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ABSTRACT
As RFID tags are increasingly attached to everyday items,
it quickly becomes impractical to collect data from every
tag in order to extract useful information. In this paper,
we consider the problem of identifying popular categories of
RFID tags out of a large collection of tags, without reading
all the tag data. We propose two algorithms based on the
idea of group testing, which allows us to efficiently derive
popular categories of tags. We evaluate our solutions using
both theoretical analysis and simulation.

Categories and Subject Descriptors: C.2.1 [Network
Architecture and Design]: Wireless Communication

General Terms: Algorithms, Design, Measurement, Per-
formance, Theory

Keywords: Algorithms, ALOHA, Data Mining, Group Test-
ing, RFID

1. INTRODUCTION
Radio Frequency Identification (RFID) technology is in-

creasingly being deployed for many important applications,
such as inventory control and supply chain management.
Small RFID tags each containing a tag ID can be attached to
products and scanned several meters away via RFID readers,
usually in the form of either a portable handheld, or station-
ary gateway. The ID of each RFID tag specifies information
about the item, such as production date and product classi-
fication. Manufacturers encode the information by assigning
predefined bit positions on the ID [9]. An RFID reader can
thus differentiate a jar of peanut butter from a can of beans
by reading certain bits denoting the product category.

We envision that low-cost RFID will be attached on every
object in our daily life, from clothes, books, pens, to very
small objects such as pins and buttons. Annotating objects
around us with tags gives us enormous advantage in connect-
ing the physical world with the cyber-world so that people
can easily obtain the information about the environment and
some interesting applications, such as tracing and tracking
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physical objects, will be a norm. In particular, combining
RFID and sensing technology for reader-activated sensing
makes this vision more likely.

We believe that more powerful tags and readers in the
future promise many more applications based on how we
may use those tags. We may often encounter the scenario,
where a reader needs to read a large amount of tags within
its range. For example, in a shipping portal or warehouse,
the items in pallets and cases will be read together in bulk.
In such scenarios, we may wonder how to efficiently extract
useful information from that many tags. This paper con-
siders a particular problem of efficiently finding the popular
categories among these numerous items. This is important
when we want to track the most popular categories shipped
in a day, or the least consumed types of goods in a ware-
house, or the most frequent values sensed by RFID sensors
when the values can be classified into categories.

However, when the collection of tags is large, reading data
from every tag to extract information is very time consum-
ing. Furthermore, in many instances, precise information is
not required. Instead, the ability to quickly extract infor-
mation from a large group of tags, even with some errors,
is more desired. An example is the earlier research [19],
which proposed efficient methods for quickly estimating the
number of tags in a collection. In this paper, we aim to
solve a more complicated problem, finding popular cate-
gories within a large collection of tags. We use the concept
of group testing [8] in designing our algorithms. The basic
idea behind group testing is that by dividing the categories
into groups, we can rapidly eliminate groups that contain
many unpopular categories. This allows us to focus on the
groups that encompass potential popular categories.

The major contributions of this paper are summarized as
follows. (1) This paper considers a complex data mining
problem of finding popular categories in RFID systems and
we are the first to target at a solution without collecting
all tag IDs. This is a technically challenging problem and
the solution will benefit many applications with efficiency
concerns. (2) We propose a simple fast threshold check-
ing scheme (TCS), which accurately answers whether the
number of involved tags exceeds a threshold with high prob-
ability. (3) We design two probabilistic algorithms based
on group testing and TCS to efficiently find popular cate-
gories. The first one is a generic group testing, which ran-
domly places categories into groups. The second algorithm
is a combination of group testing and divide-and-conquer.
(4) We comprehensively evaluate the proposed schemes and
compare them against existing solutions. Our simulation



results show that our schemes significantly reduce the total
scanning time measured as the number of short slots, which
will be explained later.

2. RELATED WORK
For a reader to successfully receive data from multiple

tags, anti-collision protocols must be designed so that replied
data from multiple tags will not be garbled because of colli-
sion. In general, two approaches are used to regulate col-
lision. The first is based on the ALOHA protocol [2, 3,
9, 10, 15, 22, 24, 28–32]. A representative protocol used in
RFID systems is the framed ALOHA [24], a variation of
ALOHA [1]. In this protocol, a frame is divided into mul-
tiple time slots. The communication is initialized when the
reader broadcasts a frame size, i.e., the number of slots in
the frame. Every RFID tag responds only in a particular
slot in the current frame. The reader can successfully re-
ceive data in a certain slot if only one tag picks the slot
for transmission. This process is repeated until all tag data
are collected. The second approach uses the tree traversal
technique [4, 5, 16, 21, 25–27, 33]. The reader broadcasts an
ID prefix, and those tags whose IDs match the prefix will
respond. If a collision is detected, the reader will append
‘0’ or ‘1’ to the prefix and send new prefixes again. It is
equivalent to traversing a binary tree, where each tag’s ID
is a leaf node. The expansion of prefix stops if only one tag
responds. The goal of the above anti-collision protocols is
to collect all the IDs, which can definitely solve our problem
of finding popular categories. However, as we will show in
evaluation, they are not efficient. Interestingly, we do use
the framed ALOHA and a tree-traversal-like method in the
paper, but with a totally different purpose.

In the database community, mining RFID data has drawn
considerable attention [13, 14, 17, 23]. Their problems are
formulated at a high level, where all RFID data are already
stored in a central database. Our paper considers the prob-
lem where none of the RFID data has been collected.

Recent research work in [19] is the closest to this paper.
The authors consider the problem of estimating the number
of tags without collecting the tag IDs. Based on the framed
ALOHA, their algorithms analyze the numbers of empty
slots, single-reply slots and collision slots to obtain approx-
imated information. By carefully tuning the parameters for
multiple iterations, their solutions can quickly estimate the
number of RFID tags with high accuracy. [20] uses a sim-
ilar analysis for anonymous tracking in RFID systems. In
this paper, our TCS scheme is based on a similar analysis.
However, we consider a more complex problem of finding
popular categories. Directly applying the algorithms in [19]
cannot efficiently resolve it.

Another relevant research is finding popular items in stream-
ing data [6, 7, 11, 12, 18]. Similar ideas of group testing [8]
are adopted in [6] to maintain a small set of counters to find
frequent items in data streams, thus achieving memory effi-
ciency. In this paper, our goal is to reduce the scanning time
and the assumption of scanning all the data in one pass in
the data streaming algorithms is impossible.

3. PROBLEM FORMULATION AND SYS-
TEM MODEL

We consider that, within the reading range of a reader,
there are n products each of which is attached with an RFID

tag, that is, n tags (t1, . . . , tn) in total. Every RFID tag con-
tains a unique ID represented by a bit string, which consists
of several fields [9]. We assume that one of the fields specifies
the category the product belongs to. The bit string in the
field is called category ID. Depending on the applications, a
category ID can be as generic as the origin of country, or as
specific as a brand and model number. We assume that we
know the set of distinct category IDs of the tags considered
in this scenario, denoted as C = {C1, . . . , Cm}. For each tag
tj , we use cj to represent its category ID. We will discuss
the scenario without knowing C in Section 4.5.

In this paper, popular categories are defined by an appli-
cation specific threshold. Let Fi be the number of products
in category Ci.

Definition 1. Given a threshold α ∈ (0, 1), Ci is a pop-

ular category if Fi ≥ α · n.

Our goal is to find a category set R, which contains popular
categories of products in the warehouse. To this end, we
are going to design randomized algorithms. This requires us
to slightly modify the problem in the randomized setting as
follows. Given α, β ≤ α, and δ ∈ (0, 1), we would like to
minimize the scanning time and find a category set R
such that with probability larger than 1 − δ, the following
two accuracy constraints are satisfied:

1. Completeness Constraint: {Ci|Fi ≥ α · n} ⊆ R;

2. Population Constraint: ∀Ci ∈ R,Fi ≥ β · n.

We name the first constraint completeness constraint, since
it requires returning all popular categories. The second con-
straint is called population constraint, as it defines the lower
bound of the population of any returned category.

Here we briefly explain the rationale of this problem for-
mulation. Ideally, we would like to return all popular cate-
gories, i.e., {Ci|Fi ≥ α · n} ⊆ R, and only the popular cat-
egories. However, our randomized setting may return some
unpopular categories. To control what extraneous categories
may be returned, we introduce another parameter β ≤ α,
which defines a lower bound for the population of any re-
turned category. It requires that any Ci ∈ R must have no
fewer than β·n products, i.e., ∀Ci ∈ R,Fi ≥ β·n. A strict re-
quirement may set β = α. In practice, however, applications
usually tolerate a certain level of inaccuracy. For example,
it is meaningful to return a category with fewer than α · n
products as a popular category. With the requirement of β,
the population of each resulting category, although maybe
less than α ·n, is confined to be close to α ·n. Furthermore,
to save scanning time, the number of products in each cat-
egory is estimated by a probabilistic algorithm. Thus, we
can not provide deterministic guarantee for the two con-
straints. Instead, another parameter δ ∈ (0, 1) is defined
as a probabilistic guarantee which specifies the maximum
allowed probability that our returned results fail to satisfy
the two constraints.

In this paper, our schemes often use a ‘select’ operation:
the tags satisfying a certain condition will stay active while
the others will keep silent. In a ‘select’ command, two types
of conditions can be specified. First, the reader can broad-
cast a prefix bit string mask and each tag tj will check if
its category ID matches the received prefix, i.e., if the first
|mask| bits of cj is the same as mask, where |mask| is the
bit length of mask. Second, the reader can broadcast three



numbers, r, u, and v, and each tag tj will check the following
condition, h(r, cj) mod u = v, where h is a hash function.
We use hu(r, x) to indicate h(r, x) mod u in the rest of this
paper. In both cases, an RFID tag will keep active only
when the specified condition holds.

Our communication model is based on the framed ALOHA.
We assume that an RFID reader is able to distinguish the
slots with no reply, single reply, or multiple replies. We de-
fine these slots as empty slot, single-reply slot, or collision
slot respectively. In the typical ALOHA scheme, the dura-
tion of a non-empty slot (single-reply or collision) is much
longer than that of an empty slot, because tags transfer the
whole ID with CRC (Cyclic Redundancy Check) in a non-
empty slot. In our approaches, every tag does not transfer
the long ID, but a short random bit string (usually < 10
bits [19]), as long as the RFID reader can detect the pres-
ence of the signal. Thus, all slots in our approaches have
similar durations. In the rest of this paper, we call an empty
slot or a slot transferring short bit strings as short slot, and
a slot transferring IDs as long slot. We use S and L to de-
note the lengths of a short slot and long slot respectively. In
addition, our schemes use the algorithm presented in [19] to
estimate the total number of active tags. For total n′ active
tags, the algorithm, denoted as Ω(a, b) for a, b ∈ (0, 1), gives
an estimation of ñ′ for n′, such that with probability larger

than a, 1− b
2
≤ ñ′

n′ ≤ 1 + b
2
. Let |Ω| be the scanning time of

Ω. As claimed in [19], |Ω| is independent of n. Table 1 lists
some notations used in the following sections.

n/ñ number of tags / estimation of n
n′/ñ′ number of active tags/ estimation of n′

Ci/Fi category ID / number of products in Ci

tj/cj RFID tag / tj ’s category ID

Table 1: Summary of Notations

4. FIND THE POPULAR CATEGORIES
We propose and compare different solutions in this sec-

tion. First, we describe two straightforward, but impracti-
cal solutions. Then, we introduce the Threshold Checking
Scheme (TCS), which is an important component in our so-
lutions. Finally, we propose our schemes, group testing with
TCS and tree traversal with TCS.

4.1 Simple Solutions
The first simple solution is to collect all tag IDs by us-

ing the framed ALOHA. Then, we can scan the data and
find all popular categories. We call this solution identifi-

cation scheme. In this solution, we have to use long slots
to correctly receive the IDs. As analyzed in the prior work
[3,10,28], the number of slots needed is proportional to the
number of tags n. It is inefficient when n is very large.

Alternatively, we can use Ω to resolve the problem. The
algorithm is described in Algorithm 1. For each category,
the reader broadcasts the category ID so that the tags in
the category stay active while the other tags keep silent.
Then, we apply Ω to estimate the number of active tags and
compare the result with the threshold. Since Ω can obtain a
good estimation with a certain setting, Algorithm 1 is able
to find all popular categories with a very high probability
and the scanning time is m(L + |Ω|). In practice, this so-
lution is not efficient either, because we may have hundreds

Algorithm 1 Check Each Category

1: Run Ω to obtain ñ
2: for i = 1 to m do

3: Reader broadcasts Ci

4: Tag tj stays active if cj = Ci

5: Run Ω to obtain ñ′

6: if ñ′ ≥ α · ñ then R = R ∪ {Ci}
7: return R

of categories (large m) and |Ω| could be thousands of short
slots for a certain accuracy [19]. We will compare these two
simple solutions with our solutions in Section 5.

4.2 Threshold Checking Scheme (TCS)
Our algorithms are based on a scheme that estimates

whether the number of currently active tags (n′) exceeds
a given threshold. We call this scheme Threshold Checking
Scheme (TCS). The details are presented in Algorithm 2.
The input includes a frame size f and other two parame-

Algorithm 2 TCS(f, τ1, τ2)

1: Reader broadcasts f
2: Each tag randomly picks a time slot to reply
3: Reader obtains N0 and Nc

4: if (N0 ≤ τ1) and (Nc > τ2) then return true
5: else return false

ters τ1, τ2 ≤ f . The reader first broadcasts the frame size
f . RFID tags follow the basic framed ALOHA protocol
and respond at a random time slot. During this frame, the
reader keeps counting the numbers of empty slots and colli-
sion slots, recorded in N0 and Nc respectively. In the end,
the reader will compare N0 and Nc with τ1 and τ2 to de-
termine the returned value of TCS. We intentionally avoid
using the number of slots for single tag reply (N1) because
N1 is not a monotonous function of the number of tags. N0

and Nc, however, are monotonous decreasing and increasing
functions of the number of tags respectively. This gives us
a simple way to check if n′ is greater than the given thresh-
old. Due to the page limit, we omit the detailed analysis
here and refer the interested reader to [19].

By carefully choosing f , τ1, and τ2, we can have a high
confidence that if the number of active tags exceeds a given
threshold the protocol returns true. In the following lemmas
and theorems, we give the analysis for the protocol assuming
there are n′ active RFID tags. More specifically, we show the
results on Suc(n′), which is defined as the probability that
TCS(f, τ1, τ2) returns true when applied to n′ active tags.
These lemmas and theorems are crucial for the analysis of
our algorithms which will be presented later.

Lemma 1. When n′ and f are large1, N0 and Nc approx-

imately follow a normal distribution , N0 ∼ N(µ0, σ0), and

Nc ∼ N(µc, σc), where µ0, σ0, µc and σc are defined in Ap-

pendix A.

Proof. Refer to [19].

Theorem 1. When n′ and f are large,

Suc(n′) =
1

4
(1 + erf(

τ1 − µ0√
2σ0

)) · (1 − erf(
τ2 − µc√

2σc

)),

1We consider general rules of thumb for approximating a
binomial distribution to a normal distribution.



where erf is the error function of the standard normal dis-

tribution2, and variables µ0, σ0, µc and σc are defined in Ap-

pendix A.

Proof. Based on the properties of normal distributions,

Pr(N0 ≤ τ1) = Φ(
τ1 − µ0

σ0
) =

1

2
(1 + erf(

τ1 − µ0√
2σ0

));

Pr(Nc > τ2) = 1 − Φ(
τ2 − µc

σc

) =
1

2
(1 − erf(

τ2 − µc√
2σc

)).

Therefore,

Suc(n′) = Pr(N0 ≤ τ1) · Pr(Nc ≥ τ2)

=
1

4
(1 + erf(

τ1 − µ0√
2σ0

)) · (1 − erf(
τ2 − µc√

2σc

)).

Theorem 2. Suc(n′) is an increasing function of n′, i.e.,

if n′

1 ≥ n′

2, Suc(n′

1) ≥ Suc(n′

2).

Proof. Obviously, compared with a group with n′

2 tags,
a group with n′

1 tags tends to have less empty slots and more
collision slots.

Theorem 3. Given a list {u1, . . . , uq} and a number v >
0, if

P

ui = z, then
X

Suc(ui) ≤ z

v
+ (q − z

v
)Suc(v).

Proof. We divide the list into two sets, S1 = {i|ui ≥ v}
and S2 = {i|ui < v}. Obviously, at most z

v
elements belong

to S1. Therefore,
X

Suc(ui) =
X

i∈S1

Suc(ui) +
X

i∈S2

Suc(ui)

≤ |S1| · 1 + (q − |S1|) · Suc(v)

= |S1| · (1 − Suc(v)) + q · Suc(v)

≤ z

v
+ (q − z

v
)Suc(v).

4.3 Group Testing with TCS

In this section, we propose a solution based on group test-
ing with TCS. We first divide the tags into groups according
to their category IDs. The tags with the same category ID
belong to the same group and each group may contain the
tags in multiple categories. We then apply TCS to check the
number of tags in each group. The intuition is that many
categories with few tags may be grouped together and thus
can be easily identified as unpopular categories in a simple
group test. The groups with sufficient tags are labeled as
potential popular groups, which may include popular cate-
gories or have no popular categories (when a certain num-
ber of unpopular categories contribute adequate number of
tags). Our algorithm continues to shuffle all categories into
different groups and apply the TCS tests to the new groups
again. This process is repeated for a prescribed number of
rounds and in the end, the testing history is able to reveal
all popular categories.

The details of our protocol are illustrated in Algorithm 3.
The whole process consists of T rounds (line 3) and in each
round all tags are distributed into W groups by a hash func-
tion h(r, C), where r is a random seed and C is a category

2In our implementations, continuity correction is applied.

Algorithm 3 Group Testing

1: Run Ω to obtain ñ
2: Calculate parameters T, W, f, τ1, and τ2

3: for k = 1 to T do

4: for g = 0 to W − 1 do

5: Reader broadcasts a random seed rk, W , and g
6: Tag tj stays active if hW (rk, cj) = g
7: M [k, g] = TCS(f, τ1, τ2)
8: for Ci ∈ C do

9: check=true
10: for k = 1 to T do

11: if (not M [k, hW (rk, Ci)]) then

12: check=false
13: if check then

14: R = R ∪ {Ci}
15: return R

ID. A tag tj is in group g if hW (r, cj) = g (recall hW (r, cj)
denotes h(r, cj) mod W ). We use a different random seed to
shuffle the categories in each round. Thus, Algorithm 3 to-
tally generates T random seeds, denoted by {r1, r2, . . . , rT }.
Throughout the algorithm, all tags form T × W groups, la-
beled as G(k, g) for k ∈ [1, T ] and g ∈ [0, W − 1], such that

G(k, g) = {Ci| hW (rk, Ci) = g}.
In the rest of this paper, we use |G(k, g)| to denote the num-
ber of the tags whose category IDs belong to G(k, g). In
round k, the reader broadcasts rk, W , and g (line 5) to
select the RFID tags mapping to group G(k, g). We then
run TCS(f, τ1, τ2) to examine the number of RFID tags in
G(k, g). We record the results in a matrix M : M [k, g] =
true means that there might be popular categories in group
G(k, g). Otherwise, if M [k, g] = false, all the categories
in G(k, g) are considered as unpopular categories. Thus, as
shown in lines 8-15, a category will be returned, only if the
group it belongs to in every round passes the test. Fig. 1
illustrates an example of group testing with 10 categories.

G(1,0) G(1,1) G(1,2) G(1,3)

G(2,0) G(2,1) G(2,2) G(2,3)

G(3,0) G(3,1) G(3,2) G(3,3)

C C C C C C C

CCCC1C

C C C C C C C1 C C C

2 5 C8 1 10 3 64

10 2 5 9 6 7

7 9 10842 3 5 6

7 9

C C C3 C4 C8

C C

Pass Fail

W=4

T
=
3

Figure 1: There are 10 category IDs, with parame-

ters W = 4 and T = 3. Based on the test results, C1

and C4 will be returned as popular categories.

In the following, we show how to choose these parame-
ters to minimize the scanning time while the constraints are
satisfied. Theorem 4 and Theorem 5 give the conditions
that provide the probabilistic guarantee for the complete-
ness constraint and population constraint (stated in Section
3) respectively. Theorem 6 expresses the scanning time by
the parameters. Combining them, we can find the optimal



parameters with the minimum scanning time while satisfy-
ing the two constraints.

Specify the constraints: Since TCS is probabilistic
and group testing is essentially a randomized algorithm, a
popular category may be filtered out of the resulting set and
an unpopular category may survive all tests and be present
in R. The following two theorems specify the conditions for
the parameters to satisfy the accuracy constraints.

Theorem 4. The completeness constraint is satisfied with

more than 1 − δ probability if (1 − δ · α) ≤ Suc(α · n)T .

Proof. Consider a popular category Ci, assume Ci be-
longs to G(k, g). Let t = |G(k, g)| ≥ Fi ≥ α · n. G(k, g) will
pass the TCS test with probability of Pr(M [k, g] = true) =
Suc(t). According to Theorem 2,

Pr(M [k, g] = true) ≥ Suc(α · n).

The probability that any of the T groups that Ci belongs
to will fail in the TCS test is at most 1 − Suc(α · n)T ≤
δ ·α. Based on the definition of a popular category, there are
at most 1

α
popular categories. Thus, by union bound, the

probability that no popular category is missing (all popular
categories pass all the T tests) is greater than 1− δ ·α · 1

α
=

1 − δ.

Theorem 5. The population constraint is satisfied with

more than 1 − δ probability if there exists u, such that

(
n − β · n

W (u − β · n)
(1 − Suc(u)) + Suc(u))T ≤ δ.

Proof. We prove the theorem by showing that for any
unpopular category Ci, i.e., Fi < β ·n, the probability to be
returned in R is less than δ. Assume in a certain round, Ci

belongs to a group G and let t = |G|. The probability that
group G passes a TCS test is Suc(t). For any given u,

Suc(t) = Pr(t ≥ u)Suc(t) + Pr(t < u)Suc(t)

≤ Pr(t ≥ u) + (1 − Pr(t ≥ u))Suc(u).

Let X denote the number of tags in group G which do not
belong to category Ci, i.e., X = t − Fi. The expectation of
X is E(X) = n−Fi

W
. According to Markov’s inequality,

Pr(t ≥ u) = Pr(X ≥ u − Fi) ≤ n − Fi

W (u − Fi)

=
1

W
(1 +

n − u

u − Fi

) <
1

W
(1 +

n − u

u − β · n ).

Therefore,

Suc(t) ≤ Pr(t ≥ u)(1 − Suc(u)) + Suc(u)

<
n − β · n

W (u − β · n)
(1 − Suc(u)) + Suc(u).

Considering T rounds of tests, Ci will be returned in R with
probability of Suc(t)T < δ.

Express the scanning time: Here we express the scan-
ning time used in Algorithm 3. In a simple estimation, we
need test T · W groups and each test consumes one long
slot and f short slots. Thus, in total, Algorithm 3 takes
T · W · (L + f · S). We find, however, that it is not neces-
sary to check all groups. In every round, we recognize some
unpopular categories, thus the remaining possible popular

categories become fewer and fewer. If one group contains
only known unpopular categories, we can skip the TCS test
for it. We analyze the scanning time in the following series
of theorems and lemmas. Theorem 6 bounds the expected
scanning time utilizing the result from Lemma 3. Lemma 2
is an auxiliary lemma that helps prove Lemma 3.

Lemma 2. Given a ∈ (0, 1), x < b < n, and c ≥ 1,
(a + (1 − a) n−x

W ·(b−x)
)c is a convex function of x.

Proof. See Appendix B.

Lemma 3. Let mk be the expected number of possible pop-

ular categories after the k-th iteration in line 3 of Algo-

rithm 3 and m0 = m. Given u > 0 and v ≤ W ·u−n
W−1

, then

∀k ∈ [1, T ], mk is bounded by

n

v
+ (m − n

v
)(Suc(u) + (1 − Suc(u))

n − 1

W (u − 1)
)k.

Proof. For a category Ci, let pi,k be the probability that
Ci will still be considered as a possible popular category after
the k-th iterations, mk =

P

i pi,k. Similar to Theorem 5, for
any given u,

pi,k ≤ (Suc(u) + (1 − Suc(u))
n − Fi

W (u − Fi)
)k.

We divide all categories into two sets, S1 = {Ci|Fi > v}
and S2 = {Ci|Fi ≤ v}. We have,

X

pi,k =
X

Ci∈S1

pi,k +
X

Ci∈S2

pi,k

≤ |S1| +
X

Ci∈S2

(Suc(u) + (1 − Suc(u))
n − Fi

W (u − Fi)
)k.

According to Lemma 2, the right side of the above in-
equality is a convex function of Fi. To maximize the right
hand side, for each category Ci ∈ S2, Fi takes value of ei-
ther 1 or v, by the property of a convex function. Suppose
t1 = |{Ci|Fi = v}| and t2 = |{Ci|Fi = 1}| when the maxi-
mization is achieved. Therefore,

P

pi,k is bounded by

|S1| + t1 · (Suc(u) + (1 − Suc(u))
n − v

W (u − v)
)k

+ t2 · (Suc(u) + (1 − Suc(u))
n − 1

W (u − 1)
)k

= |S1| + t1 + t2 · (Suc(u) + (1 − Suc(u))
n − 1

W (u − 1)
)k.

Let λ = (Suc(u) + (1 − Suc(u)) n−1
W (u−1)

)k ≤ 1, we have

X

pi,k ≤ |S1| + t1 + t2 · λ
= |S1| + t1 + (m − |S1| + t1) · λ
= m · λ + (|S1| + t1) · (1 − λ).

Since the right side of the above inequality is an increasing
function of |S1| + t1 (the number of categories with no less
than v tags) and |S1| + t1 is at most n

v
, we have

X

pi,k ≤ n

v
+ (m − n

v
)(Suc(u) + (1− Suc(u))

n − 1

W (u − 1)
)k.



Theorem 6. The expected scanning time is bounded by

ST = (L + f · S) · W ·
T

X

k=1

(1 − (1 − 1

W
)mk−1), (1)

where mk−1 is expressed by the bound derived in Lemma 3,

replacing k with k − 1.

Proof. Let Xk be the number of groups we need check
in the k-th iteration. For a certain group, the probability
that all the tags in it belong to known unpopular categories
is (1− 1

W
)mk−1 . Thus, the expected value of Xk is E(Xk) =

W (1− (1− 1
W

)mk−1). Obviously, it is an increasing function
of mk−1. Thus, ST bounds the expected scanning time when
we express it with the upper bound of mk−1.

Solve the optimization problem: In summary, given
α, β, δ, n and m, our problem is to determine the values of
T, W, f, τ1 and τ2 in the following optimization problem.

minimize ST (Eq.(1))

s.t. (1 − δ · α) ≤ Suc(α · n)T ;

∃u, (
n − β · n

W (u − β · n)
(1 − Suc(u)) + Suc(u))T ≤ δ.

Since all these parameters are bounded integers, we can find
the optimal set of parameters by discretizing them and enu-
merating all possible values. The process basically includes
five loops to enumerate all possible discrete values for the
five parameters. We also apply some optimization strategy
to speed up the process.

4.4 Tree Traversal
Group testing can be applied differently. In this sub-

section, we combine group testing with divide-and-conquer.
We first divide all tags into W groups based on their cat-
egory IDs and run TCS for each group, which is the same
as the first round in the previous solution. However, in this
scheme, we do not shuffle all categories into groups in each
of the remaining rounds. We ignore those groups that fail
to pass the TCS tests and suppose there are no popular
categories in them. Each of the groups which pass the test
is further divided into W sub-groups and we apply TCS
to each sub-group. This dividing process is repeated recur-
sively until TCS test fails or there is only one category in
the group, in which case that category will be returned as a
popular category. Fig. 2 illustrates an example.

C6C4

All Categories

C1 C C C4 C C C C C C9

C C C2 CCC C C CC10

C C C C C C C C9 C

CC

6 7 10 2 3 5 8

1 4 6 7 5 8 3 9

231 7

7 1

4 6 8 5

Level 1

Level 3

Level 4

Level 2

Pass Fail

Figure 2: In this example, there are 10 categories

with parameter W = 2. Based on the test results, C1

and C4 will be returned as popular categories.

Conceptually, this scheme is equivalent to a depth-first
tree traversal on a W -ary tree, where each leaf is a category
and each non-leaf node represents a group of categories that
appear as leaves of the subtree rooted at it. Different from
the previous scheme, this scheme uses multiple random seeds
and group indices to define a group. For example, a node
at level 1 (a direct child of the root) is defined by a pair
composed of a random seed and a group index as in the
previous scheme. However, to select a group represented by
a level 2 node, we need first select the tags belonging to its
parent node, and then divide them into W sub-groups by
another random seed. Thus, we need two pairs of random
seeds and group indices to define a level 2 node. Inductively,
for a node at level l, the group it represents is defined by l
pairs of random seeds and group indices. Thus, we denote a
node by a vector of random seeds {rk} and a vector of group
indices {vk},

Node ({rk}, {vk}) = {Ci| ∀k, hW (rk, Ci) = vk}.
Since passive RFID tags are memoryless devices, when visit-
ing a node on the tree, the reader has to provide all random
seeds and group indices to select the corresponding group.
Algorithm 4 presents the details of traversing a node. The
first call is to traverse the root (level 0), where both {rk}
and {vk} are empty.

Algorithm 4 Traverse Node ({rk}, {vk}) at Level l

1: for k = 1 to l do

2: Reader broadcasts W , vk, and rk

3: Each tag tj stays active if hW (rk, cj) = vk

4: if TCS(f, τ1, τ2) = true then

5: Reader generates a new random seed r
6: for v = 0 to W − 1 do

7: Traverse Node ({rk} ∪ {r}, {vk} ∪ {v}).

Specify the constraints: Similar to the previous sub-
section, the following Theorem 7 and Theorem 8 give the
conditions that guarantee the completeness constraint and
population constraint. Lemma 4 is needed by the proof of
Theorem 7.

Lemma 4. Consider a leaf node at level l. Given u ≥ 1,

Pr(l ≤ u) = (1 − 1

W u
)m−1.

Proof. For a certain category Ci, the probability that a
different category falls in the same group at level l is 1

W l .
The probability that none of the other m−1 categories share
the same hashed values is (1 − 1

W l )
m−1.

Theorem 7. The completeness constraint is satisfied with

more than 1 − δ probability if there exists u, such that

1 − (1 − 1

W u
)m−1Suc(α · n)u ≤ δ · α.

Proof. Assume a popular category is represented by a
leaf node at level l. It must pass l TCS tests to be returned,
which has a probability of at least Suc(α · n)l. Given a pa-
rameter u ≥ 1, the probability that a popular category will
be returned is more than Pr(l ≤ u) · Suc(α · n)u. Applying
Lemma 4 and union bound, this theorem can guarantee the
accuracy requirement.

Theorem 8. The population constraint is satisfied with

more than 1 − δ probability if Suc(β · n) < δ.



Proof. Any returned category in this scheme must pass
the test as a leaf node, i.e., without tags in any other cate-
gory in the same group. Therefore, Suc(β ·n) < δ guarantees
that with more than 1−δ probability, an unpopular category
will not pass the test by its own.

Express the scanning time: In this tree traversing pro-
cess, when visiting a node at level l, we need l long slots to
transmit the random seeds and group indices which define
the node. Then we need f short slots for each TCS test.
Theorem 9 bounds the expected scanning time.

Theorem 9. Given u, the expected scanning time of the

tree traversal scheme is bounded by

ST = W ·
logW m−1

X

l=0

((l+1) ·L+f ·S) ·(n

u
+(W l− n

u
)Suc(u)).

(2)

Proof. Assume a node i is at level l + 1. Let Ni be
the number of tags whose category IDs belong to the group
represented by i. The probability that i is visited is less
than Suc(Nj), where j is i’s parent at level l.

Let us consider a balanced W -ary tree, with W l nodes at
level l. The expected number of nodes visited at level l + 1
is at most W · P

j
Suc(Nj). According to Theorem 3

X

Suc(Nj) ≤ n

u
+ (W l − n

u
)Suc(u).

Visiting node i requires l + 1 long slots for the reader to
broadcast random numbers and group indices and f short
slots for the TCS test. Thus, considering all levels, the
expected scanning time is bounded by ST .

Therefore, our goal is to find the optimal parameters to

minimize ST (Eq.(2))

s.t. ∃u, 1 − (1 − 1

W u
)m−1Suc(α · n)u ≤ δ · α;

Suc(β · n) < δ.

Similar to the previous scheme, all the involved parameters
are integers and bounded. Thus, we are able to enumerate
all possible values and find the optimal parameters.

4.5 Extension

4.5.1 Without Knowledge of C

All previous solutions are based on the assumption that
the set of present category IDs is known. In fact, with minor
modifications, our schemes are also suitable for the scenario
where category IDs are unknown.

Obtain m: In our schemes, m is an important factor in
setting other parameters. In this extension, our first step
is to use Ω to estimate m. We can let the reader send a
random seed r and a frame size f as usual and have each
tag tj respond at slot hf (r, cj). In this way, all the tags in
a group will reply at the same slot, acting as a single tag.
Thus, we can count the number of empty slots and use Ω to
estimate the number of distinct categories.

Group Testing: If we use group testing, the analysis of
the scanning time will be different. Without the category
ID information, we have to exam all T · W group. We can
easily find the optimal parameter setting with this modified
objective. For each group that passes a TCS test, we need

use a simple query tree scheme to find the category IDs in
the group. For each category ID, we check the other groups
it belongs to. If all of them pass the tests, we return this
category as a popular category.

Tree Traversal: We can also use the tree traversal scheme
in this extension. Without the category ID information,
however, we have to determine if the traversing process reaches
leaf nodes. An effective way is to observe the number of
empty sub-groups of a node. If all sub-groups but one are
empty, then with more than 1 − 1

W
probability, the node is

a leaf node. If this scenario has occurred for several times
(k times) while we keep dividing the non-empty sub-group,
then with probability more than 1 − 1

W k , the node is a leaf
node. With a heuristic value of k, we can confirm a leaf
node with high probability in this means. After locating a
leaf node, we can easily obtain the category ID by using a
prefix mask to query each bit. Assume the category ID is
represented by B bits. We can locate it in B slots.

4.5.2 Continuous Monitoring
A unique advantage of group testing method is that it can

be used for continuous online popular categories discovery.
For example, in a shipping port monitoring system, goods
may come through the monitoring gate in bulk and bursty
fashion, or in a large warehouse, a reader cannot reach all
the tags in stock. In both scenarios, finding the popular
categories is different from the case that all tags are within
the range of a reader, in which case the tag information can
be retrieved any time. Group testing approach can conform
to this dynamic environment so that the popular categories
can be found by only estimating the number of tags that
fall in each of the predetermined number of groups. Our
algorithm can be slightly modified to suit this case.

5. PERFORMANCE EVALUATION
We evaluate the performance of our schemes via simula-

tions. By default, we set n = 10000, m = 100, α = 0.1,
β = 0.05, and δ = 0.01. In addition, |Ω(a, b)| is estimated
as 2000 short slots for a = 0.99 and b = 0.05% according
to [19], and we assume that the duration of a long slot is 5
times that of a short slot, i.e., L = 5S.

We begin by presenting the performance of the simple so-
lutions mentioned in Section 4.1. For the first identification
scheme, we conduct 1000 simulations with an initial frame
size f = 10000. At the end of each frame, the new frame
size is set to the number of the tags which have not been
collected. With the default setting, the time consumed in
our simulations is about 122k short slots on average and
the deviation is less than 2k short slots. For the other sim-
ple scheme (Algorithm 1), the scanning time is estimated
based on |Ω| = 2000. Checking each category needs 2000
short slots to finish Ω. Thus, with the default setting, Algo-
rithm 1 requires 100 × 2000 = 200k short slots. These two
simple solutions are both very costly, as we will show later
when comparing with our schemes.

For the rest of the evaluation, we denote group testing
with TCS as GT, and tree traversal with TCS as TT. All
results are the averaged results of 1000 independent trials.

5.1 Distribution Models for Data Sets
The performance of our schemes is heavily dependent on

the product distribution in all categories. The following dis-
tribution models are considered in our evaluation.



• Uniform Distribution: In this distribution, we inten-
tionally introduce some popular categories, and uni-
formly distribute the remaining tags to the other un-
popular categories. We use UD(k) to denote the uni-
form distribution with exactly k popular categories.
For this distribution, each popular category is assigned
α·n tags, and other m−k categories have n−k·α·n

m−k
tags.

• Max/1 Distribution: We denote this distribution as
M1(X), where X is the maximum number of tags in
one category. In this distribution, each category has
either X tags or only 1 tag. Since the total number of
tags is n, there are ⌊n−m

X−1
⌋ categories with X tags and

m − ⌊n−m
X−1

⌋ categories with 1 tag.

• Zipf Distribution: We also consider the Zipf distri-
bution, which is commonly found in the real world.
This distribution, denoted as ZD(n, Z), is specified
by two parameters. The first parameter is the total
number of tags and the second parameter Z defines
the upper bound of the population for each category,
i.e., the number of tags in each category ranges from
1 to Z. For each category, the probability of having
i ∈ [1, Z] tags is c

iθ , where c is the normalization con-
stant and θ characterizes the distribution. In our data
set ZD(n, Z), we tune the value of θ such that the
total number of tags is n.

5.2 Scanning Time

5.2.1 Varying Number of Tags
We first evaluate our schemes by varying the number of

RFID tags n. Fig. 3, Fig. 4 and Fig. 5 present the perfor-
mance of GT and TT under the uniform, Max/1 and Zipf
distributions respectively.

We observe that, when n increases, TCS tests in both
GT and TT require larger frame sizes. This is because the
number of tags involved in TCS test cases for GT and TT
increases, i.e., each group in GT and each node in TT con-
tain more tags. It is intuitive that, for TCS to achieve the
same accuracy, a test case with more tags requires a larger
frame size. If the frame size remains the same, the increased
number of tags will overwhelm most slots in the frame with
collisions engendering an inaccurate estimation.
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Figure 3: Scanning time for the uniform distribution

with varying n

Under the uniform distribution (Fig. 3), the average num-
ber of tags in one category (< 15) is far less than the thresh-
old (α · n = 500, 1000 and 1500). Both schemes can effi-
ciently identify the groups with popular categories. In the
GT scheme, the scanning time is approximately proportional
to the number of popular categories. However, the scanning
time of the TT scheme does not change much along axis
x. In both schemes, a larger n yields more scanning time
primarily due to the increase of the frame size in TCS.
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Figure 4: Scanning time for the M1 distribution with

varying n

For the M1(X) distribution (Fig. 4), we vary the maxi-
mum value X from 0.05n to 0.15n. Let us call a category
with X tags a large category, and a group containing at least
1 large category a large group. Basically, a large group has
a higher probability to pass the TCS tests. The value of
X has two impacts on the performance. On the one hand,
the growth of X increases the probability that a large group
can pass the TCS tests. The consequence is that we have
to apply more TCS tests to eliminate the unpopular cate-
gories. On the other hand, when X increases, there are fewer
large categories and groups in the protocol, which helps fil-
ter out the unpopular categories quickly. In Fig. 4, both
schemes are fast at the starting phase, because when X is
small, all categories (even large categories) are unpopular
and every group has a small probability to pass the TCS
tests. Thus, both schemes quickly eliminate all categories
and return no popular category. When X grows, the first
impact becomes visible, and a sharp increase appears for
both schemes, though the peak values are reached at differ-
ent values of X. We also observe there is a slight decline for
GT before the peak value due to the second impact. When
X keeps increasing, the second impact becomes dominant
and both schemes show a decreasing scanning time after the
peak values. For a fixed value of X/n, the scanning time is
nearly proportional to n.

Fig. 5 presents the performance under the Zipf distribu-
tion. In our data sets, there are usually one or two popular
categories. Most categories are unpopular with the number
of tags scattered between 1 and α · n. Since a consider-
able number of unpopular categories have tags close to the
threshold, our schemes take more time to identify them as
unpopular compared to the uniform distribution (UD(1) or
UD(2)), in which the sizes of the unpopular and popular
categories diverge dramatically.
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5.2.2 Varying Number of Categories
We also evaluate the performance of the GT and TT

schemes with a varying number of categories m. The re-
sults are illustrated in Fig. 7, Fig. 8 and Fig. 6.



In Fig. 7 and Fig. 8, we find that with other parame-
ters fixed, the scanning time is increasing when m increases.
However, the curves for m = 500 and m = 1000 are quite
close. In Fig. 6, the performance of TT for varying m is
almost the same, and the scanning time of GT is slightly
increased when m increases.
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Figure 7: Scanning time for the uniform distribution

with varying m

In all three distributions, the number of popular categories
in each tested case is primarily determined by other param-
eters rather than m. Thus, with all other parameters fixed,
the case with a larger m has almost the same number of pop-
ular categories and more unpopular categories which have to
be filtered out. Thus, our schemes need run more TCS tests
to identify these unpopular categories. However, unlike n,
the impact of m is not proportional to the value of m.
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Figure 8: Scanning time for the M1 distribution with

varying m

5.2.3 Comparing with Simple Solutions
Both GT and TT are very efficient in finding the popular

categories. Recall that simple solutions in Section 4.1 need
at least 122k short slots with our default setting. We use
122k as a baseline to compare with our schemes. In most of
the tested cases, the scanning time of our schemes with the
default setting is less than 15k short slots, which is about
12% of the baseline. In the scenario that only a few popu-
lar categories exist, e.g., UD(1), UD(2), our schemes only
require < 4% of the baseline to finish. We also observe that
the group testing scheme is superior to the tree traversal
scheme in most cases, especially when the number of tags in
some unpopular categories is close to the threshold.

5.3 Tightness of Bounds
Our analysis in Theorem 5 uses Markov inequality, a loose

bound that holds for arbitrary random variables. Theorem 5
is further referred in Lemma 3 and Theorem 6 to derive a
upper bound of the expected scanning time. Thus, inher-
ently the bound in Theorem 6 is relatively loose for any
specific case. To understand how well the theoretical bound
matches the reality, we compare our estimated scanning time
with the simulation results in this subsection. .

In the default setting, our algorithm estimates that the
expected scanning time of the GT scheme is fewer than
14516 short slots. We compare this estimation with the re-
sults (mean scanning time) found in our simulations in the

following table. For each distribution, we select the worst
observed performance. According to the results, our estima-
tion is very close to the actual performance (the worst case
is UD(9) with 12734 short slots).

Our Bound UD M1 ZD

Number of short slots 14516 12734 11615 9196

5.4 Other Issues
This subsection covers some other issues whose details are

omitted due to the page limit:

1. Accuracy requirements: In all our simulations, both
the completeness constraint and population constraint
always hold with more than 1 − δ probability.

2. Other varying parameters: When examining the
scanning time, we also vary the parameters α and β,
and find two basic trends. First, if α and β become
closer, our schemes need more time to find popular cat-
egories. Second, if we keep their difference constantly,
increasing one of them reduces the scanning time.

3. Compare TCS with Ω: Group testing can also be
combined with algorithm Ω, because Ω obtains more
accurate estimation than our TCS test. However, in
the tested cases, the frame size for TCS is between
115 to 247 slots, much less than |Ω| = 2000. Based on
the results in [6], group testing with Ω will use smaller
parameters T and W . The scanning time, however, is
still much larger than that in our schemes with TCS.

6. ADDITIONAL DISCUSSION

6.1 Signal Loss
In our algorithms, TCS makes observation based on the

numbers of empty/collision slots presented in a frame. In
practice, when the link quality is poor, these numbers may
be inaccurate due to signal loss, i.e., the reader is not able
to detect the signal sent by RFID tags. As a result, we may
observe more empty slots and less collision slots.

To resolve this problem, we may use a learning phase to
test the link quality between the reader and RFID tags. As
long as the signal loss can be characterized by a certain
model, we can easily adopt it into our analysis.

6.2 Frame Size
In some RFID standards, frame size cannot be arbitrary,

but is constrained to powers of 2, i.e., f can be only set as a
power of 2. Our scheme can be easily adopted without any
other changes. In our simulation, the frame size is usually
less than 256. Thus, the performance with this frame size
constraint is similar to the results shown in Section 5.

7. CONCLUSION
In this paper, we consider the problem of efficiently find-

ing popular categories in a large scale RFID system with
many categories involved. We design two algorithms based
on group testing. Our evaluation shows that group testing
can reduce the scanning time for popular category discovery
dramatically. We notice that the approach used in this paper
can be applied to other interesting RFID estimation prob-
lems. For example, our approach can be easily extended to
find the popular categories in a different setting with online



continuous RFID monitoring. We believe this work gives in-
spiration for more efficient estimation problems in a system
composed of massive RFID tags.
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APPENDIX

A. VARIABLES IN LEMMA 1
The variables used in Lemma 1 are defined as follows:

µ0(n′, f) = f · e
−

n′

f ;

σ2
0(n′, f) = f · e

−
n′

f (1 − (1 +
n′

f
)e

−
n′

f );

µc(n
′, f) = f(1 − (1 +

n′

f
)e

−
n′

f );

σ2
c (n′, f) = f · e

−
n′

f ((1 +
n′

f
)

−(1 +
2n′

f
+ (

n′

f
)2 + (

n′

f
)3)e

−
n′

f ).

B. PROOF OF LEMMA 2
Let g = (a + (1 − a) n−x

W ·(b−x)
)c. The lemma is proved if the

second derivative of g is positive. Let h = n−x
W ·(b−x)

> 0. We have

h′ =
n − b

W · (b − x)2
> 0, h′′ =

2(n − b)

W · (b − x)3
> 0.

The first derivative of g is g′ = c · (1 − a) · (a + (1 − a)h)c−1h′,
and the second derivative is

g′′ = c · (1 − a) · (((c − 1)(1 − a)(a + (1 − a)h)c−2h′) · h′

+(a + (1 − a)h)c−1h′′) > 0.


