easily extended to support more

options, e.g., using different tracking algorithms and using
different models for object detection.

V. PERFORMANCE EVALUATION

In this section, we evaluate and analyze the performance of
CODS. The experiment results soundly prove the effectiveness
of our algorithms.

A. Settings and Workload
Our system is evaluated with three videos from the well-

known MOT2015 dataset [12], which contains video se-
quences in various environments filmed with both static and
moving cameras. The characteristics of these three videos are
listed in Table I. We calculate the average number of objects in
each frame, the average value of the object width and height in
pixels, and the average value of the moving distance between
the positions of the same object in consecutive frames.

Property Video 1 Video 2 Video 3
Number of Frames 795 837 71

Frame Width 768 640 640
Frame Height 576 480 480

Avg # of Objects 5.85 8.07 5.06
Avg Object Width 29.30 88.76 76.99
Avg Object Height 83.32 246.95 198.75

Movement 4.18 6.98 4.66

TABLE I: Characteristics of the test videos: the units are pixels
except “Number of Frames”

In addition, we have implemented our solution and tested it
on Jetson Nano to measure the time cost of each component. In
our experiments, the choice of tracking algorithm, by default,
is Channel and Spatial Reliability Tracking (CSRT) [13] im-
plemented in OpenCV [14]. And the object detection algorithm
is based on model MobileNetV2 [15]. According to our ex-
periment results, object detection takes ∼ 300ms to complete
one inference on average and a tracking with CSRT needs
∼ 100ms to process one frame. Considering the measured
processing overheads of object detection and tracking, we
assume 3 frames are needed for each object detection, tracking
is able to complete in real-time, i.e., Nod = 3.

During the object detection process, the edge device will not
analyze the upcoming frames. The stale results obtained before
the inference is triggered will be used as the detection results
for those frames. In all the tests, we take the first 50 frames to
train our system and start object detection and tracking after
that. The weight parameter w in Eq. 1 is set to 0.1.

B. Accuracy Metric
In this paper, accuracy is a critical performance metric. In

our experiments, we use average precision (AP) to measure
the accuracy performance.

To calculate the AP, we need to get the precision and recall
rate first, which can be calculated as follows

Precision =
TP

TP + FP
=

TP

all detections
, (7)

Recall =
TP

TP + FN
=

TP

all ground truths
. (8)

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

5

Then the AP is obtained as

AP =
∑
n=0

(rn+1 − rn) ρinterp (rn+1) , (9)

with ρinterp (rn+1) = maxr̃:r̃≥rn+1
ρ(r̃), where ρ(r̃) is the

measured precision at recall r̃.

C. Evaluation of Accuracy

To evaluate CODS’s performance, we compare CODS with
another two alternative approaches: tracking a fixed number of
frames and continuous object detection without tracking.

In the first approach, each object detection is followed
by a fixed number of tracking. In the second approach, the
system keeps conducting object detection on the video. After
obtaining the average precision on each frame, we calculate
their mean value as mAP and draw the final result in Fig. 4.

Fig. 4: Comparsion of accuracy (mAPs)

In the plot, the y-axis stands for mAP values and the x-
axis marks the configuration used to get that data. Track num
represents the alternative of using a fixed number of tracking,
where num stands for how many frames are tracked after
each object detection. The No track category keeps running
object detection throughout the whole experiment without any
tracking. Apparently, CODS obtains the highest mAP value
overall as 0.776 while the No track category gets the lowest
mAP as 0.669. As CODS adaptively adjust the number of
tracking, it is also superior to the approaches with a fixed
number of tracking.

Fig. 5: Cumulative density function (CDF) of accuracy (APs)

To get more insights, we draw the Cumulative Density Func-
tion (CDF) of average precisions using different configurations
in Fig. 5. The x value in the figure stands for the average
precision, the y value stands for the cumulative probability.
The figure further confirms that continuous object detection
performs the worst among all, as half of the APs in No track
category are less than 0.8. As a comparison, more than 40%
of APs in CODS are 1.0 in the experiment.

The performance of tracking for a fixed number of frames,
though seems to be close to CODS overall in Fig. 4, their per-
formance deteriorates when the experiment video does not fit
their patterns. We draw the performance of each configuration
for each video respectively, the result is displayed in Fig. 6.
In video 1, the mAP of Track 5 is as high as 0.76 but the
accuracy decreases to 0.68 in video 2 when the video pattern
changes. As a comparison, CODS achieves the best result in
both video 1 and video 2. Video 3 only contains 71 frames,
though CODS does not have enough time to adjust its strategy
to the optimal, it still achieves an accuracy as high as 0.87.

D. Sensitivity Analysis

In this subsection, we further explore how some important
system parameters influence the CODS’s performance.

Object Detection Lag. The object detection lag is an
important factor being considered in the system design. To
comprehensively examine our system, we evaluate CODS
using different detection lags. The result is shown in Fig. 7.

The x value stands for the detection lag, which is calculated
as the number of frames required to complete one object de-
tection, and the y value stands for the mean average precision.
Even though the performance of all configurations is getting
worse as the detection lag increases, CODS maintains the
best performance. One noticeable discovery is that CODS is
capable of choosing the optimal solution even in the case
that the system can finish real-time object detection in the
ideal case, i.e., the detection lag is 1. This uncovers the great
potential of our algorithms in various scenarios.

Tracking Algorithm. The tracking algorithm is crucial to
our system, and there exist different options. To evaluate the
importance of the tracking algorithm in our system, we test
CODS with the other two tracking algorithms in the OpenCV
library, Kernelized Correlation Filters (KCF) [16] and Mini-
mum Output Sum of Squared Error (MOSSE) [17]. KCF and
MOSSE trackers take less time and resources to run. But they
suffer from low accuracy. According to our experiment, both
of them can be updated with an FPS larger than 60. To take
the advantage of these two tracking algorithms, we assume
that they can be applied on every frame while CSRT has to
be paused during the object detection.

In Fig. 8, we use the performance of the No track as the
baseline and show the accuracy improvement with different
trackers. The bars with different colors represent the different
tracking algorithms and the axis x marks the settings. The
shortcomings of configurations that track for a fixed number
of frames are exposed when the tracking algorithms are not
effective. According to the experiment, Track 3 and Track 5

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

6

Fig. 6: Accuracy (mAPs) in different videos

Fig. 7: mAP for different object detection lags

obtain an even worse accuracy when MOSSE algorithm is
applied. As a comparison, CODS can adaptively adjust its
strategy and always achieve optimal performance.

Fig. 8: mAP for different trackers

VI. CONCLUSION

In this paper, we present a cloud-assisted framework for
edge devices to recognize the objects in streaming videos
in real-time. In our system, we consider there exist different
options for edge device to choose for analyzing the frame each
with different detection accuracy and processing overhead. The
cloud server in our system provides a guideline to help the
edge device make the decision. We have implemented our
system on Jetson Nano, and comprehensively evaluated the
performance with a well-accepted video workload. The exper-
imental results demonstrate the benefit of adaptive adjustment
of the analysis algorithm and show significant performance
improvement comparing to the alternative baselines.

REFERENCES

[1] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.
Berg, “Ssd: Single shot multibox detector,” in European conference on
computer vision.

[2] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[3] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” in Proceedings of the IEEE
conference on computer vision and pattern recognition.

[4] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korattikara, A. Fathi, I. Fischer,
Z. Wojna, Y. Song, S. Guadarrama et al., “Speed/accuracy trade-offs
for modern convolutional object detectors,” in Proceedings of the IEEE
conference on computer vision and pattern recognition.

[5] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detection
for mobile augmented reality,” in MobiCom. ACM, 2019.

[6] G. Grassi, K. Jamieson, P. Bahl, and G. Pau, “Parkmaster: An in-
vehicle, edge-based video analytics service for detecting open parking
spaces in urban environments,” in Proceedings of the Second ACM/IEEE
Symposium on Edge Computing.

[7] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient live video analytics for
drones via edge computing,” in 2018 IEEE/ACM Symposium on Edge
Computing (SEC).

[8] J. Hu, A. Shearer, S. Rajagopalan, and R. LiKamWa, “Banner: An
image sensor reconfiguration framework for seamless resolution-based
tradeoffs,” in Proceedings of the 17th Annual International Conference
on Mobile Systems, Applications, and Services.

[9] M. Satyanarayanan, V. Bahl, R. Caceres, and N. Davies, “The case for
vm-based cloudlets in mobile computing,” IEEE pervasive Computing,
2009.

[10] T. Y.-H. Chen, L. Ravindranath, S. Deng, P. Bahl, and H. Balakrishnan,
“Glimpse: Continuous, real-time object recognition on mobile devices,”
in Proceedings of the 13th ACM Conference on Embedded Networked
Sensor Systems.

[11] X. Wang, A. Chowdhery, and M. Chiang, “Skyeyes: adaptive video
streaming from uavs,” in Proceedings of the 3rd Workshop on Hot Topics
in Wireless.

[12] L. Leal-Taixé, A. Milan, I. Reid, S. Roth, and K. Schindler,
“MOTChallenge 2015: Towards a benchmark for multi-target tracking,”
arXiv:1504.01942 [cs]. [Online]. Available: http://arxiv.org/abs/1504.
01942

[13] A. Lukezic, T. Vojir, L. Cehovin Zajc, J. Matas, and M. Kristan,
“Discriminative correlation filter with channel and spatial reliability,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition.

[14] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[15] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition.

[16] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-speed track-
ing with kernelized correlation filters,” IEEE transactions on pattern
analysis and machine intelligence.

[17] D. S. Bolme, J. R. Beveridge, B. A. Draper, and Y. M. Lui, “Visual object
tracking using adaptive correlation filters,” in 2010 IEEE computer
society conference on computer vision and pattern recognition.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:22:27 UTC from IEEE Xplore. Restrictions apply.

