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ABSTRACT

Data storage has become an important issue in sensor net-
works as a large amount of collected data need to be archived
for future information retrieval. This paper introduces stor-
age nodes to store the data collected from the sensors in
their proximities. The storage nodes alleviate the heavy
load of transmitting all the data to a central place for archiv-
ing and reduce the communication cost induced by the net-
work query. This paper considers the storage node place-
ment problem aiming to minimize the total energy cost for
gathering data to the storage nodes and replying queries.
We examine deterministic placement of storage nodes and
present optimal algorithms based on dynamic programming.
Further, we give stochastic analysis for random deployment
and conduct simulation evaluation for both deterministic
and random placements of storage nodes.

Categories and Subject Descriptors: C.2.4 [Computer-
Communications Networks]: Distributed Systems

General Terms: Algorithms, Design, Experimentation,
Performance.

Keywords: Wireless sensor networks, Data storage, Data
query.

1. INTRODUCTION

Many sensor network applications that are related to per-
vasive computing, e.g., monitoring learning behavior of the
children, senior care system, environment sensing, etc., gen-
erate a large amount of data continuously over a long period
of time. Often, the large volume of data have to be stored
somewhere for future retrieval and data analysis. One of the
biggest challenges in these applications is how to store and
search the collected data.

The collected data can either be stored in the network sen-
sors, or transmitted to the sink. Several problems arise when
data are stored in sensors. First, a sensor is equipped with
only limited memory or storage space, which prohibits the
storage of a large amount of data accumulated for months
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or years. Second, since sensors are battery operated, the
stored data will be lost after the sensors are depleted of
power. Third, searching for the data of interest in a widely
scattered network field is a hard problem. The communica-
tion generated in a network-wide search will be prohibitive.
Alternatively, data can be transmitted back to the sink and
stored there for future retrieval. This scheme is ideal since
data are stored in a central place for permanent access. How-
ever, the sensor network’s per-node communication capabil-
ity (defined as the number of packets a sensor can transmit
to the sink per time unit) is very limited [7,10]. A large
amount of data cannot be transmitted from the sensor net-
work to the sink efficiently. Furthermore, the data commu-
nication from the sensors to the sink may take long routes
consuming much energy and depleting of the sensor battery
power quickly. In particular, the sensors around the sink are
generally highly used and exhausted easily, thus the network
may be partitioned rapidly.

It is possible that, with marginal increase in cost, some
special nodes with much larger permanent storage (e.g., flash
memory) and more battery power can be deployed in sensor
networks. These nodes back up the data for nearby sensors
and reply the queries. The data accumulated on each storage
node can be transported periodically to a data warehouse by
robots or traversing vehicles using physical mobility as Data
Mule [18]. Since the storage nodes only collect data from
the sensors in their proximity and the data are transmit-
ted through physical transportation instead of hop-by-hop
relay of other sensor nodes, the problem of limited storage,
communication capacity, and battery power is ameliorated.

Placing storage nodes is related to the sensor network ap-
plications. We believe query is the most important applica-
tion for sensor networks since in essence sensor network is
about providing information of the environment to the end
users. A user query may take various forms; for example, a
user query may be how many nodes detect vehicle travers-
ing events, the average temperature of the sensing field, etc.
In this scenario, each sensor, in addition to sensing, is also
involved in routing data for two network services: the raw
data transmission to storage nodes and the transmission for
query diffusion and query reply. Two extremes, as men-
tioned earlier, would be transmitting all the data to the sink
or storing them on each sensor node locally. On one hand,
data solely stored in the sink is beneficial to the query reply
incurring no transmission cost, but the data accumulation
to the sink is very costly. On the other hand, storing data
locally incurs zero cost for data accumulation, whereas the
query cost becomes large because a query has to be diffused



to the whole network and each sensor has to respond to the
query by transmitting data to the sink. The storage nodes
not only provide permanent storage as described previously,
but also serve as a buffer between the sink and the sensor
nodes. The placement of the storage nodes can strike a bal-
ance between these two schemes characterizing a tradeoff
between data accumulation and data query.

This paper considers the storage node placement problem
in a sensor network. This problem can be very complex
with respect to various optimization metrics, such as band-
width minimization on each link, lifetime of the network,
etc. However, bandwidth problem is alleviated because the
storage nodes collect the data generated within their prox-
imities and avoid the heavy load on each link incurred by the
long distance data communication. Lifetime depends on the
routing scheme and the network structure. Specifically, it is
mainly affected by the most loaded nodes, which are likely
the nodes close to the sink. The storage placement does not
reduce the loads on those nodes since all the responses have
to be sent through the nodes around the sink. Therefore,
even though lifetime is an important metric, it is not a good
metric to guide the storage placement design. Instead, we
consider an approximation of lifetime: energy cost. We be-
lieve energy cost is more crucial as it is the most important
performance metric in sensor network design. Therefore, we
aim to minimize the total energy cost in data accumulation
and data query by judiciously placing the storage nodes in
the network.

We first examine the problem in the fixed tree model. We
assume the sensor network has organized into a tree rooted
at the sink. The communication routes from sensors towards
the sink are predefined by the tree. Our goal is to select some
of the nodes in the tree as storage nodes, each of which is
responsible for storing the raw data of its descendants that
are not covered by other storage nodes. In many applica-
tions, for example in a sensor network along the highway,
or in drainage or oil pipeline monitoring system, the net-
work communication tree is fixed due to the constraints of
the sensor deployment. Our results for the fixed tree model
fit into those scenarios well. We also consider the dynamic
tree model, where the (optimal) communication tree is con-
structed after the storage nodes are deployed. Specifically,
each sensor selects a storage node in its proximity for its
data storage with the goal to minimize the energy cost of
the resulting communication tree.

We organize this paper as follows. In Section 2, we review
the related work. In Section 3, we define several problems
for storage node placement in the aforementioned models.
In Sections 4 and 5, we present optimal algorithms for prob-
lems defined within the fixed tree model. In Section 6, we
give theoretical analysis of randomized deployment of stor-
age nodes for both the fixed tree and dynamic tree models.
In Section 7, we present our simulation results, which con-
firm the theoretical analysis. Finally, in Section 8, we make
the conclusions and discuss future research.

2. RELATED WORK

There has been a lot of prior research work on data query-
ing models in sensor networks. In early models [12,13,15],
query is spread to every sensor by flooding messages. Sen-
sors return data back to the sink in the reverse direction of
query messages. Those methods, however, do not consider
the storage concern in sensor networks.

The most relevant to the architecture proposed in this
paper are schemes that introduce an intermediate tier be-
tween the sink and sensors. LEACH [11] is a clustering-
based routing protocol, in which cluster heads can fuse the
data collected from its neighbors to reduce communication
cost to the sink. LEACH has a similar structure to our
scheme, having cluster heads aggregate and forward data
to the sink. However, LEACH aims to reduce data trans-
mission by aggregating data; it does not address storage
problem in sensor networks. Data-centric storage schemes
[16,17,19] store data to different places in sensor networks
according to different data types. In [17,19], the authors
propose a data-centric storage scheme for sensor networks,
which inherits ideas from distributed hash table. The home
site of a data is obtained by applying a hash function on the
data type. Thus, queries for the same type of data can be
satisfied by contacting a small number of nodes. GEM [16] is
another approach that supports data-centric storage. GEM
applies graph embedding technique to map data to sensor
nodes. In general, the data-centric storage schemes assume
some understanding about the collected data and store them
remotely for easy data access. Extra cost is needed to for-
ward data to the corresponding keeper nodes. In our pa-
per, we do not assume any prior knowledge about the data:
indeed in many applications, raw data may not be easily
categorized into different types. To transmit the collected
data to a remote location is also considered expensive in
our paper because the total collected data may be in a very
large quantity. To facilitate data query, Ganesan et al. [8,9]
propose a multi-resolution data storage system, DIMEN-
SIONS, where data are stored in a degrading lossy model,
i.e., fresh data are stored completely while long-term data
are stored lossily. DIMENSIONS uses wavelets to obtain
temporal-spatial summarizations in a hierarchical structure,
which helps locate a subset of sensor nodes for range queries.
Its performance is heavily dependant on the data correlation
because of the data summarization scheme. In comparison,
our scheme is more general in making no assumption about
the data correlation. PRESTO [6] is a recent research work
on storage architecture for sensor networks. A proxy tier
is introduced between sensor nodes and user terminals and
proxy nodes can cache previous query responses. When a
query arrives in a proxy node, it first checks if the cached
data can satisfy the query before forwarding the query to
other nodes. Compared with the storage nodes in this pa-
per, proxy nodes in PRESTO have no resource constraints
in term of power, computation, storage and communication.
It is a more general storage architecture that does not take
the characteristics of data generation or query into consider-
ation. In the Cougar project [5], a data dissemination tree is
built with data sources as leaves. View nodes introduced in
Cougar have similar functionalities as storage nodes in this
paper. Our scheme focuses more on how to optimize the
placement of storage nodes, while Cougar mainly focuses
on how to implement data query in more detail in a sensor
network.

Data placement schemes in sensor networks are studied
in [4,14]. The authors consider a scenario where multiple
observers are interested in some data sources. Data are dis-
seminated by a multicast tree and may be cached to reduce
the power consumption. Even though their scheme is close
to data storage, they are mainly concerned with data repli-
cation, which is quite different from the scope of this paper.



In [1,2], the authors introduce an approach to analyz-
ing communication networks based on stochastic geometry.
They consider models built on Poisson processes and obtain
formulas to express the average cost in function of the inten-
sity parameters of Poisson processes. Baek et al. extend this
work specifically to sensor networks in [3]. They consider a
hierarchical architecture with a compressor layer between
sensor nodes and sinks. Data are aggregated at compressor
nodes before further relay. Our paper also analyzes random
placement of storage nodes in Section 6. We will use sim-
ilar means with [1-3] to derive analytical formulas for the
performance.

3. PROBLEM FORMULATION

In this paper, we consider an application in which sensor
networks provide real-time data services to users. A sen-
sor network is given with one special sensor identified as
the sink (or base station) and many normal sensors, each
of which generates (or collects) data from its environment.
Users specify the data they need by submitting queries to
the sink and they are usually interested in the latest readings
generated by the sensors'. To reply to queries, one typical
solution, shown in Fig. 1, is to let the sink have all the data.
Then any query can be satisfied directly by the sink. This
requires each sensor to send its readings back to the sink
immediately every time it generates new data. Generally,
transferring all raw data could be very costly and is not al-
ways necessary. Alternatively, we allow sensors to hold their
data and to be aware of the queries, then raw data can be
processed to contain only the readings that users are inter-
ested in and the reduced-size reply, instead of the whole raw
readings, can be transferred back to the sink. This scheme
is illustrated in Fig. 2, where the black nodes, called storage
nodes, are allowed to hold data. The sink diffuses queries
to the storage nodes by broadcasting to the sensor network
and these storage sensors reply to the queries by sending the
processed data back. Compared with the previous solution,
this approach reduces the raw data transfer cost (as indi-
cated by the thick arrows in the figures), because some raw
data transmissions are replaced by query reply (as indicated
by the thin arrows). On the other hand, this scheme incurs
an extra query diffusion cost (as indicated by the dashed
arrows). In this paper, we are interested in strategically
designing a data access model to minimize energy costs as-
sociated with raw data transfers, query diffusion, and query
replies.

We now give formal definitions of two types of sensors (or
nodes):

Storage nodes: This type of nodes store all the data it has
received from other nodes or generated by themselves. They
do not send out anything until queries arrive. According to
the query description, they obtain the results needed from
the raw data they are holding and then return the results
back to the sink. The sink itself is considered as a storage
node.

Forwarding nodes: This type of nodes always forward the
data received from other nodes or generated by themselves
along a path towards the sink. The outgoing data are kept
intact and the forwarding operation continues until the data

LOur algorithms also apply to the queries to the historic
data. For the ease of presentation, we assume all queries are
corresponding to the latest generated data.

Figure 1: Data Access Model (All data are for-
warded to the sink)
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Figure 2: Data Access Model with Storage Nodes

reach a storage node. The forwarding operation is indepen-
dent of queries and there is no data processing at forwarding
nodes.

We make the following assumptions about the character-
istics of data generation, query diffusion, and query replies.
First, for data generation, we assume that each node gen-
erates rq readings per time unit and the data size of each
reading is sq. Second, for query diffusion, we assume that r,
queries of the same type are submitted from users per time
unit and the size of the query messages is sq;. Third, for
query reply, we assume that the size of data needed to reply
a query is a fraction « of that of the raw data. Specifically,
we define a data reduction function f for query reply. For
input z, which is the size of raw data generated by a set of
nodes, function f(z) = ax for a € (0, 1] returns the size of
the processed data, which is needed to reply the query. We
do not restrict the types of queries we impose on the sensor
network in this paper, but we assume that « can be obtained
through examining the historic queries to get an empirical
value for this parameter. The parameter a characterizes
many queries satisfied by a certain fraction of all the sens-
ing data, e.g., a range query may be “return all the nodes
that sense a temperature higher than 100 degree” and « can
be estimated based on the data distribution information.

In this paper, the communication among all n nodes is
based on a tree topology with the sink as the root. Data
are transferred along the edges in this communication tree.
To transmit s data units, the energy costs of the sender and
receiver are et - S and ere - S, where ey and er. are the
energy costs for transmitting and receiving a unit data re-
spectively, and e:, is also relevant to the distance between
the sender and receiver. To simplify the problem, we set
the length of each tree edge to one unit, which means that



sensor nodes have a fixed transmission range and the energy
cost of transferring data is only proportional to the data
size. Our algorithms can be easily extended to non-uniform
transmission ranges as long as topology information is avail-
able. In our energy model, for simplicity of presentation, the
receiving energy cost is assigned to the transmitter without
changing the total energy cost. When sensor ¢ sends s data
units to j, the energy cost of j is 0, and the energy consumed
by ¢ is

(etr +€re) - s if 7 is ’s parent;
(etr + €re - ¢;i) - s if j is one of #’s children,

where ¢; is the number of i’s children. In the following dis-
cussion, we normalize the energy costs by (ei + ere) for
easy presentation. Thus, to transfer s data units from i to
its parent, the transmitting energy will be s and to broad-
cast s data units to its children, sensor ¢ will consume b; - s
energy, where b; = %

Tree structure has been widely used in sensor networks.
By the way, the communication tree may be broken due to
link failure. This paper considers a common practice that,
when building the tree, only stable links are chosen such
that errors in transmission due to poor link quality can be
reduced and the tree topology can be robust for a long time.
Since the tree topology changes will be rare, which trans-
lates to a small communication cost for topology update
compared to the query and data collection cost for a long
period, we will not include the cost for tree topology infor-
mation update in this paper. If packet loss happens, we may
retransmit the packet till it gets through. This retransmis-
sion may incur more energy cost, but as the probability of
retransmission is assumed to be the same for all links, the
energy cost for transmitting one packet successfully is the
same for all links. Thus, the energy cost for communication
on each link is still proportional to the data size even though
the overhead for a unit packet is larger than that of perfect
wireless link.

The tree structure is independent of the underlying low
layer communication protocol: like myriad routing proto-
cols, tree structure is one of the routing schemes. Our al-
gorithm only assumes that the energy cost is proportional
to the transmitted data size, which can be realized in many
communication protocols, e.g., duty cycle mechanism. In
some duty cycle mechanism schemes, the network delay can
be reduced by using carefully designed transmission sched-
ule plan. Moreover, we assume applications considered in
this paper can tolerate the delay caused by low layer com-
munication, such as retransmission and duty cycle mecha-
nism. We would also like to mention that the lower layer
implementation, such as duty cycle mechanism, does not
affect the functionality of the tree structure based commu-
nication. Network initialization phase will handle general
topology discovery and transmission schedule for duty cycle.
Tree structure will be constructed in initialization phase, in
which duty cycle has not been started. Therefore, duty cycle
does not affect the tree construction although tree structure
does affect the selection of the parameters for duty cycle.

Let 7 be any node in the communication tree and T; be
the subtree rooted at i. We use |T;| to denote the number of
nodes in T;. We define e(i) to be the energy cost incurred at
i per time unit, which includes, the cost for raw data trans-
fer from ¢ to its parent if i is a forwarding node, the cost
for query diffusion if ¢ has storage nodes as its descendants,

and cost for query reply if i is a storage node or has a stor-
age descendant. To define e(i) mathematically we need to
consider several possible cases.

Case A. i is a forwarding node and there are no storage
nodes in T;. All raw data generated by the nodes in T; have
to be forwarded to the parent of i and there is no query
diffusion cost. So e(i) = |T;|rasaq.

Case B. i is a storage node and there are no other storage
nodes in T;. The latest readings of all raw data generated
by the nodes in T; are processed at node ¢ and the reduced
reply size will be a|T;|sq. Node 4 sends the reply to its parent
when queries arrive. So e(i) = rqa|T;|sq.

Case C. i is a storage node and there is at least one other
storage node in T;. In addition to the cost for query reply as
defined in Case B, 7 also incurs a cost for query diffusion that
is implemented by broadcasting to its children. So e(i) =
rqa|T;|sa+ birgsq.

Case D. i is a forwarding node and there is at least one
storage node in T;. This is the case where all three types
of cost (for raw data transfer, query diffusion, and query
reply) are present. Among the |T;| — 1 descendants of i, let
di1 be the number of forwarding descendants without any
storage nodes on their paths to ¢ (the raw data generated at
these di1 nodes and at ¢ itself will be forwarded from 7 to its
parent without reduction) and d2 be the number of storage
descendant’s or forwarding descendants with at least one
storage node on their paths to i (the last readings of the raw
data generated at these d2 nodes will have been processed
and reduced before reaching ¢). Obviously, di +d2 = |T3]|—1.
So e(i) = (d1 4+ 1)rasa + birgsq + rqad2sq.

The communication tree can be formed before or after
storage node deployment. Accordingly, we will consider two
models in the rest of this paper. In the fixed tree model,
the communication tree is formed before storage node de-
ployment, i.e., we select storage nodes based on the exist-
ing topology. In the dynamic tree model, we first deploy
storage nodes and then the sensors organize themselves into
a tree according to the positions of the storage nodes. In
both models, after tree construction and storage node de-
ployment, each storage node needs to send a notification
towards the sink. In this way, every sensor is aware of the
existence of storage nodes among its descendants and when
a query arrives, it is able to determine if continuing the dif-
fusion or not.

Within the fixed tree model, we will consider two problems
of storage node placement. Given an undirected tree T with
nodes labeled with 1,2,...,n. The length of each edge is
1. Let e(%) be the energy cost of node 4 in one time unit as
defined above. The objective is to place storage sensors (and
hence forwarding sensors) on nodes in 7" such that the total
energy cost )., e(i) is minimized. In the case when there
is no limit on the number of storage nodes that can be used
to minimize the energy cost, the problem is denoted with
UNLIMITED. In the case when there is a limited number
of storage nodes, say k, to use, the problem is denoted with
LIMITED. For the dynamic tree model, the storage node
placement problem becomes how to place k given storage
nodes to form a communication tree with the minimum total
energy cost. This problem is NP-hard since it is a general
case of the minimum k-median problem. We have given
a 10-approximation algorithm for the dynamic tree model.
Due to the space limit, we have not included the algorithm
and analysis in this paper.



The previous problems defined with the fixed tree and
dynamic tree models aim to find the optimal locations for
storage nodes in a deterministic way. In reality, however, the
storage nodes may not be deployed in a precise way. Instead,
their deployment may be random with a certain density A,
e.g., the storage nodes are dispersed from an airplane. In
the rest of the paper, we also evaluate the performance of
random deployment of storage nodes in a fixed tree and in
a dynamic tree.

4. UNLIMITED NUMBER OF STORAGE
NODES

We will present a linear-time algorithm for the problem
UNLIMITED, where an unlimited number of storage nodes
are available to use to minimize the energy cost of a com-
munication tree. Recall that e(%) is the energy cost at node
i. Let T; be the subtree rooted at i. Then E(7) is the energy
cost of nodes in T}, defined to be E(i) = >, 1. e(i).

Our algorithm relies on the following lemma.

LEMMA 1. Given a node i and its subtree T;. If arqy >
ra, then i must be a forwarding node to minimize E(i). If
arq < rq, then i must be a storage node to minimize E(1).

PrOOF. We compare the energy cost of two trees, which
are identical in every aspect except that the first tree’s root
is a forwarding node and the second tree’s root is a storage
node. Let F1 and F2 be the energy cost of these two trees,
respectively. Comparing the energy cost of individual nodes,
one by one, in the two trees, we observe that any two non-
root nodes in the same position of the trees must have the
same energy cost. The only difference is the energy cost of
the roots. Let e; and ez be the energy cost of the roots in
the two trees, respectively. Therefore, F1 — E2 = e; — ea.
To prove the lemma, it suffices to prove that

o — e <0 if arg > rg;
! 21 >0 ifarg <ra

We consider two cases. First, if both roots have no storage
descendants, then according to the four-case definition of
energy cost given in the previous section (Cases A and B,
specifically), we have

e1 —ex = |Ti|lrasa — rqa|Ti|sa

o <0 ifarg > rg;
= [|Tilsa(ra = arq) { >0 if arg <rqg.

Second, if both roots have at least one storage descendent,
then according to the four-case definition of energy cost
given in the previous section (Cases D and C, specifically),
we have

e1—ez = ((di+4 1)rgsq + birgsq + rqadasq)
—(rqa|Ti|sq + birgsq)

_ <0 ifary>rg

= (di+ 1)sa(ra — arg) { S0 ifar, <ry.

In the first tree with a forwarding root, recall that d; is
the number of forwarding descendants of the root without
any storage nodes on their paths to the root and that do
is the number of storage descendants plus the number of
forwarding descendants with at least one storage node on
their paths to the root. Also recall that di+d2 = |T;|—1. [

From the above lemma, we can conclude that if ary > 74
then every node (except for the root/sink, which is always
a storage node) in the sensor network must be a forwarding
node to minimize the energy cost. However, if ar, < rq,
things are a little tricky. Although the root of the tree, say
4, must be a storage node, it may not be true that every node
in the sensor network must be a storage node to minimize
the energy cost. One would think that in order for the tree
to incur a minimum energy cost, all of its subtrees should
incur a minimum energy cost. However, since ary < rq,
these optimal subtrees all have storage nodes as their roots.
This means that the energy cost of root ¢ will have to in-
clude the cost for query diffusion b;rqs, since it has storage
children i.e., e(i) = rqa|Ti|sqa + birqsq. The cost for query
diffusion, however, can be eliminated if all subtrees of 7 has
only forwarding nodes, i.e., e(i) = rqa|Ti|sq. (See Cases C
and B in the four-case definition of e(7) in the previous sec-
tion.) Thus, the minimum energy cost of the tree rooted at
i should be derived from the better of these two scenarios.

For a tree T; rooted at i, let C; be the set of children of
i. Let E* (i) be the minimum (optimal) energy cost of T;j. If
C; is empty, i.e., i is a leaf, then ¢ must be a storage node to
achieve its minimum energy cost. So E*(i) = rqasq. If C;
is not empty, then for any j € Cj, let Ef(j) be the energy
cost of T; when all nodes in T are forwarding nodes. So

E*(i) =min { rqa|Ti|sq + birgsq + Z E*(j),
JEC;

rqa|Tilsa+ > Er(j) }.
JEC;

Algorithm 1 given in pseudo-code finds the optimal place-
ment of storage nodes in two cases: (1) arq > rq, (2)
arg < rq, where the first case is trivial and the second case
is solved by dynamic programming that works from the bot-
tom to the top of the tree. We now explain how the dynamic
programming algorithm for the second case is set up. As-
sume that the n nodes in the tree T are labeled using the
post-order®. A table E*[1..n] is used to hold the minimum
energy cost of all subtrees rooted at node i = 1,...,n. So
at the end of the computation, E*[n] will hold the mini-
mum energy cost of T (which is rooted at n according to
the post-order labeling). We also maintain a second table
E[1..n] which records the energy cost of all subtrees when
all nodes in each subtree are forwarding nodes. In the al-
gorithm, lines 5-9 compute the E* and Ej entries for all
leaves and lines 10-19 compute the E* and Ef entries for
the remaining nodes following our post-order.

There are only O(n) entries to compute in tables E* and
Ey and to compute each entry that corresponds to a node,
only its children will have to be considered. Furthermore,
each node starts as a storage node. Once it is changed to a
forwarding node by the algorithm, it will never be changed
back. Therefore, the time complexity of Algorithm 1 is
O(n), where n is the number of nodes.

Summarizing the discussion above, we have the following
theorem.

THEOREM 1. If arq > 74, then the optimal tree with the
minimum energy cost contains only forwarding nodes (except
for the root). If arq < ra, then the optimal tree can be

2The post-order used in this paper is slightly different from
the textbook definition of post-order in that our post-order
requires all leaves to be listed first.



Algorithm 1 Place Unlimited Storage Nodes

1: make the root a storage node

2: if ary > rq then

3:  make all non-root nodes forwarding nodes and return
4: end if

5: for all leaves ¢ do

6: make i a storage node

7. EY[i] = rqasa

8:  Efli] =7r4sa

9: end for
10: for all remaining nodes i, in post-order, do

11:  make i a storage node
12: costl = rqa|Ti|sq + birgsq + 3, B[]
13: cost2 =rqa|Ti|sa + 3 ;c 0, Erli]
14:  E*[i] = min{cost1, cost2}

15: E¢[i] = [Tilrasa + X ec, £¢l]
16:  if costl > cost2 then

17: change each descendent of ¢ that is a storage node

to a forwarding node

18:  end if

19: end for

constructed by a dynamic programming algorithm in O(n)
time.

From the design of the algorithm, we also observe that every
node starts as a storage node and that once it is changed
to a forwarding node, all of its descendants are changed
to forwarding nodes as well. Thus, it is impossible for a
forwarding node to have a storage descendent. Likewise, it is
impossible for a storage node to have a forwarding ancestor.
We then have the following corollary.

Corollary 1. In the optimal tree, if i is a forwarding node,
all of its descendants are forwarding nodes as well. If i is a
storage node, all its ancestors are storage nodes as well.

5. LIMITED NUMBER OF STORAGE
NODES

In the problem UNLIMITED discussed in the previous
section, we assume that we have enough storage nodes for
the need to minimize the energy cost of the network. In real-
ity, however, storage nodes may come with a hardware cost.
This is why we have also defined the problem LIMITED,
which is similar to UNLIMITED except that we have only
k storage nodes to deploy. Since the root (sink) is always
a storage node, we assume that £k > 1 and that k — 1 is
the maximum number of storages nodes that may appear as
descendants of the root. Furthermore, from the discussion
in the previous section, if ary > 74, the optimal tree has no
storage nodes at all except the root. In this case, we just
do not deploy any of the k — 1 storage nodes and we get an
optimal tree. Our discussion in this section on LIMITED is
for the case of ary < rq.

5.1 Arbitrary Trees

Assume that a communication tree T is given with up to k
storage nodes already optimally deployed. By definition, the
energy cost of T'is Y, . e(i). However, we are going to use
a different and unique method to calculate this cost, which
works from the bottom of the tree towards the root. Starting
from the leaf nodes and following the post-order until the

root is eventually reached, for each node i, we compute the
energy cost already incurred within the subtree T; rooted
at 4, which is E(i) by our notation, plus the energy cost
contributed by the nodes in 7; to their ancestors, which
includes both raw data transmission cost and query reply
cost according to the four-case definition of the energy cost
of an individual node. Specifically, if ¢ is a forwarding node,
it contributes a raw data transmission cost of rgsq to each
of its forwarding ancestors that lie between i and i’s closest
storage ancestor (due to Cases A and D) and a query reply
cost of rqasq to each of the other ancestors (due to Cases B
and D). If 7 is a storage node, however, it contributes a query
reply cost of rqasq to each of its ancestors (due to Cases C
and D). Fig. 3 depicts the two scenarios. The top path from
node 7 to the root (sink) is when 7 is a forwarding node and
the bottom path from i to the root is when i is a storage
node. Above each node (except 4) is the contribution from
¢ to the energy cost incurred at the node.

Forwarding NodeO
Storage Node '

rd*sd rd*sd rg*a*sd  rg*a*sd rg*a*sd  rg*a*sd rg*o*sd
O—0—-0O—-@-0U—-@—-0
rgfa*sd  rq*a*sd  rg*a*sd  rg*a*sd rgfa*sd  rg*a*sd rg*a*sd

o e e

Figure 3: Computing the contribution to the energy
cost of all ancestors

Let [ be the number of forwarding nodes between i and
its closest storage ancestor, not including i. Let m be the
upper bound on the number of storage nodes in 7;. Then,
we use Ej;(m,l) for the energy cost that includes E(i) and
the amount contributed by the nodes in T; to the energy cost
of their ancestors. Note that 0 < m < kand 0<[<n —2.
In the case that 7 is a storage node or i’s parent is a storage
node, [ becomes 0. Furthermore, if m = 0, no storage node
is used in T; and if m > 1, at least one but no more than
m storage nodes are used in T;. Therefore, FE,(k,0) is the
minimum energy cost of T" with up to k storage nodes to
deploy, assuming n is the label for the root.

When traversing the nodes in post-order in the tree start-
ing from the leaves, let ¢ be the current node being traversed.
Let d; be the depth of ¢ in the tree, which is the number
of edges on the path from i to the root n. We can define
E;(m, 1) recursively. For notational simplicity, we first define
Qo(m) and Q1(m) as follows.

i _ 0 if m = 0;
Qo(m) = { birgsq ifm > 1.
; 0 if m=1;
i _ )
Qi(m) = { birqsq ifm > 2.

If ¢ is a leaf node, E;(m,l) includes the energy cost of i
and the pre-calculated amount contributed by 4 to all of its
d; ancestors. Specifically, if i is a forwarding node, its own
energy cost is rqsq and its contribution to the energy cost of
its ancestors is lrqsq+ (d; —)rqasq. If i is a storage node, its
own energy cost is rqasq and its contribution to the energy
cost of its ancestors is d;rqasq. Therefore,

_ | I+ Drasa+ (di — Drqasq  if m =0;
Ei(m, 1) = { (di + Drqasa ifm>1.



If 7 is a forwarding non-leaf node with a child set of C;, the
upper bound m must be divided among all of its children.
Let P(m) be the set of all permutations p = (m}]j € C),
where 3°. . mY =m and m} denotes the upper bound on
the number of storage nodes for subtree T} in permutation p.
Then E;(m, 1) is defined to be the sum of the amount from all
of its subtrees, miny,e p(m) {2 c o, £i(mj],(+1)}, the energy
cost of 4, rgsq + Qb(m), and the pre-calculated amount of
energy cost contributed by 4 to its ancestors, Irgsq + (di —
Drqasq. So,

Ei(m,1) = _min {)  E;(mf1+1)}
ec

VpeP(m)
J

+( 4+ 1)rgsa + (di — rqasq + Qé(m).

If 4 is a storage non-leaf and non-root node, the upper
bound m — 1 must be divided among all of its children. Let
P(m — 1) be the set of all permutations p = (mf|j € C;),
where 37, . mY =m— 1 and m! denotes the upper bound
on the number of storage nodes for subtree 7 in permuta-
tion p. Then E;(m,!) is defined to be the sum of the amount
from all of its subtrees, minyye p(m—1){>",cc, £i(m], 0}, the
energy cost of i, rqasq + Qi(m)7 and the pre-calculated
amount of energy cost contributed by 7 to its ancestors,
dirqasq. So,

. - : (P
Ei(m,l) = vpelgl(lﬁil){j;.Ej(mﬁO)}

+(di + 1)rqasa + Q1 (m).

Algorithm 2 given here maintains a two-dimensional (k +
1) X (n—1) table, E;[m,l], at each node 4, where 0 < m < k
and 0 <[ < n—2. Assume that a post-order traversal is done
beforehand and that the depth of each node is computed
beforehand. Both the post-order and the depths can be
obtained in O(n) time. In the algorithm, lines 1-12 computes
the E; tables for all leaves i, lines 13-23 compute the F;
tables for the remaining non-root nodes i, and line 24-25
compute the entry E,[k,0] for the root n. After all tables
are constructed, the minimum energy cost of the tree with
up to k storage nodes can be found in the entry E,[k,0].
Note that instead of constructing a table for the storage
root n, we compute only the needed entry for n.

Assume that every node in the tree has at most ¢ chil-
dren. To partition an upper bound m into up to ¢ up-
per bounds with the sum equal to m, there are at most
(mtf;l) = (m:rffl) < (kjf;l) permutations. The algo-
rithm construct O(n) tables and each table consists of O(kn)
entries. To compute each entry, the time is O((kfle)c) =
O((k+c—1)""¢/(c— 1)) = O((max{k, c})°™"). Thus, the
time complexity of the algorithm is O(kn®(max{k, c})*™*).

We summarize the discussion above in the following the-
orem.

THEOREM 2. Given a communication tree with n nodes
and at most ¢ children for each parent. Let k be the maxi-
mum number of storage nodes that may be deployed in the
tree. Then the optimal tree with the minimum energy cost
can be constructed by a dynamic programming algorithm in
O(kn?(max{k,c})°™") time.

5.2 Regular Trees

Now we consider a special case of LIMITED, where the
given network is a regular tree with exactly c¢ children for

Algorithm 2 Place Limited Storage Nodes

1: for all leaves i do

2:  for m =0 to k do

3: for [=0ton—2do

4: if m =0 then

5: Ei[m,l] = (1 4+ 1)rasq + (di — l)rqasq
6: end if

7 if m > 1 then

8: Ei[m,l] = (di + 1)rqasq
9: end if
10: end for

11: end for
12: end for

13: for all remaining non-root nodes i, in post-order, do
14:  for m =0 to k do

15: for [=0ton—2do

16: minl = minyye p(m) {2 e, Eilmf, 1+ 1]}
17: +(I+ Drasa + (di — Drgasq + Qi(m)
18: min2 = miHVpeP(m—l){Zjeci E; [mﬁ-’, 0]}
19: +(di + Drgasq + Qi (m)

20: E;[m,l] = min{minl, min2}

21: end for

22:  end for

23: end for

24: En[k,O] = minvpep(k,l){zjecn Ej[mg’,O]}

25: +rgasa + QL (m)

26: return F,[k, 0]

each non-leaf node and all leaves at the same level. For such
a c-ary regular tree, we can modify Algorithm 2 to achieve
a faster time complexity by making use of the regularity of
the tree structure.

Obviously, any subtree in a regular tree is also a regular
tree and nodes at the same level have the subtrees with
the same topology. This suggests that instead of keeping a
table for each node as in Algorithm 2, we may keep just one
table for each level. For easy discussion, we name the levels
from bottom to top, with all leaves at level 0, all parents of
the leaves at level 1, and finally the root at level |log,n|.
For each level h, we define a two-dimensional table Ej[m, (]
for 0 < m < kand 0 <1 < |log,n| — 1, which returns
the energy cost incurred within the subtree rooted at level
h plus the contribution from the nodes in the subtree to
their ancestors. As used previously, m is still the maximum
number of storage nodes to use in the subtree and [ is the
number of forwarding nodes between the root of the subtree
and the storage ancestor closest to the root of the subtree.

Due to the page limit, we omit the algorithm. The re-
sult of the algorithm can be summarized in the following
theorem.

THEOREM 3. Given a c-ary reqular tree with n nodes. Let
k be the maximum number of storage nodes that may be de-
ployed in the tree. Then the optimal tree with the minimum
energy cost can be constructed by a dynamic programming
algorithm in O(k(log n)?(max{k,c})°™*) time.

6. STOCHASTIC ANALYSIS

The algorithms in the previous sections aim to find the
optimal locations for storage nodes. In reality, however, the
storage nodes may not be deployed in a precise way. Instead



their deployment may be random, e.g., the storage nodes are
dispersed from an airplane. In this section, we evaluate the
performance of random deployment of storage nodes in a
fixed tree and in a dynamic tree in which every sensor node
finds the best storage node for data storage.

6.1 Fixed Tree Modé€

Assume the forwarding nodes and storage nodes are ran-
domly distributed to the field with density A and \s respec-
tively. In the fixed tree model, the network builds a commu-
nication tree in which each node finds the shortest path to
the sink by following the tree edges. Each forwarding node
sends its data to the first ancestor storage node on the path
to the sink. As our simulation and other previous research
show, the radius (r;) of the area covered by the nodes that
are ¢ hops or less from the sink is proportional to i. Let
this ratio be ¢’ = Zi, Thus, we can estimate the number of
nodes whose distances to the sink are between (t — 1)c’ and
tc', i.e., the nodes with depth t. Let num(t) represent the
total number of the nodes whose depth values are t,

1)2¢?) = Ar(2t — 1),

For a node with depth of ¢, let s(t) be the expected hop
distance to its closest storage ancestor. The cost caused by
this node is 7484+ s(t) +rqasq- (t—s(t)). The probability that

num(t) = Ar(t%c¢? — (t —

an individual node is storage node is p = % Therefore,
s(t) = p-0+p(l—p)-1+pl—p)* -2+
Hp(l=p) (=1 +(1—p) -t

- (}9 — (-1 -p)").

The total energy cost in the fixed tree model can be ex-
pressed as

E= CZ num(t)(rasas(t) + rqasq(t — s(t))) + Eq,

where E, is the cost of query diffusion. The value of ¢’ is
related to the communication range and node density. We
can obtain the value from simulations.

Query messages are diffused from the sink to every stor-
age node. For each storage node, it incurs an extra query
diffusion cost along the path to its closest storage ancestor.
If we assume there is no overlap among the paths connecting
each storage node and its closest storage ancestor, the total
query diffusion cost E4 can be formulated as

E, = z:num'(t)rqsqs(t)7 (1)

where num’(t) = Asm(2t — 1)¢’? is the number of storage
nodes whose depth values are ¢ and recall s(t) is the expected
distance to the closest storage ancestor.

6.2 Dynamic Tree Model

The fixed tree model assumes the communication tree
does not change according to the placement of the stor-
age nodes. In the dynamic tree model, after the storage
nodes have been positioned, each sensor node chooses the
best storage node for storage with respect to the minimal
communication cost for data forwarding and query diffusion
and reply. The storage node placement in this model is

more complicated than that in the fixed tree model because
we need to consider the interplay between the storage node
placement and the selection of the storage node for each
sensor. These two steps affect each other dynamically.

In the optimal solution, a storage node should send query
reply to the sink by following the shortest path because the
data coming out of a storage node cannot be reduced any
further according to the definition of data reduction func-
tion. A forwarding node has to choose a storage node for
data storage to minimize the total communication cost for
its data. Assume the sink is located at the origin. Let z;
represent the location of sensor i. Additionally, we define
fd(z3i) as the location of the forwarding destination (stor-
age node) assigned to node ¢. If i is a storage nodes, then
fd(zi) = @;. The energy cost of sending raw data from z;
to fd(z3) is rasq|T; — fd(z;)|. The query reply cost for the
data from forwarding node v; is rqasq|fd(z3)|. In total, the
cost generated by a single node v; in a unit time is:

rasal@s — Fd(E)| + roasd fd(E)|

To find the optimal solution, we need to minimize the cost
for each sensor.

The total energy cost of the sensor network can be de-
scribed as:

E = (rasal# - fd(@)| + rqasal fd(@)]) + By (2)

Vi

where FE4 is the cost of query diffusion. We find that E,
in this dynamic tree model is the same as that in the fixed
tree model. Because in both models, each storage node is
connected to the sink by the shortest path. Therefore, we
can also use Eq. (1) to estimate Fq. In the following of this
section, we will analyze the rest part of Eq. (2), which is
denoted by E’.

First, we define a function F(&,%) as the energy cost
caused by the sensor at location & where % is the location of
its forwarding destination.

F(Z,4) = rasalZ — y + rqasalyl.
Moreover, we define an area
G(Z,U) ={y|F(z,9) < U},

that is, if a sensor at Z selects any storage node in that area,
the energy cost for the data of that sensor would be no more
than U. Theoretically, the minimum reply cost with Poisson
deployment is

B =) [[ Pae )F@nPGEFED) 1S = dyds,

where S is the set of all storage nodes including the sink.
P(y € S) is the probability that there is a storage node at
location .

R | 1 if ¢ is the origin;
P(yes) = { As otherwise.

F(Z,%) is the energy cost if a forwarding node at & sends
data through a storage node at ¢. For a fixed &,

P(G(Z, F(Z,5)) NS = ¢)

is the probability that its forwarding destination is at loca-
tion 7, i.e., no other storage node would induce less energy
cost than F(Z,%). G(Z, F(Z,§)) NS = ¢ means no other



storage node is more eligible than the one at . According
to Poisson processes,

P(G(Z, F(Z,7) NS = ¢)

B e NsIG@EF@ED) i F(z,9) < F(Z,0);
- 0 otherwise.

Unlike other nodes, the sink is deterministically fixed in the
network. So if area G covers the sink, there’s no need to
compute the probability. The forwarding node will definitely
send data directly to the sink.

However, |G| in the formula above, called the Cartesian
Oval, cannot be expressed in a closed form. To approxi-
mate the energy cost, we make each forwarding node sim-
ply choose the closest storage node for data storage. The
network field is then divided into Voronoi cells induced by
storage nodes. The energy cost of this topology is very close
to the optimal case, especially when As < A.

Assume there is a forwarding node ¢ at location T, the
probability that ¢ sends data through a storage node at lo-
cation 4 becomes:

0 it 7 - 71 > |
Pz —y) = eIl if ¢ is the origin;
Asef’\sﬂ‘ffmz Otherwise.
Thus,

&
I

A / / F(Z,§)P(& — §)dyda
)\(/ F(Z,0)e ™ gy

*/ / F(@, ) Ase 77 dydz)
|Z—g]<|Z|

A/F(f, 0)e 17 gy

A / / F@, e ™7 qydz. (3)
|#—71<|Z|
In the first term, F(Z,0) = rqsq|Z|. Therefore,

)\/F(:E, O)efksﬂfﬁdx
= )\Tdsd/|f|67)\sﬂf‘2d1}

27 R 2
= )\rdsd/ / pe ™ pdpdf
o Jo

R 2
— 27T)\7'd8d/ pzef’\”p dp. (4)
0

For the second term in Eq. (3), Fig. 4 shows the variables
after coordination conversions, where p = |Z — 7| and p’ =
|z|. F(Z,¥) can be expressed by

rasap + reasay/ p’2 + p? — 2cosBp’p.

Sink

Figure 4: A forwarding node at location x sends data
via a storage node at y.

Thus, the second term becomes:

A/ / F(@ §)hee ™7 dyda
|[Z—g]<|Z|

27 |Z| N 5
— AAS// / e P (rysap
o Jo

+rqasa/|Z)? 4 p2 — 2 cos || p) pdpdfdx

= 4 2)\)\ " o 7>\S7rp2 2 7 /
= 4T AAsTdSd e p p dpdp
o Jo

R 27 o’ N 5
+2TAANsT g8 g / / / e TP
o Jo Jo

pp' p'® + p? — 2 cos Op' pdpdfdp’. (5)

Combining Eq. (4) and (5), the total energy cost except
query diffusion is

E/ = 27\ " 2 7A37r/)2
= 27TAr4Sq pe dp
0

A2 Rrol —Asmp2 2 /
FAT AT dS4q e p p dpdp
o Jo

R 27 o’ N 5
+27T>\)\3Tq068d/ / / e TP
o Jo Jo

P’ p'% + p? — 2cos Bp’ pdpdfdp’.

We can further approximate E’ by examining its two com-
ponents separately:

e Ly, the cost of transferring raw data between for-
warding nodes and their closest storage nodes;

e [,,: the cost to relay reply from storage nodes to the
sink.

For a forwarding node i , the expected distance to the closest
storage node is ﬁ Thus,

1
Erg = M R*rgsq——.
! VA,

AmR? is the total number of forwarding nodes and r4s4 L

2v/ X5
is the energy cost of transferring raw data from an individual
forwarding node to its closest storage node. On the other

hand,

Ess = rqasq Z(Dl + 1)L,
i€S
where D; is the total number of descendants and L; is the
distance to the sink. Since each forwarding node chooses



the closest storage node for data storage, the number of
forwarding nodes that each storage node is responsible for
is approximately the same. If we replace L; by the mean
value L/,

Egs = rqasqgl) Z(Dl +1).
ieS
In this equation, ), ¢(D; + 1) represents the number of
nodes which send data via storage nodes to the sink. Let N’

be the number of forwarding nodes that send data directly
to the sink,

> (Di+1) = R?— N".
€S

N’ can be derived as

27
N/ _ )\/ 7As7r\ac\ dz _)\/ /

= 27r)\/ pe “Aeme? dp = —(1 _ e R ).
0 A

Asmp? pdpdf

s

And L' can be simply approximated as

As fOR 27r - rdr _ gR

L'=—7 7R 3

Therefore,

fo rqasd(3R()\ﬂ'R2 - %(1 — e NeTR))

and

A

L))

E' = AtR%*r4sq4 +reasq(= R()\?TR2

1
2V As 3

7. PERFORMANCE EVALUATION

We have implemented a simulator to simulate the deter-
ministic storage node placement in the fixed tree model by
using dynamic programming and the random storage node
deployment in the fixed tree and dynamic tree models. We
evaluate the energy cost in each model for various parame-
ters.

In our simulation, we consider a network of sensors de-
ployed on a disk of radius 5 with the sink placed at the
center. One thousand sensor nodes (n = 1000) are deployed
to the field randomly following 2-dimensional spatial Pois-
son process. Node transmission range is set to 0.65. After
all nodes are deployed, a routing tree rooted at the sink
is constructed by flooding a message from the sink to all
the nodes in the network. The message carries the number
of hops it travels at each node so that each node chooses
among its neighbors the node that has the minimum num-
ber of hops to be its parent. This tree topology is needed in
the simulation of the fixed tree model. This step, however,
can be skipped for the dynamic tree model.

In the fixed tree model, with deterministic deployment,
the storage nodes are deployed by following the dynamic
programming algorithm according to the known tree topol-
ogy. With random deployment, we randomly select a cer-
tain number of nodes in the network to be storage nodes.
In the fixed tree model, after storage nodes are selected,
data forwarding and query diffusion and reply follow the
constructed tree structure. However, in the dynamic tree
model, each forwarding node selects the best storage node
to deliver data and each storage node replies to query by

following the shortest path to the sink. In the rest of this
section, these three scenarios are denoted as follows: FT-
DD (fixed tree model with deterministic deployment), FT-

D (fixed tree model with random deployment), DT-RD
(dynamic tree model with random deployment).

In addition, we use relative energy cost as performance
metrics. We use the scenario that no storage node except
the sink is deployed as the baseline. Let the energy cost in
this no storage scenario be Ey. And let the energy cost after
the storage nodes are deployed be E. The relative energy

cost is defined as E£ In the rest of the paper, we simply

use “energy cost” for “relative energy cost”.

Due to the randomness of our simulation environment,
results from the same parameter setting might vary a lot.
Therefore, for a certain set of parameters, we conduct 100
independent simulations and the average energy cost is used
in the following analysis and comparison. Unless otherwise
stated, we set the following parameters in our simulations:
rq =1, rg =1, s¢ = 1, s = 1. We evaluate the energy
cost by varying the number of storage nodes k and the data
reduction rate . The density of storage nodes As; can be
derived by As = R2

Fig. 5 shows the energy saving of random deployment in
the fixed tree model. We compare our theoretical estima-
tion with simulation results. As we can see from the figure,
the theoretical estimation and the simulation match well.
We have examined the simulation carefully and found that
many storage nodes are placed at the leaf nodes or have very
few descendants. Therefore, the data reduction for those de-
scendants is negligible and less energy is saved compared to
the case that each node sends all the data to the sink.
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Figure 5: FT-RD: Energy cost with varying number
of storage nodes, a = 0.5.

In Fig. 6, we show the energy cost with respect to different
data reduction rates . We fix the number of storage nodes
(k = 10) and change the data reduction rate a from 0.1 to
0.9. In this fixed tree model, decreasing data reduction rate
cannot improve the performance too much. Even when «
is set to 0.1, we still have more than 96% energy cost with
10 storage nodes. The reason is that data accumulation to
the storage nodes from the forwarding nodes consumes most
of the energy with respect to the query diffusion and reply.
Moreover, when « is 0.9, the energy cost is even worse than
the original cost, because the incurred query diffusion cost
becomes larger than the benefits obtained.

The energy cost of random deployment in the dynamic
tree model is shown in Fig. 7. In this model, the location of
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Figure 6: FT-RD: The impact of data reduction
rate, k =10 and A\; = %2‘ =0.127.

each storage node is broadcast to forwarding nodes so that
they can choose the proper storage nodes to deliver data for
the energy concern. In this way, we take full advantage of
every storage node and maximize their contributions to the
whole network. As shown in Fig. 7, random deployment per-
forms much better in this dynamic tree model. The energy
cost decreases very fast with increasing number of storage
nodes, e.g., with 10 storage nodes (1% of total nodes), we
can save energy by approximately 20%. Fig. 8 illustrates
the impact of data reduction rate to the energy cost in the
dynamic tree model. This time, a becomes an important
parameter, because every storage node is in charge of many
forwarding nodes in the dynamic tree model. A small de-
crease of a will reduce energy cost greatly.
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Figure 7: DT-RD: Energy cost with varying number
of storage nodes, a = 0.5.

As shown above, with random deployment, the dynamic
tree model has a significant performance improvement over
the fixed tree model. However, the locations of storage nodes
need to be broadcast to all other nodes and the new tree
is completely different from the originally constructed tree
one. We consider a semi-dynamic tree model, in which local
adjustments are applied to the originally constructed tree.
For each storage node i, all the forwarding nodes within the
transmission range of the ¢ that has a depth no less than
i’s depth select ¢ as parent. In result, each storage node
gains more descendants and accepts more raw data storage.
Fig. 9 compares the energy costs of random deployment in
three models (fixed tree, dynamic tree and semi-dynamic
tree), as well as deterministic deployment in the fixed tree
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Figure 8: DT-RD: The impact of data reduction
rate, £k =10 and \; = %2‘ =0.127.

model. We use ST-RD to denote the newly introduced semi-
dynamic tree model with random deployment. As shown
in Fig. 9, FT-DD achieves the best performance and DT-
RD also performs well. FT-RD has the worst performance,
and local adjustment in ST-RD improves the performance
of the fixed tree model. In FT-RD, each storage node has
no control about how many descendants it can have. Many
storage nodes are deployed with few descendants, which ex-
plains why FT-RD delivers the worst performance. ST-RD
allows each storage node to have some restrained flexibility
in choosing its descendants, and has a better performance
than FT-RD. DT-RD has more flexibility in choosing de-
scendants, and we see a much improved performance. De-
terministic deployment in the fixed tree model performs best
by precisely computing where to put the storage nodes.
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Figure 9: Comparison of energy costs with varying
number of storage nodes, o = 0.5.

Finally, load distribution and network lifetime are shown
in Fig. 10 and Fig. 11. We show the workloads of the most
heavy-loaded 50 nodes in Fig. 10, where the workload of
each node is measured by the size of transferred messages
per unit time. In Fig. 11, we define lifetime as the time
that the first node is depleted of energy. As we can see,
FT-RD almost has no improvement on load-balancing and
lifetime. In contrast, FT-DD lengthens the lifetime a lot
with a small number of storage nodes, although the objective
of our algorithm is to minimize the total energy cost. DT-
RD does not perform well with only a few storage nodes,
because the sensors connecting storage nodes and the sink
carry a lot of workloads for both raw data transmission and



reply collection. When k£ > 5, both FT-DD and DT-RD
prolong the lifetime significantly, e.g., with 1% storage nodes
(k = 10), the lifetime is increased by about 60%.
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Figure 10: Comparison of load-balancing, £ = 10 and
a = 0.5.
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Figure 11: Comparison of lifetime: Values are nor-
malized by the lifetime without storage nodes, a =
0.5.

8. CONCLUSION

This paper considers the storage node placement problem
in a sensor network. Introducing storage nodes into the sen-
sor network alleviates the communication burden of sending
all the raw data to a central place for data archiving and
facilitates the data collection by transporting data from a
limited number of storage nodes. In this paper, we examine
how to place storage nodes to save energy for data collection
and data query. We considers two models: fixed tree model
and dynamic tree model. In the first model, we give exact
solution on how to place storage nodes to minimize total
energy cost. We also use stochastic analysis to give the per-
formance estimation for both models under the assumption
that the storage nodes are deployed randomly. Our future
work includes how to optimize query reply in a sensor net-
work and how to solve the storage node placement problem
in terms of other performance metrics.
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