
Live Data Migration For Reducing SLA Violations
In Multi-tiered Storage Systems

Jianzhe Tai
Northeastern University

jtai@ece.neu.edu

Bo Sheng
University of Massachusetts Boston

shengbo@cs.umb.edu

Yi Yao Ningfang Mi
Northeastern University

{yyao, ningfang}@ece.neu.edu

Abstract—Today, the volume of data in the world has been
tremendously increased. Large-scaled and diverse data sets are
raising new big challenges of storage, process, and query. Tiered
storage architectures combining solid-state drives (SSDs) with
hard disk drives (HDDs), become attractive in enterprise data
centers for achieving high performance and large capacity
simultaneously. However, how to best use these storage resources
and efficiently manage massive data for providing high quality
of service (QoS) is still a core and difficult problem. In this
paper, we present a new approach for automated data movement
in multi-tiered storage systems, which lively migrates the data
across different tiers, aiming to support multiple service level
agreements (SLAs) for applications with dynamic workloads at
the minimal cost. Trace-driven simulations show that compared
to the no migration policy, LMST significantly improves average
I/O response times, I/O violation ratios and I/O violation times,
with only slight degradation (e.g., up to 6% increase in SLA
violation ratio) on the performance of high priority applications.

Index Terms—multi-tiered storage systems; data migration;
service level agreement (SLA); bursty workloads;

I. INTRODUCTION

The volume of data in today’s world has been tremendously
increased. For example, Facebook revealed that its system each
day processes 2.5 billion pieces of content and more than
500 terabytes of data, including 83 million pictures. Being
one of the largest databases in the world, Google processes
more than 25 petabytes of data per day. As more and more
people use different types of devices such as smartphones and
laptops, data comes from everywhere, including body sensors
for collecting medical data and GPS devices used to gather
traffic information. Such massive and diverse data sets will
then lead to challenging issues for system designers to address.
One of the most important issues is where to store these
gigantic data sets and how to make them accessible.

Nowadays, flash-based solid-state drives (SSDs) have
gained prominence in enterprise arrays and successfully been
used as a replacement of HDDs because of significant per-
formance improvement and low energy consumption. Yet,
given the fact that SSDs are more expensive per gigabyte
(GB) and have a limited number of writes over the life time,
a multi-tiered storage platform, which combines SSDs with
traditional HDDs (e.g., FC/SAS and/or SATA), has become an
industrial standard building block in an enterprise data center.
Nevertheless, how to best use of these hybrid storage resources
for managing massive data and providing high quality of
service (QoS) is still a core and difficult problem due to the
following two issues.

First, modern enterprise data centers often provide shared
storage resources to a large variety of applications which might
demand for different performance goals such that different
service level agreements (SLAs) have to be met. Hence,
these data centers need to be SLA aware in the management
of shared storage resources. Second, an effective resource
manager needs to dynamically adjust its policy according to
different application workloads. In practice, workloads may
change over time. Bursty workloads and traffic surges are
often found in enterprise data centers, which inevitably causes
disastrous SLA violations, performance degradation and even
service unavailability.

To address the above issues, we present a new approach,
named LMST, for automated data movement in multi-tiered
storage systems. LMST attempts to lively migrate the data
across different storage tiers, aiming to guarantee multiple
SLA requirements for applications under dynamic workloads.
Via trace-driven simulations, we show that LMST efficiently
utilizes the high-performance devices (e.g., SSDs) to improve
the QoS for loose-SLA applications under bursty workloads
and meanwhile provide the performance guarantees for appli-
cations with strict SLAs.

This paper is organized as follows. Section II demonstrates
the architecture of a multi-tiered storage system. Section III
presents the LMST algorithm for automated data migration
in multi-tiered storage systems. Section IV evaluates the
effectiveness and robustness of LMST using trace-driven
simulations. Section V gives an overview of the related works.
Finally, we draw conclusions in Section VI.

II. SYSTEM ARCHITECTURE

We first present an overview of a multi-tiered storage system
which is considered in this paper. As shown in Fig. 1, the
system consists of four main components: application, server,
logical unit (LUN), and back-end storage pool.

Specifically, the application component in the top layer is
used to represent the applications who can access the shared
storage resources in data centers. We classify the applications
into several categories according to their SLA requirements.
Each application with its own I/O workload specifications
is assigned to a virtual machine (VM) which provides a
virtual disk to support the associated SLA requirement. The
hypervisor, as a virtual machine monitor (VMM) in the server
component, supports multiple VMs to access the shared back-
end storage pool and allocates virtualized disk resources
among VMs to achieve their different performance goals.

Fig. 1. The structure of a multi-tiered storage system.

The LUN component abstracts the fundamental storage pool
and supports the storage virtualization by building a mapping
table to connect the virtual disk resources with the physical
disk resources. Therefore, the LUN component hides the
information of the underlying hardware devices to applications
while enables multiple applications to share virtualized storage
resources without noticing the accesses and the contentions
from the others.

Through storage virtualization in the LUN component, the
storage pool can provide the fundamental disk resources as
the module of allocation unit (ALUN) which is set to 1GB
as the minimal capacity/migration unit for thin-provisioning
in sub-LUN level. Via the mapping table, each virtual ALUN
in the hypervisor is then dedicated to a physical ALUN in the
storage pool. The virtual center (e.g., VMware vCenter [1])
is responsible to analyze the resource usage in virtualization
layers and to deploy tools for resource management. We
remark that our new migration method can be implemented
as a new module in the virtual center, which is able to use all
these information to make the decisions for data migration, and
then send the decisions back to the virtualized storage manager
which will execute the corresponding migration procedure.

III. MIGRATION ALGORITHM LMST

In this section, we present our new data migration algorithm
LMST. Our objective is to improve the system performance
in terms of I/O response time while the application SLAs are
still satisfied after the migration processes. In the rest of this
section, we first present a formulation for data migration and
then show how LMST addresses the formulated problem in
detail. Table I gives the notations that are used in this paper.

A. Overview and Problem Formulation

We use data temperature as an indicator to classify data
into two categories according to their access frequency: hot
data has a frequent access pattern and cold data is occasion-
ally queried. We also consider a multi-tier storage structure
consisting of two tiers, i.e., high performance tier equipped
with SSDs and low performance tier using FCs. Because of

TABLE I
NOTATIONS IN THIS PAPER.

Ai, i ∈ [1, n] n ALUNs.
Dj , j ∈ [1,m] m disks.
xi,j ∈ {0, 1} indicator of association between Ai and Dj .
λAi

or λDj
I/O arrival rates of Ai or Dj (KB/ms).

µDj
average service rate of disk Dj (KB/ms).

sDj
average I/O size on disk Dj (KB).

SLAk the kth SLA requirement (ms).
Qj,k the kth logical buffer on disk Dj with SLAk .
yi,k ∈ {0, 1} indicator of association between Ai and SLAk .
twin duration of a time window (ms).
tmgt time duration of the migration process (ms).

the high hardware cost, high performance tier has a much
smaller capacity than low performance tier. We note that our
solution can be easily extended for data categories with more
temperature levels and for storage systems with more than two
tiers.

In practice, high performance tier is often reserved for
applications which have strictly high SLA requirements. How-
ever, from the perspective of improving the overall system
performance, high performance tier is also expected to host hot
data regardless of the data owner’s SLA. To best coordinate
between the SLA-based and the performance-based resource
allocations, LMST automatically reallocates the data across
multiple tiers of drives based on data temperature and SLA
requirements. In designing this new algorithm, we define the
following rules that allow LMST to efficiently utilize the high
performance SSD-tier.

• R1: Latency-sensitive applications with strict SLAs
should always been served in SSD-tier while the applica-
tions with loose SLAs should be initially served in HDD-
tier.

• R2: Once an application with loose SLA suffers bursty
workloads, its hot ALUNs should be migrated to SSD-tier
in order to mitigate the burdens in HDD-tier and avoid
SLA violations.

• R3: Extra I/Os caused by the migration process should
not violate SLAs of any applications at both the source
and the destination devices.

• R4: The newly migrated hot data in SSD-tier should
not bring additional SLA violations to latency-sensitive
applications with strict SLAs.

In particular, assume there are n ALUNs {A1, A2, . . . , An}
across m disks {D1, D2, . . . , Dm}. Let xi,j ∈ {0, 1} indicate
the association between Ai and Dj , i.e., xi,j = 1 if ALUN Ai

is hosted on disk Dj . Apparently, we have ∀i,
∑

j xi,j = 1.
In our solution, an ALUN is the minimum storage unit to be
migrated. LMST monitors the workload and the performance
for each ALUN and each disk in a predefined time window
twin (e.g., 20 minutes in our experiments1), to assist our
migration decision.

1We remark that the setting of twin depends on how frequently the
workload changes. If the workload changes fast, then a small twin is
preferred, vice versa.

Fig. 2. The profile of logical buffers and disk array.

Let λAi and λDj represent the arrival rates (KB/ms) of
ALUN Ai and disk Dj , respectively. Then, we have

λDj =
∑
i

xi,j · λAi , (1)

λAi = m(λAi) + α ·∆(λAi), (2)

where m(λAi) and ∆(λAi) represent the mean and the s-
tandard deviation of λAi , and α is a tuning parameter for
conservation. We further classify I/Os into four categories,
i.e., sequential read (SR), random read (RR), sequential write
(SW), and random write (RW) and let µSR

Dj
, µRR

Dj
, µSW

Dj
, and

µRW
Dj

denote the corresponding average service rates for these
patterns, respectively. Then, the overall average service rate
for disk Dj can be estimated as,

µDj = PSR · µSR
Dj

+ PRR · µRR
Dj

+

PSW · µSW
Dj

+ PRW · µRW
Dj

, (3)

where PSR, PRR, PSW , and PRW represent the fraction of
each category. We also let sDj denote the average I/O size
(KB) for each disk Dj .

In addition, assume each disk Dj has a single
I/O queue consisting of l consecutive “logical” buffers
{Qj,1, Qj,2, . . . , Qj,l} and each Qj,k serves I/Os with a d-
ifferent SLA requirement, SLAk (ms), see Figure 2. Without
loss of generality, we assume ∀i < k, SLAi < SLAk. Let
yi,k ∈ {0, 1} indicate if Ai is associated with SLAk. Thus,
Ai belongs to the buffer Qj,k if xi,j · yi,k = 1.

B. Migration Candidate Selector

Now, we present how to select candidate ALUNs for
migration. In overall, there are two phases in our scheme. The
first one is Selection Phase where we choose a set of potential
migration candidates based on the workloads of each ALUN
and the performance of each disk. Each potential candidate is
represented by a pair value (Ai, Dj) indicating a migration of
ALUN Ai to Dj (xi,j = 0). In the second phase of validation,
we carefully examine each migration candidate, quantify the
benefits, and estimate the risk of SLA violations. A subset of
feasible candidates will be selected for actual migration.

Selection Phase: There are two types of effective migra-
tions that the system can benefit from. First, if an ALUN
hosts hot data in low performance tier, it should be migrated to
high performance tier for improving the performance. We call
this migration as forward migration. Second, if the workload

of an ALUN from loose-SLA application becomes cold in
high performance tier, we may migrate that ALUN back to
low performance tier in order to release the space in high
performance tier. Such a migration is then called backward
migration.

We define two thresholds of I/O workloads τh and τl (τl <
τh) for selecting eligible ALUNs for migration as follows. For
an ALUN Ai, if its average workload λAi > τh, we consider
the data hosted on Ai is hot. If Ai resides in low performance
tier, it would be beneficial for the system to migrate it to high
performance tier. Similarly, if an ALUN’s workload is less
than the lower threshold, i.e., λAi < τl, the data stored on Ai

is regarded as cold. We then move that particular ALUN Ai to
low performance tier to release resources in high performance
tier if Ai is now allocated in high performance tier but belongs
to an application with loose SLA. By this way, we find a set
of ALUNs that are eligible for either forward or backward
migrations.

Furthermore, destination disk Dj for each eligible ALUN
to migrate to is found such that Dj has the lowest load among
those disks that can provide at least one available ALUN
space. Finally, the selection phase yields a set of migration
candidates (Ai, Dj) for the next validation phase.

Validation Phase: In validation phase, we quantify each
migration candidate (Ai, Dj) through the following two con-
ditions: (1.) SLAs have to be met; (2.) average I/O response
time is expected to be decreased (for forward migration). A
candidate is validated for migration only if both of these two
conditions are satisfied. In the next, we quantify and analyze
these performance metrics.

1) SLA Constraint: Recall that in our model, each disk
array keeps multiple logical buffers and each buffer servers
I/Os with a different SLA as shown in Figure 2. Upon the
arrival of an I/O request, the I/O scheduler inserts it into a
particular logical buffer which contains the requests having the
same SLA requirement as the arriving one. While, within each
buffer, all requests are scheduled based on First-In-First-Out
(FIFO) discipline. Specifically, each buffer Qj,k can just hold
a limited number of I/O requests in order to avoid introducing
heavy loads to disk Dj and causing additional SLA violations.

Thus, for each logical buffer Qj,k, we define MLj,k as
the maximal queue length that the disk j can handle without
causing any SLA violations,

MLj,k = SLAk · µDj .

Additionally, we use QLj,k to denote the accumulated average
queue length of logical buffers from Qj,1 to Qj,k. Let λj,k

represent the overall arrival rates of the ALUNs whose SLAs
are equal to or smaller than SLAk in disk j,

λj,k =
k∑

t=1

n∑
i=1

xi,j · yi,t · λAi .

Thus, using Little’s Law, QLj,k can be expressed as

QLj,k = f(λj,k) =
λj,k

µDj − λj,k

· sDj . (4)

According to the definitions, QLj,k ≤ MLj,k.
With the above analysis, we check the following two rules

for each migration candidate (Ai, Dj),

λDj + λAi < µDj , (5)

MLj,k ≥ QL′
j,k = f(λj,k + λAi

), for yi,k = 1. (6)

The first rule requires the total arrival rate on the destination
disk Dj to be less than the processing rate µDj . Similarly, in
order to process migration, the arrival rate of the source disk
to which Ai belongs should also be less than its processing
rate. The second rule is for the particular logical buffer with
the corresponding SLA that Ai belongs to. After migration,
the new queue length of Qj,k should not exceed the maximal
limit MLj,k.

2) Response Time Constraint: Now, we turn to the perfor-
mance constraint in terms of I/O response time for validating
migration candidates. Basically, we estimate the I/O response
time of both the source and the destination disks under the
policies with and without migration and then evaluate the
benefit (or the penalty) of each migration candidate.

For a migration candidate (Ai, Dj), assume Ai is currently
hosted on disk Dk, i.e., xi,k = 1. Let λ′

Dk
, λ′

Dj
and λ′

Ai

represent the workloads of Dk, Dj , and Ai in the next
time window, respectively. Additionally, let tmgt be the time
duration to process a live migration (tmgt < twin) and ∆λ
be the extra transfer rate for serving migration I/Os during the
migration process. Assume if validated, the migration (Ai, Dj)
will be launched at the current window. With this particular
migration, for both the source disk Dk and the destination disk
Dj , the workloads during tmgt of the current window become
λDk

+ ∆λ and λDj + ∆λ, respectively. Additionally, in the
next time window, their new workloads will be λ′

Dk
−λ′

Ai
and

λ′
Dj

+ λ′
Ai

, respectively.
Based on the Little’s Law, we can calculate the average

response time RTj of disk Dj as follows,

RTj = g(j, λDj) =
sDj

µDj − λDj

. (7)

With Eq.(7), we can evaluate the average I/O response time
of both the source and the destination disks in three peri-
ods, i.e., before, during and after the migration process. Let
RTk/j(Ai, Dj) and RT ′

k/j(Ai, Dj) be the average response
times of the source disk Dk (or the destination disk Dj) under
the policies with and without a particular migration (Ai, Dj),
respectively, and RT k/j(Ai, Dj) be the relative benefit (or
penalty) in terms of response time. We then have the following
equations:

RTk(Ai, Dj) = (g(k, λDk
) + g(k, λD′

k
)) · twin, (8)

RT ′
k(Ai, Dj) = g(k, λDk

) · (twin − tmgt) +

g(k, λDk
+∆λ) · tmgt + (9)

g(k, λ′
Dk

− λ′
Ai
) · twin,

RT k(Ai, Dj) =
RT ′

k(Ai, Dj)−RTk(Ai, Dj)

RTk(Ai, Dj)
, (10)

RTj(Ai, Dj) = (g(j, λDj) + g(j, λD′
j
)) · twin, (11)

RT ′
j(Ai, Dj) = g(j, λDj) · (twin − tmgt) +

g(j, λDj
+∆λ) · tmgt + (12)

g(j, λ′
Dj

+ λ′
Ai
) · twin,

RT j(Ai, Dj) =
RT ′

j(Ai, Dj)−RTj(Ai, Dj)

RTj(Ai, Dj)
. (13)

The response time constraint is designed to compare the
overall improvement in average response time to a threshold
e%. The migration candidate (Ai, Dj) is validated only if the
following condition is satisfied.

RT k(Ai, Dj) +RT j(Ai, Dj)

2
> e% (14)

In summary, we defined two sets of migration constraints,
related to SLA and performance in our migration policy,
LMST, for evaluating each migration candidate. Once a can-
didate is validated, the corresponding forward or backward
migration process can be actually performed by LMST.

IV. PERFORMANCE EVALUATION OF LMST

We use representative case studies to evaluate LMST’s
effectiveness. A trace-driven simulation model has been built
to emulate a multi-tier storage system as shown in Fig. 1.
Without loss of generality, we assume that in our model the
application components have two priority levels with different
SLA requirements such that the SLAs of high and low priority
applications are equal to SLAH = 1ms and SLAL = 20ms,
respectively. We also assume two tiers of disk drives in the
storage pool, i.e., SSD and FC. We remark that the number
of disk drives in each tier is fixed in all the experiments. The
device parameters of these two tiers are shown in Table II.
Initially, the virtual ALUNs of applications with strict SLAs
(i.e., SLAH) are all mapped to SSDs, whereas FCs are initially
assigned to low priority applications with SLAL.

TABLE II
DEVICE PARAMETERS OF TWO TIERS

Disk Type Disk Number Total Capacity Service Rate
SSD 2 40GB 500MB/s
FC 5 100GB 160MB/s

Consider 7 applications (2 with SLAH and 5 with SLAL)
to access a 70GB data set. In average, each application requires
10 virtual ALUNs and the capacity of such a virtual ALUN is
1GB. We then generate an I/O stream for each virtual ALUN
such that there are totally 30 time periods and each lasts around
20 minutes. The specifications of a request in such an I/O
stream include I/O arrival time, I/O address and I/O size, where
I/O address is uniformly distributed within an ALUN while I/O
size is drawn from an exponential distribution with mean of
100KB.

In order to evaluate LMST under bursty workloads, we
further inject bursty periods randomly into each I/O stream
such that a time period can be marked as either “idle” or

“bursty”, as shown in Fig. 3. We then generate I/O inter-
arrival times in an idle period using an exponential distribution
with mean rate of 10 KB/ms (resp. 5 KB/ms) for high (resp.
low) priority applications; while I/O arrival process of a bursty
period is drawn from a 2-state Markov-Modulated Poisson
Process (MMPP) with mean arrival rate equal to 20 KB/ms
(resp. 10 KB/ms) for high (resp. low) priority applications.

I B I I B

 0

 5000

 10000

 15000

 20000

 25000

 0 20 40 60 80 100

A
rr

iv
al

 R
at

e
(I

O
/m

in
)

Time (minute)

Fig. 3. Number of I/Os per minute in a virtual ALUN.

Fig. 4 depicts the performance results under NMST and
LMST, where NMST (i.e., no migration process) is used as
the base case to normalize LMST’s performance. In this set of
results, we measured the mean I/O response times2 (M Resp),
the fraction of I/Os (V Ratio) whose response times exceed
the predefined SLAs, and the mean violation times (V Time)
that are the difference between the actual I/O response times
and the predefined SLAs.

We observe that LMST significantly improves the overall
performance in terms of I/O response time, I/O violation ratio
and I/O violation time. Faster I/O response time is achieved
under LMST, see Fig. 4. This is because LMST makes a better
use of SSDs by migrating all validated bursty traffic from FCs
to SSDs. Consequently, LMST significantly reduces the I/O
violation ratio (V Ratio) and I/O violation time (V Time)
by 42% and 40%, respectively. More importantly, LMST
always gives lower priority to migration I/Os as well as new
application I/Os which are migrated from FCs. Thus, I/Os from
high priority applications in SSDs are still guaranteed to meet
the corresponding SLAs.

To further investigate the performance impacts of migrations
on each application, we preset their average I/O response times
and I/O violation ratios under both NMST and LMST in
Table III. We observe that all low priority applications (i.e.,
App3, ..., App7) obtain tremendous performance improvemen-
t, experiencing lower response times and less violation ratios,
and thereby receiving high QoS. Moreover, the performance of
high priority applications (i.e., App1 and App2) keeps almost
the same despite a very slight degradation due to the extra
migrated I/Os.

In our work, we have also done sensitivity analysis on
different system workloads (e.g., system loads and bursty
profiles) and investigate the impacts of key parameters in

2An I/O request response time is measured from the moment when an I/O
request is submitted to the moment when that I/O request finishes.

N
or

m
al

iz
ed

 p
er

fo
rm

an
ce

 (
%

)

 20

 40

 60

 80

 100
NMsT LMsT

V_Ratio V_TimeM_Resp
 0

Fig. 4. Performance results under NMST and LMST.

migration constraints such as α of the SLA constraint. Due
to the limited space, we omit those results in this paper but
refer the reader to [2] for the details. These results further
validate the effectiveness and robustness of our LMST policy.

V. RELATED WORK

As enterprises consolidate a variety of applications that
require different service levels, it becomes an urgent demand
to build a multi-tiered storage platform for providing different
levels of service in the storage domain [3]. Storage tiering
techniques are introduced to dynamically deliver appropriate
resources to the business, targeting at performance improve-
ment, cost reduction and management simplification. Because
of its significant importance, the technology of storage tiering
has been recognized by ESG’s 2011 Spending Intentions
Survey [4], as one of the top 10 planned storage investments
in the next couple years. Many industrial companies have
already developed their own automatic tiering technologies
and released the relative products, such as IBM Easy Tier for
DS8000 [5], EMC Fully Automated Storage Tiering (FAST)
for Celerra [6], and HP Adaptive Optimization for 3PAR [7].

A large literatures on storage management have been de-
veloped for the years. Recently, [8], [9], [10], [11], [12], [13],
[14], [15] proposed several new techniques (algorithmic or
theoretical) to explore the effective data migration in storage
systems. For example, [8], [9] investigated the idea of using
edge-coloring theory for data migration and achieved a near-
optimal migration plan by using polynomial-time approxi-
mation algorithms. Triage, an adaptive controller, has been
proposed in [11] to address the problem of performance
isolation and differentiation in a consolidated data center. By
throttling storage access requests, Triage ensures high system
availability even under overload conditions. Later, [10] focused
on minimizing the overhead of data migration by automati-
cally detecting hotspots and reconfiguring the system based
on the bandwidth-to-space ratio. [15] proposed a dynamic
tier manager, named EDT-DTM, performing dynamic extent
placement. However, we argue that none of the existing studies
take account of both the on-the-fly migration penalties and the
various application SLAs for data migration in multi-tiered
storage systems.

TABLE III
EACH APPLICATION’S PERFORMANCE UNDER NMST AND LMST.

Capacity 70GB High Priority Low Priority
50% Burst App1 App2 App3 App4 App5 App6 App7

NMST M Resp (ms) 1.30 1.27 382.29 366.60 368.52 350.12 380.55
V Ratio (%) 7.06 6.90 41.75 40.37 41.65 40.28 40.59

LMST M Resp (ms) 1.34 1.32 131.01 137.75 139.53 125.49 124.53
V Ratio (%) 7.73 7.53 21.55 22.36 22.28 19.94 19.34

A cost model [12] has been developed to solve the problem
of efficient disk replacement and data migration in a polyno-
mial time. [13] implements the QoS guarantee of performance
impact on foreground work by leveraging a control-theoretical
approach to dynamically adapt migration speed. [14] proposed
a lookahead data migration algorithm for SSD-enabled multi-
tiered storage systems, where the optimal lookahead window
size is determined to meet the workload deadlines. However,
the work [14] assumes that the I/O profile exhibits a cyclic
behavior and does not consider different application SLAs in
their algorithm.

VI. CONCLUSION

In this paper, we proposed LMST, a live data migration
algorithm for efficiently utilizing the shared storage resources
and meeting various application SLAs in a multi-tiered storage
system. We have shown that bursty workloads in storage
systems can deteriorate system performance, causing high
I/O latency and large numbers of SLA violations in low
performance tiers. In order to mitigate such negative effects,
hot data that are associated with those bursty workloads should
be migrated to high performance tiers. However, extra I/Os
due to data migration as well as the newly migrated bursty
workloads can incur additional SLA violations to high priority
applications in high performance tiers.

Therefore, we designed LMST to counteract the impacts
of burstiness by efficiently utilizing the high-performance
devices, and to minimize the potential delays to latency-
sensitive applications. Trace-driven simulations have been con-
ducted to evaluate the performance of our new LMST policy.
Compared to the no migration policy, LMST significantly
improves average I/O response times, I/O violation ratios and
I/O violation times by migrating all validated bursty traffic
from FCs to SSDs. More importantly, under LMST, the extra-
migrated I/Os only cause a very slight degradation (e.g., up
to 6% increase in SLA violation ratio) on the performance of
high priority applications.

ACKNOWLEDGMENT

This work was partially supported by NSF grant CNS-
1251129 and IBM Faculty Award.

REFERENCES

[1] “VMware vCenter Server,” http://www.vmware.com/products/
vcenter-server/overview.html.

[2] J. Tai, B. Sheng, Y. Yao, and N. Mi, “Live data migration for reducing
sla violations in multi-tiered storage systems,” Tech Report, 2013.

[3] B. Laliberte, “Automate and Optimize a Tiered Storage Environment-
FAST!” White Paper, 2009, http://www.emc.com/collateral/
analyst-reports/esg-20091208-fast.pdf.

[4] B. Lundell, J. Gahm, and J. McKnight, “2011 IT Spending Intentions
Survey,” Research Report, 2011, http://www.enterprisestrategygroup.
com/2011/01/2011-it-spending-intentions-survey/.

[5] “IBM DS8000,” http://www-03.ibm.com/systems/storage/disk/ds8000/.
[6] “EMC FAST,” http://www.emc.com/products/launch/fast/.
[7] “HP 3PAR Adaptive Optimization Software,” http://h18006.www1.hp.

com/storage/software/3par/aos/index.html.
[8] S. Khuller, Y. Kim, and Y. Wan, “Algorithms for data migration with

cloning,” in Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems. San Diego,
California: ACM, 2003, pp. 27–36.

[9] E. Anderson, J. Hall, J. Hartline, M. Hobbs, A. R. Karlin, J. Saia,
R. Swaminathan, and J. Wilkes, “An experimental study of data mi-
gration algorithms,” in Workshop on Algorithm Engineering. London,
UK: Springer, 2001, pp. 145–158.

[10] V. Sundaram and P. Shenoy, “Efficient data migration in self-managing
storage systems,” in IEEE International Conference on Autonomic
Computing, Dublin, Ireland, 2006, pp. 297–300.

[11] M. Karlsson, C. Karamanolis, and X. Zhu, “Triage: performance isola-
tion and differentiation for storage systems,” in Twelfth IEEE Interna-
tional Workshop on Quality of Service, Palo Alto, CA, 2004, pp. 67–74.

[12] B. Seo and R. Zimmermann, “Efficient disk replacement and data
migration algorithms for large disk subsystems,” ACM Transactions on
Storage, vol. 1, no. 3, pp. 316–345, 2005.

[13] C. Lu, G. A. Alvarez, and J. Wilkes, “Aqueduct: Online data migra-
tion with performance guarantees,” in Proceedings of the 1st USENIX
Conference on FAST’02. Monterey, CA: ACM, 2002, pp. 219–230.

[14] G. Zhang, L. Chiu, and L. Liu, “Adaptive data migration in multi-tiered
storage based cloud environment,” in IEEE 3rd International Conference
on Cloud Computing, Miami, FL, 2010, pp. 148–155.

[15] J. Guerra, H. Pucha, J. Glider, W. Belluomini, and R. Rangaswami, “Cost
effective storage using extent based dynamic tiering,” in Proceedings of
the 9st USENIX Conference on FAST’11. San Jose, CA: ACM, 2011,
pp. 20–20.

