
Secure and Reliable Decentralized Peer-to-peer Web Cache

Bo Sheng and Farokh B. Bastani
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75080, USA

Email: bxs028000@utdallas.edu, bastani@utdallas.edu

Abstract

Client side caches form a large space for web caching
that, if properly utilized, can significantly improve the hit
ratio. Conventional peer-to-peer web caching schemes
fail to consider several critical issues. Some rely on
a centralized proxy server for coordination. Most do
not consider the frequent arrival and departure of client
platforms. In this paper, we propose a decentralized,
peer-to-peer web caching scheme in a corporate net-
work. Without proxy servers, each client shares its lo-
cal cache contents with the others via structured peer-
to-peer routing protocols. We design a new replacement
policy specific to peer-to-peer systems and consider se-
curity and fault tolerance in our approach. Trace-driven
simulations show that our scheme is more efficient, se-
cure, and reliable than the existing approaches.

1 Introduction

Web caching is a well developed scheme for improv-
ing the performance of web browsing. Users’ requests
can be satisfied by the local cache or the cache of a
nearby proxy, instead of a remote web server. Perfor-
mance studies [3,11,22] show that proxy caching is very
effective in reducing the response latency of web ac-
cesses. Various proxy caching techniques and replace-
ment policies have been proposed to improve the cache
hit ratio [1, 4, 12, 14, 22]. Cooperative caching architec-
tures and mechanisms have been investigated to achieve
the same goal [5, 15, 21, 23].

One class of the cooperative caching strategies is
based on the client-side caching. Generally, web
browsers cache web contents on client platforms and
these client caches form a large cache space. In a LAN
environment, the clients’ cache space can be organized
and utilized to reduce the total outgoing traffic. A client
may get web contents from other clients. Based on

this peer-to-peer concept, sharable web caching strate-
gies among the clients have been investigated [9,19,24].
Simulation results indicate that sharing cache among
clients can significantly decrease the external traffic
[24].

However, client-side caching has some fundamental
problems. First, the availabilities of the client platforms
are unpredictable. A site may be turned on or off fre-
quently. Second, the privacy of user’s access activi-
ties should be protected. Finally, it has to be efficient
with low latency. In [24], a centralized peer-to-peer web
caching protocol has been proposed. However, central-
ized approaches incur a higher management cost, espe-
cially in a large domain. They also have the problem of
single point of failure. In contrast, peer-to-peer solutions
can offer better scalability and reliability. Squirrel [9] is
a decentralized peer-to-peer web cache mechanism. It
considers two document look-up schemes, home store
and directory. However, privacy issues are not consid-
ered in either of the look-up protocols. Also, though the
home store scheme yields a lower external bandwidth, it
incurs a much higher internal traffic. More specifically,
the data size transferred between clients is greatly in-
creased. Furthermore, the high hit ratio in this scheme is
obtained based on some idealistic assumptions that may
not be satisfied in a real environment, such as low failure
rate and some necessary operations when nodes join or
leave the system. Otherwise, the hit ratio drops steeply.

This paper presents a web caching model based on
the decentralized peer-to-peer architecture. We use a
hybrid policy that combines existing home store and di-
rectory approaches. The combined approach eliminates
the problems in the original home store and directory
schemes. We develop new algorithms and policies to re-
solve certain problems that arise due to the combination.
A new cache replacement policy based on the hybrid
approach has been developed. Unlike the replacement
policies in other peer-to-peer systems, our policy specif-
ically considers the peer-to-peer environment. It tries to
retain high-hit objects by replicating the directory infor-

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

mation. Thus, high-hit objects in client local caches can
be used effectively. Coordinated replacement is consid-
ered to minimize unnecessary duplications. The hybrid
approach also reduces unnecessary data transfers. An
object can be kept in the local client cache and refer-
enced through the directory without being actually trans-
ferred to the home node. As a result, our approach yields
a high hit ratio with a relatively low inner traffic. More-
over, our algorithm considers privacy, anonymity, and
security issues. We encode the web contents by symmet-
ric encryption and hide IP information to protect clients’
access histories from being traced by other users. Fur-
thermore, reliability of nodes (nodes fail or leave the
system) and load smoothing among peers are also con-
sidered in our scheme.

The rest of the paper is organized as follows. In the
next section, we review the related work in peer-to-peer
systems. Our decentralized peer-to-peer caching scheme
is presented in Section 3. In Section 4, we present our
experimental study setup and performance results. Sec-
tion 5 concludes the paper and outlines some areas of
future research.

2 Background and Related Work

2.1 Peer-to-peer Routing Protocol

Document look-up is a critical function in decen-
tralized peer-to-peer web caching. Traditional systems
use centralized directory or flooding models [6, 8, 10].
Recently, some structured document routing protocols
have been proposed, such as Pastry [16, 17], CAN [13],
Chord [7, 18] and Tapestry [25]. These models provide
efficient and scalable ‘lookup’ functionality to support
large-scale applications.

Pastry is a structured self-organizing peer-to-peer
protocol. Each node in Pastry has a unique nodeID. The
nodeIDs and the keys are assigned in the same 128-bit
ID space by a suitable hashing function, such as SHA.
Given a key, the associated query will be forwarded to
a live node whose nodeID is closest to the key. For the
purpose of efficient routing, each node maintains a rout-
ing table which includes information about a set of other
nodes. At each step, a node searches its own routing ta-
ble and finds a node whose nodeID shares with the key
a prefix that is at least one bit longer than that of the cur-
rent node. A Pastry node also has a leaf set to store the
nodes whose nodeIDs are numerically closest to the cur-
rent nodeID. This set ensures reliable delivery and can
be used for replication. Thus, the expected number of
forwarding hops in Pastry is around �log2b N�, where b
is a configurable parameter. When nodes join the sys-
tem, there are some special messages delivered to build

the states of new nodes and let others know their pres-
ence.

Other ongoing research projects provide similar func-
tionalities by different design views. In Chord [18],
nodeIDs are assigned in a circular identifier space. A
message is routed to the successor of the associated key
k. There are log N entries in the routing table. The i-
th peer is the node that has the smallest nodeID among
those nodes whose nodeID is greater than 2i − 1. The
routing length is thus log N . CAN [13] has a multi-
dimensional identifier space. The routing table main-
tains information about the neighbors in each dimension.
Each node is responsible for a set of information and the
responsibility can be split and transferred.

We use Pastry as the routing protocol. But we only
utilize the function of mapping an application object to
the corresponding node. Therefore, our design can be
implemented on other peer-to-peer substrates with some
minor modifications.

2.2 Peer-to-peer Web Caching

A centralized peer-to-peer caching scheme is pro-
posed in [24]. Each proxy server maintains an index
file of all web objects cached by a group of clients.
When a proxy cache miss occurs, instead of forward-
ing the request to upper level proxies or remote servers,
the proxy server first checks the index file to see if an-
other client has a fresh cache. If the web object is found
in some client’s browser cache, it can be transferred to
the requesting client directly or through the proxy server.
They compared the schemes listed in Table 1, and found
that Scheme 3 is superior with highest hit bytes ratio.
The simulation results demonstrate the importance of
the peer-to-peer sharing of clients’ cache contents and
the existence of proxy cache. In fact, the hit ratio in the
centralized caching with an infinite proxy cache space is
the highest we can get from peer-to-peer systems. They
also present anonymity and security protection through
the proxy server. Briefly, a trusted proxy server plays a
critical role in their approach. Our purpose is to build
a web caching scheme on a self-organizing peer-to-peer
system, where no server is involved. Therefore, we can
inherit the design ideas and remove the proxy role from
the system. Basically, in peer-to-peer systems, a trusted
proxy server provides three functionalities. First, the
proxy provides an extra large cache space to store the
web objects. As in the traditional proxy caching system,
the proxy cache leads to increased hit ratio when a local
miss occurs. Secondly, the proxy maintains a directory
of a group of clients’ local cache contents. If a proxy
miss occurs, but the object can be found from another
client’s local cache, then the requesting client is directed
to fetch the data from that peer. Finally, as a transfer

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

tunnel, the proxy can provide anonymous communica-
tions for both sender and receiver. Therefore, to design
a decentralized system, we have to distribute these jobs
among the peers.

Scheme 1 no client cache share, proxy cache
Scheme 2 client cache share, no proxy cache
Scheme 3 client cache share, proxy cache

Table 1. Centralized peer-to-peer web
caching schemes.

Squirrel [9] is built on self-organizing peer-to-peer
protocols. When a web browser requests an object,
Squirrel first checks the local cache. If the object can-
not be found, Squirrel will send out a query message
with a key that is the hash value of the URL. Then the
message will be forwarded to the live node whose ID is
closest to the key. This node is called the home node of
that web object. If the home node finds a cache miss,
it has two approaches to deal with the request. In the
home store approach, the home node contacts the orig-
inal web server to get the object. It then caches the ob-
ject and sends a copy to the client. In contrast, in the
directory scheme, the home node only keeps a directory
of the nodes which have the fresh copies of the object.
When a request arrives, the home node randomly picks
a node from the directory and lets it transfer the object
to the requesting client. The home store approach per-
forms better than the directory scheme in terms of hit
ratios. As a matter of fact, these two algorithms fall in
the category of distributing the proxy’s jobs among the
peers. In the home store scheme, each node participates
in the distribution of proxy spaces. Clients cache the
objects that they host but may never access, and share
them with other clients. The directory scheme takes
care of the distribution of the directories. Every client
maintains a directory of objects it hosts and forwards
the request randomly. If we reconstruct the centralized
proxy caching from these two approaches, the home
store method represents scheme 1 and the directory ap-
proach yields scheme 2 in Table 1. Our design is based
on scheme 3. The proxy server maintains cache space
and directory. At the same time, the proxy’s responsibil-
ity is distributed among the clients. We will show that
a combination scheme is more suitable for peer-to-peer
systems.

3 Decentralized Web Cache

We use a combination of home store and directory
schemes to achieve a better performance. The major

advantage of peer-to-peer web cache is the highly in-
creased hit ratio. In the proxy-based peer-to-peer web
caching, a cache hit may occur at the local cache, proxy
cache, or other client cache. In decentralized caching
schemes, we also consider these three types of hits. Lo-
cal hit is always the same in all approaches. In the de-
centralized approaches, the home node scheme can be
used to realize the proxy’s caching task. Each object has
a home node and it may be cached at the home nodes.
Thus, a proxy hit becomes a home node hit. The home
node of an object also keeps a directory of other clients
that have a copy of the object. Thus, a directory hit re-
sults in getting the object from other client’s local cache.

The system we consider consists of a set of clients
with limited cache spaces. In the directory scheme, all
the space is used to store the local cache and directory hit
is the major improvement. However, for an active client
that requires a large local cache space, many local con-
tents recently accessed will be evicted, leading to a loss
of directory hit. This problem is mentioned by Squirrel
developers [9] also. On the other hand, the home store
scheme provides home node hit instead of directory hit,
but it may reduce local hit ratio. Due to home store,
each client has to store some objects it hosts and they
are treated by the uniform replacement policy. Thus, the
space for caching local contents becomes smaller. This
problem becomes worse for a high load system, where a
node may be the home of many hot web objects. Though
the home node hit increases, but this may not yield an
overall performance gain, because the local hit is a ma-
jor part in the overall hit ratio.

In our design, we split the client cache space into
two parts. Some of the cache space is allocated to the
browser, i.e., used as the local cache. The other part of
the client cache space is used for the home node scheme.
All the objects hosted by the home node are cached in
this space. Every object has a directory maintained at its
home node. The directory points to the local caches of
the clients. Let psize denote the client cache size that is
allocated for the home node and lsize denote the local
cache size. Both psize and lsize are arguments that can
be set by users. They also could be dynamically adjusted
for different conditions. Each part of the cache space has
its own replacement policy so that local hit and home
node hit do not affect each other. We also use an adap-
tive scheme to increase psize or lsize when the other
part is idle. For example, consider a node that has heavy
local cache accesses, but hosts only a few objects or the
objects hosted have not been accessed for a long time.
In this case, we can increase lsize and reduce psize for
more efficient usage of the space. When the home node
access frequency is back to a normal level, we can grad-
ually adjust the space allocation to its initial setting.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

3.1 Access Request Processing

Let C denote the client that issues a web request and
H denote the corresponding home node for the request.
The home node also maintains a directory for each ob-
ject it hosts. Let D(k) represent the directory of the ob-
ject whose URL hash value is k. Also, assume that node
D is one of the delegates that have a fresh copy of the
object. The following is the pseudo code for the request-
ing client and the home node.
Requesting Client C:

1: issue a request r(URL);
2: check local cache;
3: if local hit then
4: retrieve the object;
5: else
6: key=Hash(URL);
7: route(key,lookup);
8: if remote hit then
9: get the object from other nodes

10: else
11: send r to the original server
12: end if
13: cache the object;
14:
15: end if

When a client C requests a web object, it first checks
its local cache. If the object is not found, a request mes-
sage will be forward to the home node H . If the home
node has cached a copy, it sends the object to C. Oth-
erwise, H randomly pick a delegate D from the direc-
tory for the transferring. If the directory is empty, the
requesting client will fetch the object from the original
server. Finally, the home node can add C into the direc-
tory. When nodes join or leave the system, directories
are transferred to new home nodes. But it is not nec-
essary to transfer all hosted objects. Only those objects
whose directories are empty need to be transmitted.
Home Node H:

1: receive a lookup request key;
2: check local cache;
3: if key is found then
4: send remote hit;
5: send the object;
6: else
7: checks key’s directory D(key);
8: if D(key) is empty then
9: send remote miss;

10: else
11: select one node D from D(key)
12: while D has no valid copy do
13: remove D from D(key)
14: end while

15: if D(key) is empty then
16: send remote miss;
17: else
18: send remote hit;
19: let D transfer the object back to C;
20: end if
21: end if
22: cache the object;
23:

24: end if
25: update directory D(key);
26:

In this design, there are three types of messages. The
first one, which is between C and H , is to ask the home
node if a fresh copy is available or transfer requested
objects from H to C. The second type is between H
and D. The home node initializes it when H has no
cache of the object and tries to find it via directory. The
last one is to transfer web objects from D to C.

Client C

Node D

Home Node H
RoutingDirectly

Figure 1. Directory caching scheme.

Obviously, the first message from C to H is delivered
by the routing protocol. Since it is a control message,
we assume the reply is instantaneous. This message in-
cludes source IP information so that H can reply to C
directly. Similarly, the second type of message also con-
tains the source H’s IP address. The difference is that H
knows D’s IP information, because D is in H’s direc-
tory. That means, for the second messages, bidirectional
deliveries are instantaneous. In our design, the third type
of message is delivered via the home node H . The object
is sent to H first and then to C directly. In this way, the
home nodes can cache the objects if they need without
extra communication and we get the lowest latency(two
hops) from D to C.

3.2 Cache Replacement

The cache replacement policy is a key algorithm in
caching systems. Many approaches [1, 4, 12, 14, 21,
22] have been proposed. In current peer-to-peer web
cache schemes, traditional proxy replacement policies
are used. In traditional proxy caching, clients’ local

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

actions are not visible to the proxy server. But in our
model, the home node can at least partially know the
clients’ local cache states through the directory. We are
able to make the home node and delegates cooperate
with each other to get a better performance.

The major goal of our cache replacement policy is
to make a hot page stays in the system as long as pos-
sible. In the home node cache, we still use the classi-
cal LRU policy. When eviction occurs, we first replace
older pages. We give a time-to-live (TTL) parameter
and remove those pages with expired TTL. This TTL
is different from TTL for web objects. If there are no
expired pages, we will pick the objects with the max-
imum number of copies in the whole system. We can
obtain this information from the directory of the home
node. Replacement of popular pages in the home node
cache space does not reduce the hit rate, because the di-
rectory hit can make up for the home node miss. When
the home node evicts a web object it hosts, it also in-
forms all holders of that object so that they can increase
the priority of that object in their local cache. Therefore,
the object stays in the clients’ local cache longer when it
is replaced out of the home node’s cache. On the other
hand, when a client evicts a hot page, if it is the last
copy or one of the last few copies, it sends the page to
the home node. By doing so, a directory miss becomes
a home node hit.

3.3 Arrival and Departure of Clients

In peer-to-peer system, every node is unreliable. The
clients may join or leave the system fairly frequently.
In the pure home store scheme, web objects are cached
on their home nodes and the requesting clients. How-
ever, only the copy on the home node is sharable. If a
node fails or leaves, all contents it hosts will be gone.
Even if the home node is still alive, some web objects
might be replaced. Irrespective of whether the next re-
quest for one of these web objects is forwarded to the
original or a new home node, a cache miss will occur.
Even though there might be fresh copies in some client
caches, the request will be forwarded to the web server.
This is due to the loss of directory hit. The consequence
is unnecessary increase in external traffic. Furthermore,
when nodes join or leave the system, some objects have
to be transferred between peers to make them available
at new home nodes. Otherwise, the hit ratio will be de-
creased. In a highly dynamic system, this transfer oper-
ation yields a significant increase in internal traffic. If a
client fails or leaves the system without advance notifi-
cation, then the cached objects will not be forwarded to
the new home node. Subsequently, the hit rate will be
reduced.

Our approach combines the directory scheme with

the home node scheme. So, a home node also maintains
and replicates the directories. If a home node fails, the
directory information still can be obtained from other
nodes. A node can periodically replicate its directories
to its immediate neighbors in the name space and some
other nodes in the leaf set. From the view of each node,
it keeps directories of objects hosted by a small set of
nodes. In this way, the access to the referenced node is
more reliable.

We also consider the use of more reliable platforms
to cache frequently accessed objects. Reliability can be
measured based on statistical data. When a home node
H identifies an object that is frequently accessed, it can
replicate the object on a more reliable platform S and
add S to its directory.

3.4 Node Load Smoothing

Since all clients have similar and limited resources, it
is important to keep the load evenly distributed among
them. The load on each node can be measured in terms
of the number of objects served and the size of data
transferred. In the directory approach, the number of
served objects per second can be bursty. When a client
C visits a web page, it probably accesses a set of ob-
jects O contained in the page (such as images and audio
files). In the directory scheme, C will be referenced by
the home nodes for all objects in O since C caches fresh
copies of all these objects. When another client visits
the same page, the requests for all objects in O will be
forwarded to C. It leads to a high load problem. Due to
the use of the home store scheme, our approach will not
incur this bursty workload problem. The objects in O
may be stored on different home nodes and the load for
accessing objects in O is distributed. The bursty work-
load problem will occur only if many of the home nodes
of the objects in O evict out the corresponding objects.

A stricter solution for load balancing is to use a ref-
erence counter. Each node keeps an upper bound rlimit,
which represents the maximum number of nodes it can
be referenced by. When a home node H wants to add
a client C to its directory, H first sends a message to
C. C checks its current value of the reference counter.
If it is less than rlimit, C sends an ’accept’ response to
H and increases the reference counter. Otherwise, C
sends ’deny’ response to H . In this design, referring is
not a single party operation, but an agreement between
a home node and a client node.

procedure join directory:

1: if ref counter < rlimit then
2: send join message (k, IP) to the home node;
3: ref counter++;
4: else
5: send deny message to the home node;

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

6: return;
7: end if

rlimit is a configurable parameter which could be de-
cided by each node based on its own state. Also rlimit
could be adaptive and adjusted dynamically. Thus we
can take advantage of the directory scheme without wor-
rying about the bursty workload issues.

3.5 Privacy and Security Issues

In web caching systems, a node may not want the
others to trace its access history. This means, for a
requesting client C, physical information (IP address)
and the web object (URL or the content) cannot be ex-
posed to other nodes. In the centralized scheme, this
could be done by the trusted proxy servers. How-
ever, it is more complex in this self-organizing ap-
proach. Generally, in a peer-to-peer system, these in-
formation appears as either plain contents or the cor-
responding hash values. Let P be the content of the
web object and (P)k represents the encrypted version
of P with key k. The strict model requires that only
(Hash(IP),Hash(URL)/(P)k) may be known by the
other nodes. However, this model incurs some prob-
lems. For example, only Hash(IP), not IP, can be stored
in the directory. As mentioned previously, the messages
between H and D have to be routed by several hops. We
use a less strict model, that if (IP,Hash(URL)/(P)k)
or (Hash(IP), URL/P) is exposed, we consider that
the privacy is still protected.

Here we discuss our approach that satisfies the less
strict model. First, when the requesting client C sends
the query message, the URL cannot be included. Oth-
erwise, every node in the routing path knows the URL
information. As mentioned before, the first message
from C to H carries the IP information. Every node
in the routing path can get it so that the privacy can be
compromised. Actually, the URL information can be re-
moved. For routing purpose, only key k which is the
hash value of the URL is needed. Therefore, without
the URL, the message can still be forwarded to H , the
home node of the web object. In the home store scheme,
H needs the URL information, because if a cache miss
occurs H needs to contact the original server. However,
in our design, C will connect to the original server only
if both home node miss and directory miss occur. After
that, client C can send a copy to the home node. There-
fore, URL is not a necessary information for H in our
approach.

The second problem is the storage of the web ob-
ject. If the home node caches the plain content P , it
breaks the rule, since the home node always knows the
IP of the requesting client. Therefore, only encrypted
version (P)k can be stored in the home node. The en-

coding could be done with a symmetric key cipher. We
use a certain function on the URL string to generate the
key, e.g., the first several characters of the URL. In fact,
any simple function works, because the home node only
knows the hash value k = Hash(URL) while request-
ing clients know the original URL. The first request-
ing client sends (k, (P)f(URL)) to the home node H .
The subsequent requesting users get this encoded ver-
sion and they can get the key f(URL) if f is well known
or f can be included in the original message to H . Then
the requesting client is able to decode (P)f(URL). We
assume the conversion of hashing is very hard. There-
fore, H cannot get the exact content. In this way, we ex-
pose (IP,Hash(URL)/(P)f(URL)) to the home node
H and the privacy is protected. If a remote miss occurs
and the directory is not empty, H will select a delegate
D from the directory and transfer the object from D to
C through itself. In this scenario, H knows C’s IP ad-
dress and D caches the wanted web object. Similarly,
let D send (P)f(URL) to H and then to the client. The
delegate knows nothing about the requesting client.

4 Performance Evaluation

In this section, we use trace-driven simulation to eval-
uate the performance. We compare our combined ap-
proach with the directory and the homes store schemes.

The traces we used are provided by NLANR (Na-
tional Lab of Applied Network Research) [20]. They
have several proxy servers running Squid and record
sanitized log files. The following is the summary of ac-
cesses on 07/21/03.

Bo1
Number of nodes 80
Number of requests 281066
Number of distinct requests 188031
Total size 3.266G
Infinite cache size 2.055G
Maxim hit bytes 1.211G

Table 2. NLANR bo1 Trace 07/21/03

4.1 Access Frequency

As mentioned in previous section, our design tries to
retain a hot page stay in the system as long as possible.
We analyzed the data and found that the access frequen-
cies of web objects follow a Zipf-like distribution as re-
ported in other research [2]. Figure 2 shows the proba-
bility for a page of to be accessed in the future, given its
historical access frequency. To simplify the problem, if

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0 50 100 150 200 250 300 350 400
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of refernce

P
er

ce
nt

ag
e

of
 b

ei
ng

 r
eq

ue
st

ed
 a

ga
in

Figure 2. Requests Access

it has been visited more than once, we consider a web
object a hot page. Since these pages have more than
40% probability of being accessed again, they are worth
keeping in the system as long as possible.

4.2 Performance

We compare our combined scheme with the home
store and the directory schemes. In the experiments, we
assume that each node has the same size of cache space
and we assign the size to 10K, 100K, 1M, 5M, 10M and
20M. For our approach, we set psize to 30% of the total
cache size and TTL to one hour. The following figures
present byte hit ratio and hit ratio.

0 1 5 10 20
0

0.1

0.2

0.3

0.4

Cache size(MB)

B
yt

e
hi

t r
at

io

Directory
Home Store
Our Scheme

Figure 3. Total data transferred

0 1 5 10 20

0.1

0.2

0.3

0.4

Cache size(MB)

H
it

ra
tio

Directory
Home Store
Our Scheme

Figure 4. Total data transferred

The results indicate that our approach has a higher
hit ratio than the other two, even if the cache space as-
signed is modest. As discussed previously, in the di-
rectory scheme, active nodes often evict fresh pages and
the same requests issued later have to be forwarded to re-
mote servers. The home store scheme resolves this prob-
lem and yields a better performance, but incurs another
problem, namely, that the local cache and the hosted ob-
jects cache may compete for the same cache space. We
use parameters psize and lsize to address this problem.
This distinct space limit prevents them from affecting
each other too much. Also, the adaptive arrangement
yields a more efficient usage of idle space. In our ap-
proach, within TTL, a web object stays much longer in
the whole system, either in the home node or some other
clients’ cache. When a request for a web object P is
issued, a hit miss happens only when

1. Every hosted objects cached in the home node is
the only copy extant, and

2. Every client which accessed P has evicted P out
of its cache space.

Meanwhile, our algorithm has a lower internal data
transfer traffic than the home store scheme. Figure 5
is the results of the total data size transferred which in-
cludes the external and internal data. Comparing with
the home store scheme, our approach reduces about
10% − 25% data size. The first reason is that we get a
higher hit ratio. In the home store scheme, one hit miss
leads to double size data transfer, i.e. from the server to
the home node then from the home node to the request-
ing client. In addition, our scheme eliminates some un-
necessary home node cache transfers. The home store
scheme always caches a missed object both in the client
and the home node irrespective of whether this object

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

0 1 5 10 20
2

3

4

5

6

Cache size(MB)

T
ot

al
 d

at
a(

G
B

)

Directory
Home Store
Our Scheme

Figure 5. Total data transferred

will be accessed again or not. In our approach, the re-
questing client obtains the object from the remote server
and the home node may reject the cache request from
the client. It happens when all objects a home node cur-
rently hosts are the only copies of the objects in the sys-
tem. Hence, many one-time pages are never cached in
the home nodes. Also, when a node leaves, we do not
have to transfer all hosted objects to the adjacent nodes.
Since we have replicated directories, only those one-
copy pages need to be transferred. Though our approach
imposes extra communications between clients for the
replacement policy, the internal traffic is still lower than
the home store scheme.

5 Conclusion

We have proposed and evaluated a novel web cache
scheme based on the decentralized peer-to-peer struc-
ture. Our experimental study shows that it performs bet-
ter than the existing schemes in term of hit ratio and node
load. Meanwhile, we take security issues into considera-
tion and our design is more feasible. Also, this approach
is resilient to node failures and can be scaled up for a
large community. Finally, it is easy to implement our
design on different peer-to-peer routing protocols in a
corporate network environment.

Our future research work includes several directions.
First, we consider caching large size media objects, such
as images and videos. It can bring significant bene-
fit in network traffic reduction if cached copies are lo-
cated and used. However, it may be necessary to par-
tition these objects and cache them on multiple client
platforms to avoid occupying a large cache space of a
single client and facilitate load smoothing. We will con-

sider coordinated caching schemes for these large media
objects in peer-to-peer caching systems. We will also
consider applying peer-to-peer caching schemes to other
applications, such as pervasive systems and sensor net-
works.

References

[1] M. Abrams, C. R. Standridge, G. Abdulla, S. Williams,
and E. A. Fox. Caching proxies: Limitations and poten-
tials. In WWW-4, Boston, Dec. 1995.

[2] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and zipf-like distributions: Evidence and
implications. In INFOCOM (1), pages 126–134, 1999.

[3] R. Caceres, F. Douglis, A. Feldmann, G. Glass, and
M. Rabinovich. Web proxy caching: the devil is in the
details, June 1998.

[4] P. Cao and S. Irani. Cost-aware WWW proxy caching
algorithms. In Proceedings of the 1997 Usenix Sympo-
sium on Internet Technologies and Systems (USITS-97),
Monterey, CA, 1997.

[5] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical internet ob-
ject cache. In USENIX Annual Technical Conference,
pages 153–164, 1996.

[6] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. Lecture Notes in Computer Sci-
ence, 2009:46+, 2001.

[7] F. Dabek, E. Brunskill, M. F. Kaashoek, D. Karger,
R. Morris, I. Stoica, and H. Balakrishnan. Building peer-
to-peer systems with chord, a distributed lookup service.
In Eighth Workshop on Hot Topics in Operating Systems,
May 2001.

[8] Gnutella. http://www.gnutella.com/.
[9] S. Lyer, A. Rowstron, and P. Druschel. Squirrel: A de-

centralized peer-to-peer web cache. In ACM Symposium
on Principles of Distributed Computing, Monterey, Cal-
ifornia, USA, 2002.

[10] Napster. http://www.napster.com.
[11] V. N. Padmanabhan and K. Sripanidkulchai. The case for

cooperative networking. In Peer-to-Peer Systems: First
International Workshop, IPTPS 2002, pages 178–190,
Cambridge, MA, USA, Mar. 2002.

[12] K. Psounis and B. Prabhakar. A randomized web-cache
replacement scheme. In INFOCOM, pages 1407–1415,
2001.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content addressable network. In
Proceedings of ACM SIGCOMM 2001, 2001.

[14] L. Rizzo and L. Vicisano. Replacement policies for a
proxy cache. IEEE/ACM Transactions on Networking,
8(2):158–170, 2000.

[15] K. W. Ross. Hash-routing for collections of shared Web
caches. IEEE Network Magazine, - 1997.

[16] A. Rowstron and P. Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-
to-peer systems. Lecture Notes in Computer Science,
2218, 2001.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

[17] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer
storage utility. In Symposium on Operating Systems
Principles, pages 188–201, 2001.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. In Proceedings of the
2001 Conference on Applications, Technologies, Archi-
tectures, and Protocols for Computer Communications,
pages 149–160. ACM Press, 2001.

[19] T. Tay, Y. Feng, and M. Wijeysundera. A distributed
internet caching system. In 25th Annual IEEE Con-
ference on Local Computer Networks, Tampa, Florida,
USA, 2000.

[20] N. trace files. http://www.ircache.net.
[21] J. Wang. A survey of Web caching schemes for the Inter-

net. ACM Computer Communication Review, 25(9):36–
46, 1999.

[22] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla,
and E. A. Fox. Removal policies in network caches for
World-Wide Web documents. In Procedings of the ACM
SIGCOMM ’96 Conference, Stanford University, CA,
1996.

[23] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. R. Karlin, and H. M. Levy. On the scale and perfor-
mance of cooperative web proxy caching. In Symposium
on Operating Systems Principles, pages 16–31, 1999.

[24] L. Xiao, X. Zhang, and Z. Xu. On reliable and scal-
able peer-to-peer web document sharing. In Interna-
tional Parallel and Distributed Processing Symposium,
Fort Lauderdale, Florida, USA, Apr. 2002.

[25] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz. Tapestry: A global-scale
overlay for rapid service deployment. IEEE Journal on
Selected Areas in Communications, 2003.

0-7695-2132-0/04/$17.00 (C) 2004 IEEE

Proceedings of the 18th International Parallel and Distributed Processing Symposium (IPDPS’04)

