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Abstract— As the major component of Internet routing in-
frastructure, the Border Gateway Protocol (BGP) is vulnerable
to malicious attacks. While Secure BGP (S-BGP) provides a
comprehensive framework to secure BGP, its high computational
cost and low incremental deployment benefits seriously impede its
wide usage in practice. Using a lightweight symmetric signature
scheme, SPV is much faster than S-BGP. However, the speed
boost comes at the price of prohibitively large signatures.Aggre-
gated path authentication reduces the overhead of securingBGP
in terms of both time and space, but the speed improvement is
still limited by public key computation. In this paper, we pr opose
a simple keychain-based signature scheme calledKC-x, which has
low CPU and memory overheads and provides strong incentive
for incremental deployment over the Internet. As a generic
framework, KC-x has the flexibility of using different signature
algorithms. We implement two realizations of KC-x. One is based
on RSA called KC-RSA, and the other is based on Merkle hash
tree called KC-MT. After characterizing the overheads of KC-
RSA and KC-MT, we evaluate their performance with real BGP
workloads. Our experimental results show that KC-RSA is as
efficient as SAS-V1, and KC-MT is even 3-fold faster than SPV
with a 40% smaller signature. Through the hybrid deployment
of KC-MT and KC-RSA, KC-x can achieve both small signature
and high processing rate for BGP speakers.

I. I NTRODUCTION

The Internet is a global-scale and decentralized network
comprised of numerous smaller inter-connected networks,
each of which is anautonomous system(AS) under a single
administration. The routing process among ASes is called
interdomain routing. The dominant interdomain routing pro-
tocol is the Border Gateway Protocol (BGP), and the current
version BGP-4 has been widely used for over a decade
[22], [23]. However, due to its initial design for a trusted
environment [21], BGP is vulnerable to a variety of malicious
attacks. For instance, the communication between BGP peers
is subject to wiretapping attacks, and a BGP speaker can
be compromised to launch a blackhole attack. These attacks
cause transmission of fictitious BGP messages, modification
or replay of valid messages, or suppression of valid messages.

Many countermeasures [3], [5], [12], [17], [25], [29] have
been proposed for securing BGP. Among them, Secure BGP(S-
BGP) [17], [18] is the first comprehensive framework for
securing BGP. The S-BGP protocol and its associated architec-
ture are currently under consideration for standardization by
the Internet Engineering Task Force (IETF). However, due to
its extensive use of certificates and asymmetric cryptography,
S-BGP is costly in both computation and storage. Moreover,

1This is the most efficient software approach in Aggregation Path Authen-
tication [29].

TABLE I

COMPARISON OFS-BGP, SAS-V, SPV,AND KC-X

Incremental Benefit Speed Memory Usage
S-BGP Weak Lowest > SAS-V
SAS-V Weak 2X speedup = KC-RSA
SPV Strong 13X largest
KC-RSA Strong 2X Smallest
KC-MT Strong 34X < SPV
KC-Hybrid Strong ≥ SPV < KC-MT

while S-BGP can be deployed incrementally, it provides little
incremental benefits if the deployment is not contiguous. Using
an efficient symmetric signature scheme (Merkle hash tree),
SPV [12] is far more efficient than S-BGP in processing BGP
UPDATE messages and provides stronger benefits for incre-
mental deployment, but at the price of significantly greater
storage demands, due to its much larger signature. Seeking
for efficiency in both computation and storage, aggregated path
authentication [29] has been proposed. Among its software
options, the Sequential Aggregated Signature with bit Vector
(SAS-V) yields the best performance. The improvement in
computation, however, is limited, due to the use of asymmet-
ric cryptography. By exploiting BGP’s natural path stability,
Butler et al. [5] significantly reduced the computational cost
of BGP path authentication, but at the expense of higher
bandwidth cost. With the reasonable bandwidth cost, its perfor-
mance improvement is still limited. In general, a viable BGP
security scheme faces at least the following three challenges.
First, since some BGP routers at certain times have very
critical performance demand, it should provide sufficiently
high processing speed. Second, with high processing speed,the
storage and bandwidth overhead should be affordable. Third, it
should provide incremental benefits even when not all routers
participate. However, none of the existing countermeasures
have addressed all these issues successfully.

In this paper, we propose a simple keychain-based ASPATH
protection scheme, calledKC-x, for securing BGP. The distinct
feature of KC-x is that the keys used for signature generation
and verification form a chain by themselves, resulting in a
strong tie between signatures. Such a construction provides
strong benefits for incremental deployment. It can still provide
some security protection even with a sparse deployment, and
the protection is strengthened with the deployment of KC-
x on more routers. As a generic signature framework, KC-x
can be realized using any efficient digital signature algorithm.
Multiple realizations can co-exist in a hybrid deployment.
Indeed, we build two realizations of KC-x using RSA (KC-
RSA) and Merkle hash tree (KC-MT), respectively. On one



hand, based on RSA-1024, KC-RSA achieves the same per-
formance as SAS-V. Moreover, KC-RSA achieves aggregated
signature without modifying the existing RSA implementation,
which is required by SAS-V. On the other hand, KC-MT is
much simpler in design and more efficient in both computation
(i.e., a factor of 3 faster) and storage (i.e., 40% less) than
SPV, because it constructs smaller trees and reuses them over
multiple signatures.

After characterizing the overheads of KC-RSA and KC-MT,
we evaluate their performance under two types of realistic
BGP workloads: normal and pathological. Note that KC-
RSA and KC-MT can co-exist in a single BGP router. KC-
Hybrid refers to the hybrid deployment of KC-RSA and KC-
MT across the Internet, in which KC-MT is primarily used
in the BGP routers having critical demand for performance,
while KC-RSA plays a major role in the remaining routers.
KC-Hybrid can achieve both small signature to save space,
and high processing rate for handling a high volume of
UPDATE messages. Overall, KC-x provides strong benefits for
incremental deployment and satisfactory processing speedwith
modest storage cost and small bandwidth cost, making it a very
promising BGP security mechanism for practical deployment.
In comparison with S-BGP, SAS-V, and SPV, we summarize
the advantages of KC-x in Table I.

The remainder of this paper is organized as follows. Sec-
tion II outlines the operation and security requirements of
BGP. Section III details the design of KC-x for securing BGP.
Section IV investigates two realizations of KC-x. Section V
characterizes their computation and memory overheads, and
evaluates their performance under the real BGP workloads.
Section VI surveys the related work. Finally, the paper con-
cludes with Section VII.

II. I NTERDOMAIN ROUTING SECURITY

The primary function of the Border Gateway Protocol
(BGP) [22], [23] is to exchange network reachability informa-
tion among BGP speakers. This information is used to con-
struct an AS connectivity graph, in which interdomain routes
are established, routing loops are pruned, and routing policies
at the AS level are enforced. Thus, the goal of protecting
BGP is to ensure the integrity, authenticity and availability
of AS graphs. BGP involves two types of control information
exchange: one is between peering speakers, and the other is re-
layed through a series of intermediate speakers. Protecting the
peer exchange is just another variant of protecting data com-
munications between any two endpoints, and existing security
measures such as IPsec or SSL/TLS should apply. However,
protecting the relayed routing exchange among BGP speakers
is much more challenging: routing information is transformed
when it is propagated through intermediate speakers, some of
which may be misconfigured or even compromised. Therefore,
BGP routing messages are vulnerable to a variety of malicious
attacks, which can result in the injection of false routing
messages and the suppression of valid ones.

Researchers have studied possible attacks on BGP [4],
[7], [21]. In these studies, attacks are typically classified

Fig. 1. Overview of keychain-based signature scheme

as passive and active. In passive attacks, attackers simply
eavesdrop information off the network. Confidentiality is not
a major concern for BGP, and if necessary, can be achieved
by employing IPsec [14] between peering speakers. Active
attacks are more sophisticated as attackers can manipulate
routing messages in the network, which include replay at-
tacks, message insertion, deletion and modification, man-in-
the-middle attacks, and denial-of-service attacks. To launch
an active attack, adversaries may have to access network links
or compromise routers.

Therefore, we focus on active attacks, especially the at-
tacks that manipulate BGP UPDATE messages. Other BGP
messages such as OPEN, NOTIFICATION, and KEEPALIVE
messages can be protected by using IPsec or TCP-MD5 [10]
between peering speakers. There are two kinds of falsification
attacks on BGP UPDATE messages. One is the network layer
reachability information (NLRI)2 falsification attack, and the
other is the ASPATH falsification attack. For example, black
holing is one of the severe attacks using falsification, in which
adversaries can either advertise a more specific prefix (i.e.,
NLRI falsification) or shorten ASPATH to “persuade” other
routers to prefer the route otherwise not being preferred (i.e.,
ASPATH falsification).

Unlike blackhole attacks, grayhole attackers may selectively
drop traffic flowing through them. Further, in colluding attacks,
multiple compromised BGP routers may collude and exchange
BGP messages and secrets through a tunnel. These colluding
routers can cooperate to launch a blackhole attack and other
sophisticated attacks. These advanced attacks cannot be pre-
vented solely by adopting a secure routing protocol, like S-
BGP or SPV. Thus, defending against such attacks is beyond
the scope of this paper.

This paper investigates an efficient security scheme for
protecting ASPATH. Any protection scheme for NLRI is com-
plementary to KC-x, such as PKI-based centralized approach
in S-BGP and decentralized one in psBGP.

III. K EYCHAIN-BASED SIGNATURE

In this section, we first present the fundamental design of the
proposed keychain-based signature scheme, and then discuss
its security property. Finally, we describe how to estimatethe
computation overhead of handling a BGP UPDATE message.

A. Fundamental Design

In KC-x, each BGP speaker (Ri) generates a temporary
key pair (t+i /t−i ). As shown in Figure 1, the speakerRi

2NLRI refers to the IP prefixes that the UPDATE message and path
attributes pertain to.



TABLE II

SUMMARY OF NOTATIONS

Nx AS number
Ri a BGP speaker
Vi a bit vector of BGP speakerRi

H(M) hash value of the messageM
{M}K−

the messageM signed by using the private keyK−

K−(M) encrypt the messageM by using the private keyK−

K+(M) decrypt the messageM by using the public keyK+

authorizes its next-hop speaker (Ri+1) and passest−i to Ri+1

in plaintext. The UPDATE message and the temporary public
key t+i are signed with the private key (t−i−1), which is
authorized by its preceding speaker (Ri−1). In consequence,
the above construction forms a chain of authorization. For
each BGP speaker, instead of signing an UPDATE message
directly with its own private key as S-BGP, the speaker signs
the message using a temporary private key that is authorized
by its preceding speaker along the ASPATH, and verifies
the message by using temporary public keys of all previous
speakers along the ASPATH. The only exception is that the
speakerR0 from the origin AS still signs ASPATH with its
own private key that is authenticated by PKI, since there is no
preceding speaker beforeR0. For convenience, a temporary
key (private or public) is termed as anattestation keyin the
following discussion.

In more detail, we describe how KC-x protects an UPDATE
message from the origin ASN0, and propagates it to ASNi.
The notations we use in the following discussion are listed
in Table II. Here,K+

i /K−

i denotes the regular public/private
key pair of the BGP speaker of ASNi, and t+i /t−i denotes
the attestation key pair generated by the speaker of ASNi.

When the speakerR0 of AS N0 advertises some prefixes
it owns, it signs the UPDATE message using its own private
key K−

0 , which is the same as S-BGP. As proposed in [29],
a bit vector denoted asV0 here is included in the UPDATE
message to amortize signature cost. In addition, it carriesan
attestation key pairt+0 /t−0 and signs the attestation public key
t+0 using K−

0 . To improve performance, this attestation key
pair can be generated offline or off-peak in advance, and the
next-hop speaker can use it to sign multiple messages. The
message thatR0 sends toR1 is shown as follows:

R0 → R1 : {N0; V0; t
+
0 }K

−

0

, t−0

Upon receiving the above message,R1 first verifies the
signature usingR0’s public keyK+

0 . If R1 decides to forward
this message to its external peers,R1 appends its own ASN1

to the ASPATH. Similarly,R1 also sends its attestation key
pair t+1 /t−1 to the next-hop speaker. Meanwhile,R1 usesR0’s
attestation private key to sign the UPDATE message. Like S-
BGP, the speaker of KC-x carries all route attestations (RAs)
from the received message, and appends its own attestation.
However,R1 needs to removeR0’s attestation private keyt−0 ,
from the message to maintain the secrecy betweenR0 andR1.

The message thatR1 sends toR2 is shown as follows:

R1 → R2 : {N0; V0; t
+
0 }K

−

0

{N0, N1; V1; t
+
1 }t

−

0

, t−1

Generally speaking, the message received by speakerRi (0 <
i ≤ n) has the following format:

Ri−1 → Ri : {N0; V0; t
+
0 }K

−

0

,

{N0, N1; V1; t
+
1 }t

−

0

. . .

{N0, ..., Ni−1; Vi−1; t
+
i−1}t

−

i−2

, t−i−1

Upon receiving the above message,Ri first verifies the re-
ceived RAs sequentially in the order of that they are signed—
one RA is verified using the attestation public key included in
the preceding RA. When forwarding the UPDATE message,
Ri appends its ASNi to the ASPATH, including the next-hop
AS and its attestation public keyt+i in the RA, and signs the
RA usingRi−1’s attestation private keyt−i−1.

Note that the attestation keys are sent in every UPDATE
message. This design simplifies the handling of the cases in
which some next-hop speakers are down and then up, because
these speakers can always receive the refreshed attestation
keys from the latest UPDATE message. A straightforward
optimization could be sending attestation key pairs only if
necessary to save bandwidth consumption. Since the extra
bandwidth consumed by attestation keys is small, we do not
include such an optimization in the paper.

B. Integration with BGP

Like the other secure BGP routing protocols, such as S-
BGP and SPV, the authentication information in KC-x is
transmitted in an optional transitive path attribute in the
UPDATE message.

KC-x employs the similar approaches as S-BGP to handle
route aggregation and expiration. When generating an aggre-
gated route from several individual routes, a KC-x speaker
needs to attach the authentication of all individual routesto
the aggregated one. Route announcements and withdrawals are
vulnerable to replay attacks, in which a BGP speaker replaysa
previously-heard UPDATE message. To defend against replay
attacks, KC-x incorporates into the signature an expiration
date, after which the corresponding route is no longer valid.
When the route is about to expire, the original speaker must
re-announce this route with a new signature.

C. Security Analysis

Here we discuss the security property of KC-x in two
scenarios: full deployment and partial deployment.

When KC-x is fully deployed over the Internet, ASPATH
falsification is infeasible. Recall that KC-x incorporatesbit
vectors to reduce sign operations. For bit vectors to work
properly, each BGP speaker pre-establishes an ordered list
of its next-hop speakers and distributes the neighbor list to
the other speakers via the speaker’s X.509 certificate. Evenif
an adversary steals one or more attestation private keys, she



cannot forge ASPATH with any adverse effect. The forged
ASPATH has to be “valid” in the sense that for any consecutive
two ASes in it, the latter speaker must be in the former’s
neighbor list.

. . . Ni−1, X(i−1,1), X(i−1,2) , . . . Ni, X(i,1), X(i,2), . . . , X(i,m), M

When attestation private keys are secure, falsification is
still possible in a very limited way. Consider the above
generalized ASPATH, in whichNj is KC-x capable speaker,
X(i,j) is legacy, and M is malicious. Since M does not know
the attestation private key ofNi−1, she cannot modify and
remove any AS number before and includingNi. However,
she can arbitrarily modify the portion fromX(i,1) to X(i,m)

inclusively, as long as the AS number followingNi satisfies
Ni’s bit vector. Generally speaking, the room for the adversary
to forge an ASPATH is between the preceding KC-x capable
AS to itself. With the increased deployment of KC-x capable
speakers, such a security hole becomes smaller.

Hence, KC-x does not need to be deployed contiguously,
and is incrementally deployable.

D. Computational Overhead

We now estimate the computation overhead of processing
UPDATE messages in KC-x. When receiving an incoming
BGP UPDATE message, a BGP speaker needs to validate
this message. That is, the speaker checks the authenticity of
NLRI and ASPATH. The authenticity of NLRI is validated
by matching with the cached AA (Address Attestation) infor-
mation without cryptographic computation. The validationof
ASPATH involves a certain number of signature verifications,
which depend on the number of ASes in the ASPATH.
Note that the first signature is different from the follow-
ing signatures, because it is generated using the originating
speaker’s private keyK−

0 . In the implementation,K+
0 /K−

0 is
an RSA key pair, and the verification of the first signature is
lightweight, as we will show in Section IV-A. Furthermore,
to avoid unnecessary overhead, KC-x only validates those
UPDATE messages that cause routing table changes, as S-
BGP does [16].

When propagating an UPDATE message to the next-hop
speakers, the BGP speaker appends its own AS number into
the ASPATH and signs the UPDATE message. Due to the use
of a bit vector, only one signing operation is required.

When signing an UPDATE message, the speaker needs to
attach an attestation key pair for the next-hop speakers. Since
the generation of attestation key pairs can be performed offline
in advance, its computation overhead is negligible in process-
ing UPDATE messages. Therefore, the estimated computation
overhead of handling an outgoing UPDATE message is given
below:

C ≈ Length(ASPATH) × T ime(verify) + T ime(sign) (1)

From Equation 1, we can see that the computation cost
depends only on how fast a signature algorithm can sign and
verify a signature, and how long an ASPATH is.

IV. T WO REALIZATIONS

In this section, we investigate the use of two signature
algorithms, RSA and Merkle hash tree, to realize the keychain-
based scheme. For convenience, we call these two realizations
KC-RSA and KC-MT, respectively.

A. KC-RSA

S-BGP chooses DSA rather than RSA to protect UPDATE
messages due mainly to its smaller signature. Specifically,
RSA-1024 yields a 128-byte signature, whereas DSA yields
only a 40-byte signature. In addition, DSA supports pre-
computation, which greatly reduces the cost of signing op-
eration.

On the other hand, while RSA is about 2-fold slower than
DSA in signing with the same key length, it is one order of
magnitude faster in verifying. In a simple experiment, in which
we use a Pentium-4 1.8GHz CPU, RSA-1024 takes 6.8ms in
signing but only 0.35ms in verifying. By contrast, DSA takes
3.8ms (0.03ms with pre-computation) in signing, but 4.6ms
in verifying. Assuming that each route contains an average of
3.7 ASes [15], RSA-1024 is still 2-fold faster than DSA-1024
even when pre-computation for DSA is enabled.

1) Signature aggregation:In [29], Zhao, et al. proposed
two schemes, general aggregate signature and sequential ag-
gregate signature, to aggregate multiple signatures into one
signature. The signature aggregation reduces the length ofUP-
DATE messages and memory consumption of routing tables.
Although these two schemes can also be applied to KC-RSA,
they require the modification of the existing RSA signature
algorithm. In this paper, we propose a new scheme of signature
aggregation that eliminates this requirement. The proposed
scheme leverages the exclusive-OR operation and is termed
asXOR-ed aggregate signature.

We still use the previous example to illustrate how XOR-
ed aggregate signature works. A new symbolSi denotes the
signature generated byRi. There is no change forR0, which
sendsS0 and its attestation private keyt−0 as follows.

S0 = K−

0 (H(N0; V )) . (2)

For each followingRi, instead of appendingSi to the existing
sequence of signaturesS0, S1, ..., Si−1, Ri incorporates the
preceding signatureSi−1 into its own signatureSi, which is
shown as follows:

Si = t−i−1 (Si−1 ⊕ H(N0, ..., Ni; V )) (3)

Ri+1 verifies Si in the following steps: (1) decryptSi:
t+i−1(Si) = Si−1 ⊕ H(N0, ..., Ni; V ); (2) compute the hash
value of the message:h = H(N0, ..., Ni; V ); (3) Re-
cover Si−1: t+i−1(Si) ⊕ h = Si−1 ⊕ H(N0, ..., Ni; V ) ⊕
H(N0, ..., Ni; V ) = Si−1 ; (4) i = i − 1, if i 6= 0, go to step
(1); (5) useR0’s public keyK+

0 to verify S0. All the signatures
are correct only ifS0 passes the verification. Since exclusive-
OR is very lightweight, the cost of additional exclusive-
OR operations induced by XOR-ed aggregate signature is
negligible.



Fig. 2. An example of HORS signature. A hash tree with 8 leaf nodes
is derived from a secret value, and two leaf nodes are disclosed for each
signature. The gray circles denotes the disclosed values ina signature. Using
these values, a verifier can recalculate the root value.

Note that attestation public keys are carried along with the
aggregate signature in the UPDATE messages. Each public
key is also 128-byte long for RSA-1024. An optimization for
memory consumption in the RIB is to store public keys in
a different database from RIB, since one public key can be
reused among multiple routes.

B. KC-MT

Invented by Ralph Merkle, a Merkle hash tree [20] cre-
ates secure signatures based on hash functions (e.g. SHA-
1). Due to the use of lightweight hash functions, Merkle-
tree-based signature scheme is far more efficient than those
based on asymmetric crypto-systems. The basic Merkle-tree-
based signature works as follows: Alice populatesn leaf
nodes from a secret and builds a hash tree; when signing a
message, Alice hashes the message and maps it into a leaf
node, and then discloses the leaf node accompanying with
some corresponding intermediate nodes to Bob; after receiving
the leaf node and the intermediate nodes, Bob can compute
the root value, and compare it with the value given by Alice.
Since the chance of a forged message mapping to the same
leaf node as a legitimate message is1

n
, we need a large hash

tree to achieve high security.
To reduce tree size, a few variants have been proposed.

The HORS signature [24] is one of them, which can achieve
fast verification with a smaller hash tree. Instead of disclosing
one leaf node, the HORS signature disclosesm leaf nodes
for each signature. There is only a chance of1/

(

n

m

)

that two
messages yield the same signature. Figure 2 shows an example
of (n = 8, m = 2).

SPV uses Merkle hash tree and HORS signature to secure
BGP routing [12]. In SPV, an origin BGP speaker constructs
a single large hash tree in three hierarchies. In the lowest
hierarchy, a subtree with 256 leaf nodes is used to authenticate
a single AS in the ASPATH. Then, all root values of these
subtrees form a tree in the second hierarchy, and its root
value, named as epoch public key, is used to authenticate one
ASPATH protector. Finally, multiple epoch public keys form
a tree in the highest hierarchy, whose root value called multi-
epoch public key authenticates these epoch public keys. The
origin AS signs this multi-epoch public key, and disseminates
the multi-epoch public key certificate to BGP speakers.

KC-MT also makes use of HORS signatures in conjunction
with a hash tree. Unlike SPV, KC-MT has very simple

constructions. For a Merkle hash tree of KC-MT, the secret
used to populate all leaf nodes is treated as a private key,
and the root value of the tree is a public key. According to
the fundamental design of KC-x, a speakerRi generates an
attestation key pair by building a Merkle hash tree based on a
secrett−i (i.e. attestation private key) and calculates the root
valuet+i (i.e. attestation public key). It then signs the ASPATH
andt+i using the hash tree derived from the secrett−i−1 given
by its preceding speakerRi−1, and then forwards the signed
message andt−i to the next-hop speaker.

For a Merkle hash tree, security degrades when more sig-
natures are generated, because more leaf nodes are disclosed.
SPV chooses (n = 256, m = 6) to ensure the forgery
probability of 2−11 after 15 signatures. Similarly in KC-MT,
we limit the maximum number (Σ) of signatures a single tree
can yield. We will discuss the selection ofn and m and the
corresponding maximum number of signatures in Section V-
A.1. To ensure that one tree signs at mostΣ messages, the
issuing speaker generates a new attestation key pair after
sendingΣ UPDATE messages.

1) Comparison between KC-MT and SPV:Based on a
different security construction, KC-MT is simpler in nature
than SPV in three aspects. First, in SPV, the concept of
epoch is introduced to thwart repeatable and predictable fraud.
Adding an epoch number to each hash operation makes the
probability of forgery independent between epochs. The cost
is that one more hierarchy has to be constructed in the Merkle
tree, more values are included into the signature, and more
hash operations are required to authenticate an ASPATH.
In contrast, KC-MT prevents this attack implicitly by its
inherent rekeying mechanism. That is, in KC-MT, each speaker
independently builds a tree, authorizes its next-hop speaker to
use it, and periodically reconstructs the tree.

In addition, in SPV, the multi-epoch public key has to be
distributed, in the form of a certificate signed with the origin
BGP speaker’s private key, to all speakers who need to verify
an ASPATH originated from the issuer. SPV needs a certificate
distribution mechanism, either fulfilled by a separate protocol
or conveying certificates within UPDATE messages by the
means of erasure codes. In contrast, KC-MT does not require
any extra mechanisms for distributing certificates, since public
keys are distributed via UPDATE messages.

Finally, the design of SPV is vulnerable to multi-path
truncation attack, in which a single-ASN private key obtained
from a shorter ASPATH can be used to truncate a longer
ASPATH from the same origin. To counter such an attack, SPV
introduces an additional level to the ASPATH authenticator,
and degrades private values to semi-private values gradually
along the path. Obviously, this induces design complexity and
extra performance overhead to SPV. In contrast, KC-MT is not
vulnerable to this kind of attack, and no additional protection
is needed.

The design simplicity of KC-MT brings performance ben-
efits. The costs of both verifying and signing are reduced
compared to SPV. The overhead reduction of verifying lies
in fewer hash operations: for each AS in the ASPATH, KC-



Fig. 3. Hybrid deployment on BGP speakers in the Internet. The
BGP routers serving high volume of BGP messages use KC-MT to sign
UPDATE messages, while the other BGP routers use KC-RSA. By exploiting
benefits of these two algorithms, the hybrid deployment can achieve faster
speed in processing UPDATE message and smaller footprint instorage and
transmission.

MT needs only to compute the root value of each small tree,
whereas SPV needs more hash operations to compute the
multi-epoch public key from the single-ASN public keys and
several other intermediate values. The cost reduction of signing
is achieved by caching the intermediate values during the first
signing operation, and then the number of hash operations
for the subsequent signing operations on the same tree can be
greatly reduced. The number of cached trees can be determined
by AS degree. As shown in [6], AS degree follows a power law
distribution, and 90% of ASes have less than 10 neighboring
ASes. Even for the ASes (with a probability of 0.01% )
having over 1000 neighboring ASes, only about 1MB buffer
is required to cache all trees with 512 leaf nodes. By contrast,
the Merkle tree in SPV is substantially larger, and different
origin BGP speakers use different trees. Thus, it would be
unaffordable for SPV to cache all trees. Note that as mentioned
in Section III, attestation key pairs for next-hop speakerscan
be generated offline. Even for online computation, its small
cost is further amortized overΣ outgoing UPDATE messages.
So, the cost of key generation is negligible.

C. Hybrid Deployment

KC-MT is very fast but has relatively large signatures,
whereas KC-RSA yields very small signature but is slower
than KC-MT. Here we present a hybrid deployment approach
to achieving both small signature and high processing rate.

In the hybrid deployment, both KC-RSA and KC-MT are
installed on a BGP router, and hence the router knows how to
verify signatures of both KC-RSA and KC-MT. In addition,
it chooses either KC-RSA or KC-MT to be the primary
for signing UPDATE messages. The routers requiring high
processing rate can choose KC-MT to be the primary, while
the other routers may choose KC-RSA to sign messages.
Figure 3 illustrates such a layout.

For the hybrid deployment to work properly, when a speaker
chooses one algorithm as the primary, its preceding speaker
has to issue the corresponding attestation key pair for that
algorithm. Since the amortized cost of key generation for
either KC-RSA or KC-MT is negligible, it is feasible for the
preceding speaker to issue both kinds of key pairs and let the
receiver choose which one to use. This greatly simplifies the
hybrid deployment over the Internet.

As we will show in Section V, the speed of verifying a KC-
RSA signature is in the same order of magnitude as that of

KC-MT. Thus, with the hybrid deployment, the performance
of handling an UPDATE message on a router with KC-MT
as the primary will be comparable to that of pure KC-MT
deployment. The benefit, however, is much smaller footprint
of signatures, due to the signature aggregation in KC-RSA.

V. EVALUATION

In this section, we quantify the computation and memory
overheads of the keychain-based schemes, which include KC-
RSA, KC-MT, and the hybrid of these two, and compare them
with those of S-BGP, SAS-V, and SPV under real traces.

A. CPU Overhead

To accurately assess the computation overheads of these dif-
ferent schemes, we implement the HORS signature algorithm
using AES [8], [19], and conduct a series of experiments on a
modest PC with a Pentium-4 1.8GHZ CPU. We characterize
the computation overhead of each individual operation as
signing, verification, and key generation. Then, we evaluate
and compare the BGP performance with different protection
mechanisms under two kinds of workloads: normal and patho-
logical. Before presenting the experiment results of overhead
estimation, we first detail the parameter setting of Merkle tree
in KC-MT. This is because the operation overhead of KC-MT
is highly dependent upon the parameter setting of the Merkle
tree.

1) Merkle-tree Configuration:To achieve a forgery prob-
ability aroundp = 2−11 after yielding 15 signatures, SPV
selectsn = 256 andm = 6 [12]. For KC-MT, by caching the
intermediate values of the first signing, we can significantly
reduce the overhead of subsequent signing operations. There-
fore, KC-MT may choose different(n, m) to run even faster
and yield smaller signature without degrading its security, i.e.,
achieving the same level of security as SPV. With different
selections of(n, m), the experiment results of KC-MT are
shown in Figure 4.

There are five factors affecting the CPU overhead of KC-
MT, including initial signing (S1), subsequent signing (S2),
verification (V ), and the maximal number of signatures (Σ).
The average signing costS is:

S = S1/Σ + (1 − 1/Σ) × S2 (4)

Since the cost of key generation is amortized overΣ mes-
sages, according to Equations 1 and 4, the overall computation
cost of handling one UPDATE message is:

C = Length(ASPATH) × V + S1/Σ + (1 − 1/Σ) × S2 (5)

Figure 4(a) shows the overhead breakdown of the first three
factors and the overall cost, while Figure 4(b) showsΣ the
maximal number of signatures, which a Merkle tree of(n, m)
needs to issue, to ensure the same forgery probability (around
p = 2−11) as SPV3.

3Here we ensure the same forgery probability as SPV just for fair compar-
ison. With different parameters, KC-MT can definitely provide higher-level
security protection
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Fig. 4. Operation cost of KC-MT with different(n, m)

TABLE III

SPEED OF INDIVIDUAL OPERATIONS(IN µs)

S-BGP SPV SAS-V/KC-RSA KC-MT
Sign 3,802/30 703 6,800 90
Verify 4,607 191 350 111

The overhead of initial signing is proportional ton, since
most of the internal values of the tree need to be computed
for the intermediate values required by the signature. For the
subsequent signings, as the internal values have been cached,
its computational overhead is substantially decreased (less than
50µs). Thus, considering the number of signing operations on
the same Merkle tree, we compute the average overhead of
signing, which is as low as73µs whenn = 512 andm = 4.

As shown in Figure 4(a), the overhead of verification is
between103µs for (1024, 2) and 197µs for (1024, 6). Note
that the total CPU overhead of KC-MT for handling an
UPDATE message is under the assumption that the average
length of ASPATH is 3.7. In our experiments, the parameter
setting(n, m) with the lowest total CPU overhead is(512, 3).
In addition to processing speed, we also need to consider mem-
ory consumption of KC-MT and balance these two metrics.
Figure 4(c) shows the dynamics of signature size with different
Merkle-tree configurations, in which a Merkle tree of(512, 3)
yields the second smallest signature. Hence, we set KC-MT
asn = 512 andm = 3.

2) Individual Operation Cost:The individual overheads of
signing, verification, and key generation, with respect to S-
BGP, SAS-V, SPV, KC-RSA, and KC-MT, are listed in Table
3. Without pre-computation in DSA, the signing cost of S-BGP
is 3,802µs. However, it is only 30µs with pre-computation
enabled. To be fair in comparison, the signature amortization
based on the bit vector is assumed to be available for all
candidates, since it is compatible with all of them and easy
to implement. We also assume pre-computation in DSA is
enabled. To simplify evaluation, the signature cache is not
considered, which is also fair since it causes the same effect
to all of them.

Based on the above assumptions, we apply Equation 1 to
assess the performance of all schemes. Here we still assume
that the average ASPATH length is3.7. We observe that S-

TABLE IV

CHARACTERISTICS OFTRAFFIC TRACES

Normal Pathological
Duration(s) 871 876
Total Announcements 1121 88777
Average Rate(/s) 1.29 101.34
Maximum Rate(/s) 117 6764

BGP is the slowest. SAS-V and KC-RSA are a factor of2.2
faster than S-BGP, while SPV and KC-MT are12 and34 fold
faster than S-BGP, respectively. Compared to SPV, KC-MT
is about3 fold faster. In the hybrid deployment, for a router
with KC-MT being its primary, even in the worst case that all
signatures in ASPATH are of KC-RSA, it is 12.3 fold faster
than S-BGP, and still slightly faster than SPV.

3) Performance under Real Workloads:With the knowl-
edge of individual operation cost for S-BGP, SPV, SAS-
V, KC-RSA, and KC-MT, we further evaluate the overall
performance of securing UPDATE messages at a BGP router
under real workloads. Besides normal workloads, we are
particularly interested in the scenario of a backbone BGP
router experiencing an abnormally high workload due to the
outbreak of malicious attacks. One important metric is the
delay of handling an UPDATE message at a BGP router, which
includes the processing time and the waiting time. The delay
is crucial to the convergence speed of Inter-domain routing
over the Internet.

The workloads are obtained from UPDATE message traces
from routeviews[2], in which the routeviewsrouters record
the outgoing UPDATE messages of the observed ASes they
peer with. From the knowledge of the workloads and the
cryptographic operation cost, we can infer the distribution of
delayed outgoing UPDATE messages caused by each BGP
protection scheme.

We choose two typical UPDATE message traces to represent
normal and pathological workloads, respectively. For normal
workload, we select the trace of a router (AS 3277) on Jun 1st,
2005. This trace represents the average traffic load among most
available BGP routers. For pathological workload, we choose
the trace of a router (AS 7911) on Jan 24th, 2003, when SQL
worms were spreading quickly across the Internet. The chosen
trace has the maximum number of UPDATE messages among
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Fig. 5. Outgoing UPDATE message rates under normal and pathological conditions with or without secure protections: (a) normal traffic with
no protection; (b) pathological traffic with no protection;(c) normal traffic with S-BGP; (d) normal traffic with SAS-V, SPV,KC-RSA, and KC-MT; (e)
pathological traffic with S-BGP; (f) pathological traffic with KC-RSA and SAS-V; (g) pathological traffic with SPV; (h) pathological traffic with KC-MT.

all observed BGP routers during that period. The statisticsof
these two traces are listed in Table IV.

The distributions of outgoing UPDATE messages are ex-
tracted from these two traces and shown in Figures 5(a) and
(b). We observe that the UPDATE messages are sent in burst
even under normal condition, because of the rate limiting
mechanism in BGP [23].

Figures 5(a) and (b) illustrate the distributions of delayed
UPDATE messages under the normal condition caused by
different secure schemes. Since the traffic load is relatively
light, SPV, SAS-V, and our keychain-based schemes (KC-RSA
and KC-MT) can handle all UPDATE messages within one
second. As shown in Figure 5(d), the distribution of outgoing
messages exactly match the one in Figure 5(a), due to the
resolution of one second. For S-BGP, some peak bursty traffic
exceeds the processing capacity of DSA, leading to noticeable
delay as shown in Figure 5(c). With respect to different
BGP secure mechanisms, we summarize their average and
maximum delay times under normal condition in the second
column of Table V. In the average cases, all schemes can
handle an UPDATE message within one second. However, in
the worst cases, the delay time of S-BGP increases to 3.633s
while the others are still less than one second.

Figures 5(e)-(h) show the results of different secure schemes
under the pathological condition. As shown in Table IV and
Figure 5(b), the average message arrival rate of the patho-
logical traffic is 2-order of magnitude larger than that of the
normal traffic, and the peak has 4000∼7000 arrivals per second
and lasts for 3 to 4 minutes. Under this substantially heavy
workload, all five secure schemes reach their full processing
capacity. As Figure 5(e) shows, on average S-BGP can only
process about 60 messages per second, while SAS-V and
KC-RSA can handle 120 messages per second, shown in
Figure 5(f). Such low processing capacities of these three

TABLE V

DELAY IN NORMAL /PATHOLOGICAL TRAFFIC (IN s)

Normal (avg/max) Pathological (avg/max)
S-BGP 0.600 / 3.201 515.842 / 952.834
SPV 0.038 / 0.215 4.163 / 14.09
KC-RSA 0.183 / 1.038 251.9 / 454.3
KC-MT 0.015 / 0.088 0.809 / 3.224

schemes cause unacceptably large delays up to 21 minutes.
Using the efficient HORS signature based on Merkle tree, SPV,
as shown in Figures 5(g), can process about 800 messages per
second, while KC-MT, shown in (h), is able to process around
2,500 messages per second. Both schemes have some idle time
during the peak period, and they can digest the bursty traffic
within a few seconds. Due to the accumulation effect of highly
bursty traffic under the pathological workload, the average
and maximum delays of KC-MT are a factor of 5 less than
those of SPV. In the third column of Table V, we summarize
the average and maximum delays of different secure schemes
under the pathological condition. In the hybrid deploymentof
KC-x, the performance of a router with KC-MT as primary is
between SPV and KC-MT.

B. Memory Consumption

In practice, BGP routers have limited memory space (e.g.,
256M). A BGP security mechanism that yields relatively large
signatures could easily exceed the memory limit of many BGP
routers, impeding its wide deployment. Therefore, memory
consumption is another important metric for evaluating BGP
routing security mechanisms. Since the size of signature isthe
dominant factor in determining the memory consumption, we
focus on the memory requirement of signatures.

To estimate the memory consumption in real scenarios, we
select several typical BGP routers from [1]. Then, we compute



TABLE VI

MEMORY CONSUMPTION OF SIGNATURES(IN MB)

ASN RIB entries ASPATH S-BGP SPV KC-RSA & SAS-V KC-MT Hybrid 1:1 (2:1)
1221 211721 3.555 28.7 253 25.8 152.5 102.1 (76.7)
4637 163918 3.356 21 185 20 111.5 75.7 (57.2)
7660 167288 4.46 28.5 250.8 20.4 151.2 96 (70.8)

the memory consumption of signatures in different BGP secu-
rity schemes under these real routers’ working condition. The
results are listed in Table VI. Among these four schemes, KC-
RSA and SAS-V are the most economical. Independent of the
length of ASPATH, the size of its signature is only128 bytes.
In all three selected BGP routers, the memory consumption
of KC-RSA is less than 26MB. Using DSA, S-BGP yields
40-byte signature for each AS in the ASPATH. Thus, S-BGP
consumes slightly more memory than KC-RSA, depending
on the average length of ASPATH. SPV and KC-MT also
yield one signature for each AS, but signature size may vary
with different message content. In our implementation, on
average, the Merkle tree of (256,6) selected by SPV yields
353-byte signatures, while the tree of (512,3) selected by
KC-MT yields 213-byte signatures. Thus, SPV is the most
expensive. It consumes as much as 253MB memory, which
may exceed the memory limit of most deployed BGP routers.
Due to smaller signatures, the memory consumption of KC-
MT is only 60% of that of SPV. As discussed in Section IV-C,
the hybrid deployment of KC-RSA and KC-MT can further
reduce the total size of signatures. Assume that on ASPATHs,
the ratio of signatures of KC-RSA to KC-MT is 1:1 or 2:1.
The memory consumption of the hybrid deployment is only
about 40% or 30% of that of SPV. The memory requirements
of around 90MB and 70MB in these two hybrid deployments
are reasonably low and affordable for most of the existing
BGP routers.

VI. RELATED WORK

The Secure Border Gateway Protocol (S-BGP) [17], [18]
was proposed by BBN to provide strong security for BGP.
S-BGP relies on Public Key Infrastructure (PKI) to assign
the ownership of an IP prefix to an AS, and to authenticate
the identity of a BGP router. To protect the ASPATH from
modification and truncation, eachenrouteBGP speaker verifies
route attestationsissued by previous ASes in the ASPATH via
their public keys, and when propagating this message, appends
its own AS number, and creates its ownroute attestationvia
its private key. However, due to public key cryptography, S-
BGP is expensive in both computation and storage [15], [16],
making it inefficient in realistic deployments.

Several efforts have been made to improve the performance
of S-BGP. Secure Path Vector (SPV) [12] is designed to
use symmetric cryptographic mechanisms to provide integrity
protection. While the prefix authentication still relies onPKI,
the route attestation is realized by employing a lightweight
symmetric one-time signature in conjunction with a Merkle
hash tree. The originating speaker builds a large Merkle hash
tree, and discloses some nodes of the tree to the following

speakers. Eachenroutespeaker can verify the received AS-
PATH by using the disclosed values. Additionally, it signs its
own AS number into the ASPATH using the subtree derived
from the given single-ASN private key. SPV is claimed to be
a factor of 22 faster than S-BGP, at the price of significantly
high storage demand. Moreover, the fairly complicated design
makes it challenging to implement and deploy SPV in practice.

Still using public key cryptography, Zhao et al. [29] applied
several optimizations to improve the processing speed and
reduce the storage cost of S-BGP, by combining the time-
efficient scheme of signature amortization with the space-
efficient techniques of aggregate signatures. However, the
performance improvement is still limited by the expensive
public key computation.

By exploiting the stability of path advertisement, Butler et
al. [5] investigated several optimization solutions to amortize
cryptographic operations over many verifications. However,
the performance improvement is achieved at the expense of
higher bandwidth cost. For example, the all path scheme has
the biggest processing speed gain (97.3% load reduction), but
with prohibitively high bandwidth overhead (as much as 139
megabytes per minute). The origin path scheme, the second
fastest, has limited improvement (about 86.3% reduction),with
reasonable bandwidth cost. This approach can be applied in
conjunction with the other schemes, including KC-x, to further
improve the performance.

All the above schemes, including ours, assume a global
and public-key infrastructure (PKI). However, building such
an infrastructure is challenging. Some efforts have been made
to address this issue, and they are complementary to our
approach. Pretty Secure BGP (psBGP) [26] represents a new
solution for prefix authentication via the construction of a
decentralized authentication system, rather than a centralized
infrastructure employed by S-BGP. Each AS maintains aprefix
assertion list (PAL), which includes the address ownership
assertions of the local AS and its peers. The prefix information
is validated by checking the consistency of PALs of the
peers around the origin. Recently, Grassroots-PKI [11] has
been proposed as an evolutionary approach to enabling the
incremental construction of a global PKI.

Independent of S-BGP, a few completely different pro-
tection schemes have been proposed. Secure Origin BGP
(soBGP) [27] provides a secure registry mechanism against
which a BGP speaker can check the authenticity of an
originating AS and the validity of an ASPATH. Interdomain
Route Validation (IRV) [9] proposes to setup an IRV server
in each AS responsible for validating the route information,
and the local IRV server queries other relevant IRV servers
for the validity when necessary. “Listen and Whisper” [25] is



a lightweight protection with less guarantee. “Listen” detects
invalid routes in the data plane by detecting incomplete
TCP connections, while “whisper” uncovers invalid route
announcements by detecting inconsistency among multiple
UPDATE messages originating from the same AS. Pretty Good
BGP [13] is another lightweight protection scheme, Its essence
is to detect suspicious advertisements using historical hints,
and delay the propagation of them. Suspicious origin ASes
are temporarily assigned a low preference, and suspicious
sub-prefixes are temporarily ignored. In addition, there isan
approach [28] using centralized servers with identity-based
cryptography and encrypted search to verify received BGP
UPDATE messages.

VII. C ONCLUSION

In this paper, we present KC-x, a keychain-based security
mechanism for securing BGP. KC-x builds a chain of key
authorization along an ASPATH. Such a key chain creates
a strong tie between the BGP speakers along the ASPATH.
Hence, KC-x provides strong incremental benefits for partially
deployment over the Internet. Moreover, as a generic security
mechanism, KC-x can be realized using any efficient digital
signature algorithm, and support the hybrid deployment. To
demonstrate this approach, we investigate and evaluate two
realizations: KC-RSA and KC-MT. We believe that the in-
herent simple design, easy implementation, strong benefitsfor
incremental deployment, high processing speed, and modest
memory usage will make KC-x a very promising BGP security
mechanism for wide deployment over the Internet.
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