
SNIS: Storage-Network Iterative Simulation for
Disaggregated Storage Systems

Danlin Jia∗, Tengpeng Li†, Xiaoqian Zhang†, Li Wang∗, Mahsa Bayati‡, Ron Lee‡, Bo Sheng† and Ningfang Mi∗
∗Department of Electrical and Computer Engineering, Northeastern University, Boston, USA
†Department of Computer Science, University of Massachusetts Boston, Boston, USA

‡Samsung Semiconductor Inc., San Jose, CA, USA

Abstract—In recent years, designs and optimizations on disag-
gregated storage systems supported by cutting-edge storage and
network techniques emerge dramatically. However, conducting
experiments in a disaggregated architecture is often expensive. A
comprehensive modeling system of disaggregated storage systems
is indispensable for researchers to construct fast and reliable
experiments. Modeling and evaluating the performance of disag-
gregated storage systems is a challenge for the following reasons.
First, the performance of a disaggregated storage system depends
on network protocols and storage solutions jointly. Second, the
available trace datasets for generating the workload may not
suffice the need for the simulation, as they are collected without
considering the integration of network delay and storage process-
ing time. This work proposes a storage-network iterative simu-
lation (SNIS) for disaggregated storage systems by considering
the issues above. Our simulation methodology integrates storage
and network simulations to model the end-to-end performance
of disaggregated storage systems and conducts multiple rounds
of simulations to update arrival times of read/write requests. The
evaluation results show that SNIS can converge to a relatively
stable state after a certain number of iterations.

I. INTRODUCTION

Efficient infrastructure is critically essential for large-scale
enterprise storage systems (i.e., hyperscaler [1] and cloud
storage [2]) to provide a high quality of service. One promising
direction of solutions is to develop a disaggregated storage
system where storage drives are physically apart from compute
nodes. In such a system, compute and storage resources can be
scaled independently for different needs, and resource manage-
ment becomes more flexible. With other technologies such as
software-defined storage and hyper-converged infrastructure,
the disaggregation architecture represents a form of scale-
out storage solution. All-flash arrays have emerged in data
centers recently, yielding superior performance to traditional
storage systems. Consequently, storage network protocols have
also drawn much attention in the industry. The prevalent
storage technique, Non-Volatile Memory Express (NVMe), has
spawned its network protocol standard NVMe-oF which can be
implemented on multiple underlying network protocols such as
Ethernet, Fibre Channel, RoCE [3], InfiniBand [4] or TCP/IP.
With all these advances, disaggregated storage infrastructure
is becoming an important research field for both academia and
industry.

This work was partially supported by the National Science Foundation
Career Award CNS-1452751, the National Science Foundation Awards CNS-
2008072, and the Samsung Semiconductor Inc. Research Grant.

Fig. 1. Architecture of a disaggregated storage system.

As a large-scale system, conducting experiments in a dis-
aggregated architecture is often expensive, and simulation is
a well-accepted alternative. While simulators for both storage
and network systems have been well developed, there is no in-
tegrated simulation environment that can holistically evaluate
our targeted disaggregated storage systems. The lack of a com-
prehensive simulator connecting storage and network subsys-
tems cannot be compensated by individually running storage
and network simulation. For evaluation of a storage system,
the most primary performance metric is I/O response time.
In the disaggregated setting, the I/O response time consists
of two overheads: storage overhead and network overhead. It
is challenging to measure these two overheads and aggregate
them for each request by simulating storage and network
separately. The correlation and dependence between storage
and network simulation hinder a straightforward integration
for evaluating disaggregated storage systems. In addition, the
available trace datasets for generating the workload may not
suffice the need for the simulation. The legacy storage system
traces are often collected at a central point with the timestamp
of the request arrival. The network overhead is not considered,
and some other networking factors usually are not detailed.

In this paper, we attempt to examine an iterative storage-
network simulation approach named as SNIS to evaluate dis-
aggregated storage systems. We integrate the existing storage
and network simulators (i.e., an NS3 simulator for RDMA
(NS3-RDMA [5]) and an MQSim [6] simulator for SSD)
and conduct an iterative multi-round simulation process. We
construct extensive experiments on traces with different char-
acteristics and observe that our simulation method converges
for all types of workloads. Our results show that for various
workloads, SNIS leads to a relatively stable state after a
certain number of iterations. In the remainder of this paper, we
introduce the background and motivation in Sec. II. In Sec. III

978-1-6654-4331-9/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l P
er

fo
rm

an
ce

, C
om

pu
tin

g,
 a

nd
 C

om
m

un
ic

at
io

ns
 C

on
fe

re
nc

e
(I

PC
C

C
) |

 9
78

-1
-6

65
4-

43
31

-9
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
IP

C
C

C
51

48
3.

20
21

.9
67

93
97

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

and Sec. IV, we present SNIS and the evaluation results. The
conclusion and future work is shown in Sec. V.

II. BACKGROUND AND MOTIVATION

In a disaggregated storage system, the data storage is
physically separated from the data consumer/generator. The
data consumer/generator is denominated as a request initiator
since they need to initiate a request to control the data. In
a read request, the data is extracted from the storage and
then sent to the initiator through the network. In reverse,
the write request sends the data from the initiator to the
storage and then writes the data to the disk in the storage.
The completion time of both types of requests consists of
two main components: storage processing delay and network
delay. Both the storage processing delay and network delay
are required to be scrutinized to improve the performance of
a disaggregated storage system.

[Limitation of Existing Workloads:] Existing workload
traces are collected in a proxy server [7] or a capture server
using port mirroring [8], which only records the approximate
arrival time to the storage system. In a disaggregated system,
completing a request consists of storage processing delay and
network delay. A read request should first finish its storage
processing and then transfer the data through the network. In
contrast, a write request needs to transfer the data through
the network and then save the data in the storage. Therefore,
the existing workload traces lack both the actual read arrival
time to the network and the actual write arrival time to the
storage. One naive approach is to estimate these arrival times
by adding a constant delay for storage processing and network
transfer. However, the interference between reads and writes
and the randomness introduced by network congestion control
and storage processing make it challenging to determine a
correct estimation of such delay time.

[Performance Interference:] We conduct simulation ex-
periments with a synthetic trace to study the performance
inference between read and write requests. We first split the
trace into two sequences with only read requests or write
requests and then submit each of these sequences (i.e., read-
only or write-only) to MQSim. The obtained results (referred
to as “standalone”) are used as the baseline for performance
comparison. We further execute the whole trace (with both
reads and writes) in MQSim that is configured with the same
parameters.

Specifically, we generate synthetic traces across different
inter-arrival times and request sizes and calculate the slow
down (i.e., the latency normalized by the standalone one)
caused by the interference of the other type of requests, as
shown in Fig. 2. In Fig. 2-(a), we fix the mean request size
to 4KB and vary the mean inter-arrival time. A shorter inter-
arrival time indicates a heavier load to the system. As the
mean inter-arrival time decreases to 10µs, we can observe that
both read and write requests suffer latency degradation from
the other. As the inter-arrival time further decreases to 1µs
(i.e., the busiest one), the slowdown of read requests boosts
more dramatically than that of write requests, indicating that

(a) Interference on intensity.

(b) Interference on volume.

Fig. 2. Latency interference between read and write requests.
write requests have more interference with read requests than
vice versa. In Fig. 2-(b), we fix the mean of inter-arrival time
to 100µs, and change the mean request size from 512B to
64KB. We obtain similar observations, e.g., the performance
interference becomes more visible when the workload gets
more intensive.

[Randomize Request Order:] Priority Flow Control (PFC)
and Quantized Congestion Notification (QCN) have been
widely used to mitigate network congestion. However, we also
notice that pausing or slowing down the upstream sender under
PFC or QCN can cause certain randomness in the request
order, i.e., the actual transmitting order becomes different
from the submitting order, which breaks the First In First Out
(FIFO) order of network traffics. The performance of storage
devices introduces randomness as well, which is affected by
the read/write cache mechanism. For read requests, a cache
hit in the cached mapping table can save latency. Write
latency in write-back caching essentially depends on write
cache capacity. At run time, the uncertainty of the cache status
introduces randomness in the storage processing.

The issues above indicate that simply linking two compo-
nents (i.e., storage and network) to conduct experiments cannot
provide accurate performance results. This thus motivates us
to develop a new storage-network simulation scheme that
considers the impacts of both performance interference and
request order randomization by iteratively updating actual
arrival times of storage (resp. network) write (resp. read)
requests to achieve convergence in performance.

III. DESIGN OF SNIS

In this section, we first introduce the storage and network
simulators we deploy in our simulation, and then describe the
technical design of our iterative storage-network simulator.

A. Network Simulation (NS3-RDMA)

Our network simulator is based on an existing implemen-
tation of RDMA on NS-3 simulator. NS-3 is an open-source
network simulator and has been widely used in the networking
research community. The NS-3 simulator with RDMA has
fully implemented RoCEv2 protocol [3] and supports the

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

PFC [9] and ECN [10] mechanisms which are extensively ex-
ploited in popular network congestion control schemes. On the
other hand, most packet scheduling-based congestion control
schemes have developed their simulators, e.g., pHost’s YAPS
[11], NDP’s NDP simulator [12], and HOMA’s OMNet++
[13]. NS-3 enables PFC by default unless otherwise stated.
This simulator takes network configuration and a workload
trace as the input and simulates the network data transfer with
a complete set of network protocols. We can configure the
network topology, link capacity, number of network flows, and
traffic size of each flow. Some other parameters that influence
the simulation result are listed below. 1) Incast ratio, which
has a great impact on the chance of the occurrence of network
congestion. 2) PFC queue length threshold, which triggers the
switch to send PFC PAUSE packets when the switch queue
length is above that threshold.

B. Storage Simulation (MQSim)

For storage simulation, we focus on the latest NVMe SSD
simulator. There are several open-sourced simulators, e.g.,
FEMU [14] and MQSim. FEMU is an emulator integrated
with QEMU/KVM and exposed to Guest OS as an NVMe
block device, while MQSim is a trace-driven discrete event
simulation framework. After comparing the pros and cons
between these two simulators, we choose to use MQSim as
1) it provides higher accuracy than FEMU, and 2) it is light
and easy to collaborate with the network simulator. MQSim
takes an SSD configuration file and a workload trace as inputs
and generates performance statistics, e.g., average read/write
latency, cmd queue length, and cmd waiting time.

We can launch multiple MQSim processes to emulate mul-
tiple targets (i.e., storage nodes) in the disaggregated storage
system. In each MQSim, there are three sets of configurations:
host configuration, device configuration, and flash configura-
tion. We notice that the default configurations provide high
latency at the scale of hundreds of microseconds. Thus, we use
the micro benchmark to verify MQSim’s correctness and un-
derstand the critical parameters in the MQSim configurations.
We find there are a set of critical parameters in MQSim as
follows. 1) FTL defines the Flash Translation Layer, 2) Write
Cache defines write cache capacity, 3) CMT (Cache mapping
table) defines read-cache capacity, 4) Queue Fetch Size decides
the number of requests processed simultaneously, 5) Page
Capacity specifies the unit of transactions at the device level,
6) Read/Program/Erase Latency defines the latency of a single
internal operation, and 7) Channel Transfer Rate defines the
transfer rate of flash channels in the SSD backend.

C. SNIS: Overall Simulation

We integrate MQSim and NS3-RDMA into a storage-
network iterative simulation method (SNIS) to model disag-
gregated storage systems. SNIS simulates read/write requests
generated by a set of initiators (users) and processed by a
group of targets (storage devices). Each storage device is
simulated as an individual MQSim instance with independent

configurations. NS3-RDMA defines the topology of the com-
munication network of the disaggregated storage system with
a configurable network congestion control mechanism.

For the whole simulation process, the input workload is a
set of I/O requests indicated as REQ with the following major
attributes: 1) RequestID is the unique index of a request, 2)
InitiatorID and TargetID specify the source and destination of a
request, 3) ArrivalTime indicates the start time of a request, 4)
Size is the amount of data in an I/O operation, and 5) IOType
is either read or write. The format is almost the same as
those used in the traditional storage system simulation except
InitiatorID and TargetID that are specific to the disaggregated
architecture. During our multiple iterations of simulations,
most workload attributes are intact, and only the ArrivalTime
will be updated through the process. Let us use A(r) to
represent the original ArrivalTime of a request r.

For both MQSim and NS3-RDMA simulators, at each
iteration, they take a set of I/O requests as the input workload,
and at the end of the simulation, each simulator reports the
finish time or departure time of the processed requests. We use
NAi(r) and NDi(r) to denote the arrival time and departure
time of request r for the network simulator NS3-RDMA at
iteration i. In other words, at the beginning of iteration i,
request r with arrival time NAi(r) is in the workload input
for NS3-RDMA, and at the end of the network simulation,
NDi(r) is the time when request r finishes its network
transfer. Similarly, we use SAi(r) and SDi(r) to represent
the arrival time and departure time of request r for MQSim
at iteration i. In addition, we use R and W to indicate
the set of read requests and write requests, respectively, i.e.,
REQ = R ∪W .

Fig. 3 illustrates our iterative two-phase simulation SNIS.
Our simulation process includes multiple iterative steps. The
first iteration is considered as iteration 0. In each iterative step,
all the requests are processed by both storage and network
simulators. We always run the storage simulation first and then
continue with the network simulation. At each iteration, for
read requests, we assign their original arrival time as the arrival
time for storage simulation, ∀r ∈ R,SA0(r) = A(r). Simi-
larly, the original arrival time of write requests is assigned to
their arrival time for network simulation, ∀r ∈W,NA0(r) =
A(r). For the other part of the requests, i.e., read requests in
network simulation and write requests in storage simulation,
we update their arrival time before conducting the simulation
as follows:

NAi(r) = SDi(r), ∀r ∈ R (1)
SAi(r) = NDi−1(r), ∀r ∈W (2)

For a read request r at iteration i, before entering the
network simulation, its network arrival time is updated as the
storage departure time at iteration i, see Eq. 1. The rationale
here is that for a read request, data is first loaded from
targets and then transferred to initiators over the network.
Thus, the start time of network read flows is equal to the
finish time of storage read requests. Here we use the finish

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

time of a read request from the storage simulation at the
same iteration as an estimation. Correspondingly, for a write
request r at iteration i, we update its storage arrival time as in
Eq. 2, because data is first transferred from initiators to targets
before written to targets. The finish time of network write
flows is the start time of storage write requests. Since storage
simulation is conducted first in every iteration, we update
SAi(r) with the network departure time from the previous
iteration. SNIS repeats interactive steps until the performance
metrics converge to a stable state.

Fig. 3. Iterative two-phase simulation architecture.

Next, we present how to determine the simulation converges
to a stable state. The whole process of interactive simulation
involving two simulators is quite complex, and there are
random factors that affect the performance. It cannot be
theoretically proved that the process certainly converges. We
define a stable state by considering the distribution of the
key performance metrics. In particular, we use throughput
as a convergence target, calculated by dividing I/O request
size over the delay time. The delay time used for calculating
throughput includes both storage and network delays. In
this paper, we define a convergence criteria Conv C as the
weighted average of the relative distance of mean/median/90th

percentile of request throughput between two consecutive
iterations. Let λi indicate the throughput distribution of all
the requests at iteration i. The calculation of the convergence
criteria (Conv C) at the end of iteration i is defined in Eq. 3.

Conv Ci = α1 ·RD(λmean
i , λmean

i−1)

+α2 ·RD(λmedian
i , λmedian

i−1)

+α3 ·RD(λ90thi , λ90thi−1)), (3)

where λmean
i , λmedian

i , and λ90thi represent the mean, median,
and 90th percentile of the throughput at iteration i. RD is the
function that calculates relative distance between two values
defined in the following Eq. 4.

RD(x, y) =
abs(x− y)
max(x, y)

(4)

The definition of the convergence criteria Conv C aims to
capture the difference between two throughput distributions
λi and λi−1 by comparing the three characteristics of the

distribution. According to the evaluation needs in different
research work, it can be easily extended to include more
information of the distribution. The weights α can also be
adjusted to accommodate different evaluation goals.

In SNIS, we consider the iterative process converges to
a stable state under one of the following two conditions:
1) Conv Ci drops below a certain threshold (σ); and 2)
Conv Ci stays within a small range (τ) comparing to previous
iteration (Conv Ci−1) for a sequence of n iterations.

IV. EVALUATION

In this section, we present our evaluation results. We
first introduce general configurations of MQSim and NS3-
RDMA simulators and then thoroughly examine the iterative
simulation process with various workloads. We analyze the
convergence criteria and other interesting findings to validate
that SNIS is an effective simulation process for evaluating
disaggregated storage systems.

A. Simulation Configuration and Workload Description
We model the popular configuration in data center networks

and create a CLOS network, a multistage switching architec-
ture, containing the spine and leaf layers and multiple pods.
In this network topology, servers (i.e., initiators and targets)
are connected to leaf switches in the same pod, and each leaf
is connected to all spines. Specifically, we have totally 4 pods
and each pod consists of 2 leaf switches, 4 top-of-rack (ToR)
switches, and 64 servers. We set the link capability as 10Gbps
between servers and ToRs and 40Gbps between ToRs (resp.
leaf switches) and leaf switches (resp. spines). The link delay
is set to 1µs. We construct a homogeneous storage system such
that we have the same configuration for all MQSim instances.
Table I summarizes our setup of the critical parameters used
in MQSim.

TABLE I
MQSIM PARAMETER CONFIGURATION

Queue
Depth

Write
Cache CMT Queue

Fetch Size
Page

Capacity
Read/

Program
65534 256MB 2MB 512 16KB 2µs/100µs

We leverage the characteristics of real cloud-storage work-
loads (e.g., Fujitsu virtual desktop infrastructure (VDI) [15],
and Tencent Cloud Block Storage (CBS) [16]) to generate
a set of synthetic traces and replay these traces to evaluate
the convergency of our simulator. Specifically, we construct
experiments on different workloads by changing the mean of
request sizes and inter-arrival times of read and write requests.
We keep request size fixed and change the mean of inter-
arrival time to generate workloads with different intensity
levels, which produces temporal-light, -moderate and -heavy
workloads (i.e., tl, tm and th). To investigate the impact
of request size on convergency of SNIS, we also keep the
inter-arrival time the same but change the mean of request
size, which generates spatial-light, -moderate, and -heavy
workloads (i.e., sl, sm and sh). The network load equals to the
average size divided by the average inter-arrival time. Because
of the page limit, we only show experimental results of Fujitsu
VDI synthetic traces.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

TABLE II
SYNTHETIC TRACE CHARACTERISTICS AND CONVERGENCY

Trace
Tag

Size
avg.(KB)

Inter-arrival
avg. (µs)

network
load (Gbps)

Conv.
Iter.

Read Write Read Write Read Write
F tl 28 11 57 54 3.93 1.63 2
F tm 27 12 17 17 12.71 5.65 7
F th 28 11 12 10 18.67 8.80 3
F sm 80 34 60 53 10.67 5.06 5
F sh 110 46 60 52 14.67 7.08 3

B. Convergency of SNIS
Convergence criterion is the most important measurement in

our evaluation. The parameters in SNIS are set as σ = 10%,
τ = 2%, and n = 3. We have evaluated SNIS based on
both Fujitsu VDI and Tencent CBS traces. The outcomes
are quite consistent. We thus only present the results from
Fujitsu VDI datasets, including detailed analysis. In each
test, we repeat the simulation process for 11 iterations (i.e.,
10 convergence criteria values are calculated) even if the
termination conditions are met.

Fig. 4 shows the convergency metrics across iterations for
Fujitsu synthetic traces with different temporal intensities.
Each bar represents the relative distance of a metric (e.g.,
mean, median, and 90th). As the index of iterations starts from
0, the relative distance of iteration 1 is the relative distance
between the first and the second iterations. Each red point
is the convergence criteria (Conv Ci) as defined in Eq. 3
which uses the right y-axis for a certain iteration. Fig. 4-(a)
shows the convergence criteria of light Fujitsu synthetic trace.
We observe that the convergence criteria are around 4.5% at
the second iteration, which is considered converged, although
the later iterations have fluctuated convergence criteria. This
observation is consistent with the fact that the light workload
is highly possible to be processed in FIFO as the randomness
incurred by network and storage operations is minimized due
to the long interval time between two consecutive requests.

We increase the workload intensity to moderate in Fig. 4-
(b) by shortening the mean of inter-arrival time. We observe
that the convergence criteria drop to 10% at iteration 7 and
keep stable after that. Whereas, we observe that the relative
distance of mean is higher than that of median and 90th. This
observation also exists in Fig. 4-(c), when we further increase
the workload intensity. The reason is that the long tail of
the throughput distribution varies across different iterations,
although the distributions of throughput are similar1, as shown
in Fig. 5, which stretches the mean of throughput of each
iteration differently. In addition, we observe that the conver-
gence criteria converge faster in Fig. 4-(c) (i.e., at iteration 3)
than that in Fig. 4-(b). The reason is that a heavy workload
fully utilizes storage and network resources, which yields less
randomness compared to the moderate workload.

Furthermore, we investigate the real-time network condi-
tions to confirm the existence of congestion and PAUSE

1In Fig. 5, we manually decrease the y-value by 0.02 for each iteration in
order to clearly see all CDF curves. We remark that the original CDF curves
are actually overlapping.

(a) Light workload F tl

(b) Moderate workload F tm

(c) Heavy workload F th

Fig. 4. Convergence criteria of VDI traces with different inter-arrival times.

Fig. 5. Linear-log throughput CDF in each iteration (F th).

packets from the PFC protocol and the effectiveness of SNIS
in such a complex network setting. We measure the number
of PAUSE packets received by spine switches and the total
sending rate at run-time. When spine switches receive a large
number of PAUSE packets, the congestion becomes severe and
starts to affect the entire network. We illustrate the results from
the heavy workload (F th) in Fig. 6. As the network traffic
for read requests in our tests is from one target to multiple
initiators, there is little congestion in this direction, and the
sending rate is maintained at the ToR link capacity of 10Gbps.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

However, the network encounters a high incast ratio when
10 initiators send data to one target for write requests. The
link connecting the target and its ToR is congested, and the
PAUSE packets are spread to upper layer switches with the
PFC protocol. We observe that the trend of the sending rate
for write requests matches the spikes of the number of PAUSE
packets in Fig. 6. Above all, in our tests, network congestion
occurs and massive PAUSE packets are generated, disordering
data delivery. SNIS is still quite effective and reaches stable
states under moderate and heavy workloads.

Fig. 6. Spine PAUSE packet numbers and sending rates.

Finally, we investigate the impact of spatial intensity on the
effectiveness of SNIS. Fig. 7 shows the evaluation results (i.e.,
relative distances and convergence criteria) of the workloads
F sm and F sh that have similar inter-arrival time as F tl
(see Fig. 4-(a)) but increase the mean of request sizes by three
and four times. We observe that these two traces converge
at early iterations to convergence criteria below 5%, which
indicates that SNIS converges faster under spacial-intensive
workloads than temporal-intensive workloads.

(a) Moderate workload F sm

(b) Heavy workload F sh
Fig. 7. Convergence criteria of Fujitsu VDI traces with different request sizes.

V. CONCLUSION

This work presents an iterative multi-round simulation
method for modeling disaggregated storage systems by simu-
lating storage and network activities jointly. In this way, SNIS
can mitigate the impacts of performance interference and re-
quest randomization and use the converged results to simulate
and evaluate disaggregated storage systems accurately. We
conduct the evaluation experiments of SNIS by using a variety
of synthetic workloads with different request arrival rates and
sizes. Our evaluation shows that after a certain number of
iterations, SNIS can always reach a relatively stable state.
Our evaluation also shows that different types of workloads
experience different convergence speeds under SNIS. In the
future, we plan to extend our work to evaluate the convergency
of SNIS under various network and storage configurations.
We also plan to exploit SNIS to design and evaluate new
network congestion control mechanisms and storage workload
managers for disaggregated storage systems.

REFERENCES

[1] Y.-X. Lu, J. Chiu, S.-J. Chao, and Y.-B. Ye, “Design of instruction
analyzer with semantic-based loop unrolling mechanism in the
hyperscalar architecture,” in ICS, 2018.

[2] S. Luo, G. Zhang, C. Wu, S. Khan, and K. Li, “Boafft: Distributed
deduplication for big data storage in the cloud,” IEEE Transactions on
Cloud Computing, vol. 8, pp. 1199–1211, 2020.

[3] IBTA, “RDMA over Converged Ethernet (RoCE),”
https://cw.infinibandta.org/document/dl/7781, 2014.

[4] IBTA, “InfiniBand,”
https://www.mellanox.com/pdf/whitepapers/IB Intro WP 190.pdf.

[5] Y. Zhu, M. Ghobadi, V. Misra, and J. Padhye, “Ecn or delay:
Lessons learnt from analysis of dcqcn and timely,” in CoNEXT’16,
September 2016. [Online]. Available: https://www.microsoft.com/en-
us/research/publication/ecn-delay-lessons-learnt-analysis-dcqcn-timely/

[6] A. Tavakkol, J. Gómez-Luna, M. Sadrosadati, S. Ghose, and O. Mutlu,
“Mqsim: A framework for enabling realistic studies of modern
multi-queue ssd devices,” in FAST, 2018.

[7] Y. Zhang, P. Huang, K. Zhou, H. Wang, J. Hu, Y. Ji, and B. Cheng,
“Osca: An online-model based cache allocation scheme in cloud block
storage systems,” in USENIX Annual Technical Conference, 2020.

[8] C. Lee, T. Kumano, T. Matsuki, H. Endo, N. Fukumoto, and
M. Sugawara, “Understanding storage traffic characteristics on
enterprise virtual desktop infrastructure,” Proceedings of the 10th
ACM International Systems and Storage Conference, 2017.

[9] IEEE 802.1Qbb, “Priority-based Flow Control,”
https://1.ieee802.org/dcb/802-1qbb/.

[10] S. Floyd, “Tcp and explicit congestion notification,” Comput. Commun.
Rev., vol. 24, pp. 8–23, 1994.

[11] P. Gao, A. Narayan, G. Kumar, R. Agarwal, S. Ratnasamy, and
S. Shenker, “phost: distributed near-optimal datacenter transport over
commodity network fabric,” Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, 2015.

[12] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. Moore, G. Antichi,
and M. Wójcik, “Re-architecting datacenter networks and stacks for
low latency and high performance,” Proceedings of the Conference of
the ACM Special Interest Group on Data Communication, 2017.

[13] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout, “Homa: a
receiver-driven low-latency transport protocol using network priorities,”
Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, 2018.

[14] H. Li, M. Hao, M. H. Tong, S. Sundararaman, M. Bjørling, and H. S.
Gunawi, “The case of femu: Cheap, accurate, scalable and extensible
flash emulator,” in FAST, 2018.

[15] SNIA, “Block I/O Traces,” http://iotta.snia.org/tracetypes/3.
[16] SNIA, “Tencent Block Storage,” http://iotta.snia.org/traces/27917.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:21:25 UTC from IEEE Xplore. Restrictions apply.

