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Abstract—The emergence of powerful mobile devices has
allowed users to publish more contents in the Internet in recent
years. The existing Internet architecture cannot cope with such
exponential growth in users published contents. Content-centric
networks have been proposed recently to allow future Internet
to be data-centric rather than network centric. Several content
centric networking approaches have been proposed, but most
of them assume that users know the unique identifiers of the
contents that are of interests to them. SECON [1] proposed a
content centric mobile network solution that provides keyword-
based retrievals. However, the authors do not provide detailed
description on how their solution can be made scalable. In
this paper, we propose two scalable solutions for keyword-
based retrievals in content centric networks. Our preliminary
simulation results indicate that our solutions are scalable.

I. INTRODUCTION

Smartphones are the most popular mobile devices today.

The emergence of powerful smartphones and tablets that

combine multiple functionalities, e.g., cellular phone, personal

computer, multimedia player and etc., has made such smart

devices indispensable in our daily lives. A recent report

showed that there are more than 700 million smartphones

worldwide [2]. With more smartphone usages, more feature

rich smartphone applications have emerged in various market

places such as Google Play and Apple stores. For example,

a report shows that there are over 470K applications in

Google’s official Android Market by July 2012 [3]. Such rapid

advancements of mobile technology provide new opportunities

for mobile users to have easy access to real time data, and

stay connected with friends, colleagues or business partners.

In addition, more and more information have been pushed to

the Internet. Search engines such as Yahoo or Google allow us

to locate useful information amidst the large volume of data

published in the Internet. With such exponential explosion of

published information in the Internet, users often desire to

access information which is most relevant to their interests

rather than consuming all published data.

Publish/subscribe systems built based on IP-based network

have been proposed and designed in the past to cater to such

needs. However, such systems can be inefficient and are not

flexible enough to meet emerging requirements. For example,

one group of sport fans may be interested in reading all types

of sport news from ESPN while another group of sport fans

may be interested in reading only soccer related news. Thus,

ESPN data servers may have to let the first group subscribe to

//espn.com/news/sport while the second one will subscribe to

//espn.com/news/sports/soccer. The data delivery mechanism

in existing publish/subscribe may have to replicate the same

news article to let it reach these two different groups of fans.

Hence, the existing systems can be inefficient and not flexible

enough to meet emerging requirements.

Recently, content-centric networks have been proposed to

allow users more flexibility in accessing published informa-

tion. For example, in [4],the authors propose a content centric

network approach called NDN where publishers only publish

data that users have expressed interests in. However, in real

life, there are multiple scenarios where publishers publish

information first before users express any interests in receiving

such information, e.g., breaking news and new movies. In

another approach called DONA [5], the authors propose using

flat, self-certifying names for information objects. However,

the scalability of flat names is questionable. In a recent paper

[6], the authors present a design called DMAP that maps

content identifiers to IP addresses, and use that mapping

information to route relevant content locator information to

the appropriate servers that support their approach.

However, none of the existing solutions provide keyword-

based content searches. A user who is interested in retrieving

all country music published between years 2010 and 2012 may

not know where to start unless there is a server that houses all

the relevant content identifiers related to country music and

provides a mechanism for users to retrieve such information

easily. Hence, any future information sharing systems should

provide keyword-based content searches such that users only

retrieve information of interests to them. In SECON [1], the

authors propose a solution that provides push/pull-based data

disseminations, keyword-based data retrievals. However, the

authors did not elaborate on how their solution can be made

scalable.

In this paper, we propose two solutions which provide

keyword based searches for users to access information of

interest to them in future content-centric networks. Our first

solution called independent search and merge (ISM) scheme

allows publishers to insert content identifiers together with

independent keywords that are used to describe the content.

Users can submit their searches based on keywords. Inter-

mediate content routers retrieve content identifiers that match



different keywords. The client programs in users devices then

do an intersection of all retrieved content identifiers to obtain

a final list of content identifiers that match their interests.

After that, users can retrieve these matched data contents.

Our second solution called Integrated Keyword Search (IKS)

scheme allows users to submit their interests based on key-

words. Intermediate routers retrieve content identifiers that

match all these keywords. Hence, the client programs within

users devices will receive a list of content identifiers that match

all these keywords. We evaluate our proposed solutions using

the realistic Internet topology described in [6].

II. RELATED WORK

Several content-centric networking approaches have been

proposed for future Internet, e.g., the Data Oriented Network

Architecture (DONA) [5], the Networking Named Content [4],

and the Network of Information (NetInf) [7]. The authors in

DONA suggest replacing DNS names with flat, self-certifying

names and a name-based anycast primitive above the IP

layer. The names in DONA are a cryptographic digest of the

publisher’s key and potentially user-friendly label. DONA is

a pull-based approach where contents need to be published

with a tree of trusted resolution handlers to enable retrieval.

NetInf [7] proposed a solution to retrieve data objects based

on their unique identifiers. NetInf process typically involves

two major steps, (a) name resolution that locates an object in

the network and routing which forwards the object retrieval

query to its storage locations, and (b) forwarding the retrieved

data object from its storage location to the requesting client.

To facilitate the object location process, an information object

(IO) is proposed for NetInf in [8] where the IO is a unique

identifier with cryptographic properties and meta-data which

can be used to verify data integrity. Some content-centric

applications have been proposed [9], [10]. In [9], the authors

proposed using content centric networking features to dissem-

inate traffic information while in [10], it is used to disseminate

college related information for prospective students.

NDN [4] proposed a content centric network architecture

where content sources register their availability using URI-like

names and such names (or aggregated versions of the names)

are announced for global reachability. Two types of packets

are supported, namely interest and data. An interest packet is

sent by a consumer to query for data. Any data provider who

receives the internet packet and has matching data responds

with a data packet. NDN routers forward interests based on

the content name within the interest packet. Data packets

follow the reverse path established by the corresponding

Interest. In NDN, a publisher is allowed to publish data

items only after prior interest packets have been received.

However, in real life, there are situations where users express

interests only after they are made aware of certain published

data items. Furthermore, NDN assumes that queriers know

the unique content identifiers and no keyword-based queries

are supported in NDN. In the COPS approach described in

[11], the authors provided two additional types of packets,

namely publish/subscribe packets. Publish packets are used

by publishers to express their intention to publish while

subscribe packets are used by querying users to express their

interests in certain topics e.g. ”/query/sports/football” rather

than expressing interests in a specific content using a unique

content identifiers. COPS also use multicast feature to improve

on delivery performance.

Some of these NDN limitations have been addressed in the

SECON design [1] which supports both push and pull features.

Publishers can push data contents to the routers before any user

express interests. Furthermore, SECON supports keyword-

based interests and intentional named delivery where interests

packets can be addressed to intentional named based content

resolution routers, e.g., content resolution routers within a cer-

tain geographical area. In addition, SECON supports content-

centric security features where contents are encrypted and can

only be decrypted when the querying users possess the right

attributes that are used to encrypt the data contents.

The content naming approaches for various content-centric

solutions that have been proposed are different. For exam-

ple, NDN uses hierarchical names typically corresponding to

organizational structures. This implies name persistence with

respect to owner or organizational changes is not satisfied.

NDN security concept requires the content identifier be signed

by an entity trusted by the users and hence is not as flexible

when trust changes due to owner or organizational structure

change. NetInf related researchers propose their secure naming

solution in [8] to deal with such issues.

Recently, the authors of DMAP [6] presented the design

and evaluation of a distributed shared hosting approach for

managing dynamic identifier to locator mappings in Future

Internet. They suggested hashing object identifiers to IP-

address-like identifiers, and using such mapped IP addresses

to distribute the object identifier to locator mappings among

Autonomous Systems. However, they do not describe how

the object identifiers are generated by data owners and how

querying users find out about such identifiers. Furthermore,

their approach currently does not support keyword based

queries.

III. SOLUTIONS

Assume each content is hosted at a network address CA

with a globally unique identifier CID. CA can refer to

typical servers or any personal devices such as laptops and

smartphones. The host of a content will advertise the mapping

between CID and CA with a set of keywords that describe

the content. Users can access a content through two methods

1) If users know the CID, they can query the correspond-

ing CA, and then fetch the content from the host.

2) If users do not know the CID, they may use keywords to

search all contents. The result will be a list of CIDs that

contains the specified keywords. Then users can apply

the first method to obtain the contents.

The host will ‘insert’ a content in the following form,

(CID,CA, {t1, t2, . . . , tm}),

where {t1, t2, . . . , tm} represents m keyword terms.



In this paper, we propose two approaches to support

keyword search, Independent Search and Merge (ISM), and

Integrated Keywords Search (IKS).

A. General Setting

First, we assign an identifier to each keyword by applying a

pre-defined hash function, KID = hkid(keyword). KID and

CID belong to different domains, i.e., {CID}
⋂

{KID} =
φ, so that they can be distinguished by their values. In practice,

we define a set of general IDs GID which includes both CID

and KID, i.e., {GID} = {CID}
⋃

{KID}. For any g ∈
{GID}, the first bit is an indicator,

g ∈

{

CID if the first bit is 0;

KID if the first bit is 1.

Second, we use another hash function to map any GID g to

an IP address, IPg = hip(g). Note the result IP must exist in

current Internet. If IPg does not exist, the hash function will

be repeatedly applied until we generate a valid IP address.

Due to the page limit, we omit the details here and we refer

the readers to [6] for further discussions.

For both ISM and IKS, the insert process includes two

steps, inserting the content and inserting the keywords. The

first step of inserting the content is identical in both solutions

and similar to DMap [6]. First, the content host applies the

hash function hip on CID and generate an IP address IP .

Then, a content insert request (CID,CA) is sent to the AS

that owns IP . Each AS keeps a content search table which

stores the mapping information between CID and CA. Once

receiving a content insert request, the AS will add the new

mapping entry in the table.

For content query, we focus on the keyword search methods,

i.e., how to obtain the CIDs based on the specified keywords.

With CIDs available, users can convert each CID to an

IP address by applying hip. Then a content query will be

transferred to the AS which is the owner of IP . After looking

up in the content search table, if there is a matching CID,

the AS will send the corresponding CA back to the user.

In the rest of this section, we present two solutions and

focus on keywords-related operation, i.e., how the content

host inserts the affiliated keywords, and how users search with

keywords and find the CIDs of their interested contents.

B. Independent Search and Merge (ISM)

1) Insert Keywords: When inserting a set of keywords

{t1, t2, . . . , tm}, the content host applies the basic steps in

the following Algorithm 1. For each term ti, the host converts

it to a KID and then maps the KID to an IP address IPi.

Finally, the insert request (KIDi, CID) is sent to the AS

that owns IPi following BGP protocol. Therefore, inserting

keywords requires m insert request messages.

On the AS’s side, a keyword search table is established to

store the mapping information between keywords and CIDs,

i.e., each entry contains a keyword and a list of CIDs whose

contents are described by the keyword,

KID CID1, CID2, . . .

Algorithm 1: ISM: Insert Keywords

1 for each keyword ti do

2 KIDi = hkid(ti);
3 IPi = hip(KIDi);
4 Send (KIDi, CID) to the AS that owns IPi;

5 end

Upon receiving the insert request (KID,CID), the AS

will add it in the keyword search table. If KID is a new

keyword, the AS will create a new entry for it and map it

to CID. Otherwise, the AS will look up the KID in the

table and append the CID at the end of the CID list of the

corresponding entry.

AS3 AS4

AS1 AS2

AS

insert (CID, CA, {kw1, kw2})

h(CID)     AS3

h(kw1)     AS2

h(kw2)     AS4

CID: CA

...   ...

...   ...

h(kw1): CID1, CID2, CID

...   ...

...   ...

h(kw2): CID

...   ...

...   ...

Keyword Search Table

Keyword Search Table

Fig. 1: Example: Insert in ISM

2) Keyword Search Query: When querying contents with a

set of keywords, the user follows Algorithm 2. Each keyword

ti is first converted to its KIDi (Line 3) and then an IP address

IPi(Line 4). A keyword search query containing KIDi is

routed to the AS that owns IPi. The AS will search for KIDi

in its keyword search table. If found, the corresponding list

of CIDs (CL in Line 6) will be sent back to the user. In

Algorithm 2, the variable ret is the return list of CIDs and

set to empty initially. Upon receiving the CL from the ASes,

the user updates ret by intersecting the current ret with CL

(Line 10). Overall, there are q query messages and q lists of

CIDs transmitted in this process.

AS3 AS4

AS1 AS2

AS

query (kw1, kw2)

h(kw1)     AS2

h(kw2)     AS4

h(kw1): CID1, CID2, CID

...   ...

...   ...

h(kw2): CID

...   ...

...   ...

Keyword Search Table

Keyword Search Table

CID1, CID2, CID

 CID

Fig. 2: Example: Query in ISM

C. Integrated Keywords Search (IKS)

1) Insert Keywords: In IKS, the content host considers

the combinations of keywords when inserting them. For a

set of keywords {t1, t2, . . . , tm}, there are 2m − 1 possible

combinations containing at least one keyword. IKS inserts an



Algorithm 2: ISM: Keyword Search Query

Input: a set of query terms QT = {t1, t2, . . . , tq}
Output: CIDs whose affiliated keywords include QT

1 ret← φ

2 for each keyword ti do

3 KIDi = hkid(ti);
4 IPi = hip(KIDi);
5 Send a query with KIDi to the AS that owns IPi;

6 Let CL be the returned CID list from the AS;

7 if ret = φ then

8 ret← CL;

9 else

10 ret← ret
⋂

CL;

11 end

12 end

13 end

14 return ret;

entry for each of these combinations. The details are presented

in Algorithm 3. For each subset of keywords, the host first sort

all the terms based on their alphabetical order. Then, one KID

is generated for the entire subset by applying the hash function

on the concatenation of all the terms (Line 3). The rest of the

algorithm is similar to Algorithm 1. The KID is mapped to

an IP address and then the insert request (KID,CID) is sent

to the AS that owns IP . IKS needs 2m − 1 request messages

for inserting the keywords. Note that this approach is only

applicable to a short keyword list, i.e., when m is small. For a

large m, there are too many combinations to enumerate which

is not feasible in practice.

Algorithm 3: IKS: Insert Keywords

1 for each subset of keywords, KS = {tc1 , tc2 , . . . , tcm′
},

m′ ≤ m and ∀i ∈ [1,m′], ci ∈ [1,m] do

2 Sort the terms in KS in alphabetic order;

3 KID = hkid(tc1 , tc2 , . . . , tcm′
);

4 IP = hip(KID);
5 Send (KID,CID) to the AS that owns IP ;

6 end

The insert protocol for ASes is the same as in ISM. Each

AS maintains a keyword search table. Once a insert request

arrives, the AS will add the new mapping data to the table.

AS3 AS4

AS1 AS2

AS

insert (CID, CA, {kw1, kw2})

h(CID)     AS3

h(kw1)     AS2

h(kw2)     AS4

CID: CA

...   ...

...   ...

h(kw1): CID1, CID2, CID

...   ...

...   ...

h(kw2): CID

...   ...

...   ...

Keyword Search Table

Keyword Search Table

h(kw1, kw2)     AS1

h(kw1,kw2): CID1, CID

Fig. 3: Example: Insert in IKS

2) Keyword Search Query: Compared to ISM, keyword

search query in IKS is simpler as shown in Algorithm 4. The

user first sorts all the terms in the query and then generates

a KID for the sorted keyword set (Line 2). After mapping

the KID to the IP address IP , the keyword search query is

sent to the AS that owns IP . Similarly, the AS will search for

KID in its keyword search table and return the corresponding

list of CIDs (CL in Line 5) to the user. In Algorithm 4, CL

will be returned as the final result. Therefore, there is only

one query message and response in IKS.

Algorithm 4: IKS: Keyword Search Query

Input: a set of query terms QT = {t1, t2, . . . , tq}
Output: CIDs whose affiliated keywords include QT

1 Sort the terms in QT in alphabetic order;

2 KID = hkid(t1, t2, . . . , tq);
3 IP = hip(KID);
4 Send a query with KID to the AS that owns IP ;

5 Let CL be the returned CID list from the AS;

6 return CL;

D. Storage-enhanced Solutions

In practice, the basic solutions we propose above cause

unbalanced storage usage among all ASes due to the following

two reasons. First, ASes form a hierarchical structure with big

diversity as some ‘big’ ASes host very large IP blocks while

other ‘small’ ASes may be in charge of fewer IP addresses.

When randomly mapping keywords to IP addresses, as a

consequence, big ASes may eventually host a large portion

of the keywords which consume more storage resources than

small ASes. Second, the content list for each keyword is

not balanced. Some hot keywords may have a large volume

of matching contents while other rarely used keywords may

appear in only one content. Therefore, the ASes hosting

popular keywords are likely to spend more storage in storing

the corresponding matching CIDs. In summary, in basic

solutions ISM and IKS, the storage requirement is unbalanced

and some ASes may exhaust the storage resource much faster

than others. In this subsection, we propose two enhanced

versions that work with both ISM and IKS to improve the

storage balance.

1) -fair solution: In this enhanced solution, we allocate k

candidate ASes for each insert and try to balance the storage

usage among these k ASes. The basic protocol is as follows.

• Step 1: When inserting a (KID,CID) pair, the user

applies hash functions to find k distinct destination ASes.

• Step 2: The user sends an initial request to each of k

candidate ASes asking for their current storage usage,

i.e., how many KIDs and CIDs have been stored there.

• Step 3: Upon receiving the replies from the candidate

ASes, the user selects the AS with the minimum storage

usage to send (KID,CID) insert request to.

Fig. 4 illustrates an example of insert in -fair solution. The

user first contacts k = 3 candidate ASes (AS2, AS3, AS4) and



AS3 AS4

AS1 AS2

AS

insert (CID, CA, {kw1})

h(kw2): CID3

h(kw3): CID4

h(kw1): CID1, CID2, CID

h(kw2): CID6, CID7, CID8

h(kw4): CID9, CID10

h(kw1): CID5   

Keyword Search Table

Keyword Search Tableh(kw5): CID14, CID15, CID16

h(kw2): CID11 , CID12, CID13   

Keyword Search Table

Candidates: AS2, AS3, AS4

Storage usage:   7      8      9

Fig. 4: Example: Insert in -fair solution (k = 3)

obtains their current storage usages. After comparison, the user

picks AS2 as the destination AS and sends the request to it.

When querying for a keyword, the user has to contact all

k candidate ASes to fetch the CID lists. Thus a q-keyword

query needs to be sent to k · q ASes.

2) -split solution: The motivation of this solution is to avoid

a long list of CIDs. We set a threshold τ as the limit of

the longest CID list. When AS A receives an insert request

(KID,CID) and finds that the CID list for this KID

exceeds τ items, AS A splits the CID by half and migrates

the second half to another AS A′. AS A records A′ in the

remaining content list for KID. AS A may split the list again

when more contents are added and the CID list goes over the

limit.

When a user issues a query for KID, the AS A will return

all the CIDs in the list as well as the AS numbers in the list

such as A′. Then the user will further send the query to the

received ASes such as A′. The query process is terminated

when there is no AS number in the returned list.

AS3 AS4

AS1 AS2

AS

insert (CID, CA, {kw2})

h(kw3): CID4

h(kw1): CID1, CID2, CID3

h(kw2): CID6, CID7, AS2

h(kw4): CID<, CID%�

h(kw1): CID>   

Keyword Search Table

Keyword Search Table

h(kw2)     AS4 h(kw2): CID8, CID 

Fig. 5: Example: Insert in -split solution (τ = 3)

Fig. 5 shows an example of insert. Assume a user in-

serts kw2 and the destination AS is AS4 where 3 CID

(CID6, CID7, CID8) have already been stored for h(kw2).
After receiving the new insert request, AS4 finds that the

resulting CID list will exceed the threshold τ = 3. Thus,

it splits the list and migrates the second half (CID8, CID)

to another AS (AS2). In addition, AS4 adds AS2 in the

content list of h(kw2). We will evaluate both enhancements

in Section IV. By default, we set k = 5 for -fair solution and

τ = 100 for -split solution.

IV. PERFORMANCE EVALUATION

In this section, we evaluate our proposed solutions based

on simulation. We implement ISM and IKS based on the

DMap [6] simulator and use the real AS topology and IP prefix

allocation which consists of more than 26,000 ASes.

A. Workload Characteristics

1) Contents and keywords: The content/keyword workload

is generated from flickr.com’s picture titles. We have crawled

around 240,000 random pictures hosted at flickr.com. After

we eliminate non-English characters, digits, and special char-

acters, 21,754 pictures have remained each with an effective

title. We regard each word in the title as a keyword for the

content (picture). In our simulation, we assign each picture a

CID and insert it with the corresponding keywords (i.e., the

words in the title). Therefore, our simulation includes 21,754

contents and the host of each content is a randomly selected

AS. In total, there are 23,500 unique keywords in our setting.

Average Maximum Std Deviation

# of keywords 2.61 38 2.05

Content freq 2.42 1284 13.35

TABLE I: Content Characteristics: number of keywords per content
and content frequency per keyword

Table I lists some basic characteristics of content/keyword

workload. The first row is about the number of keywords for

each content. The average number is 2.61, the maximum is 38,

and the standard deviation is 2.05. The second row represents

the statistical information about content frequency, which is

the number of contents containing a given keyword. More

detailed distribution is shown in Fig. 6 as a log-log scale plot.

The axis x is the popularity rank of a keyword, and the axis

y indicates the value of content frequency, i.e., the number

of occurrences of the keyword in all contents. Apparently, the

keywords follows a power-law distribution as the few top-

ranked keywords frequently appear in contents while there is

a long tail of low-ranked keywords with much smaller content

frequency. Note that for evaluating IKS, we have to set a

limit for the number of keyword (m in Section III-C). In our

simulation, we set m = 5 and remove all the contents with

more than 5 keywords from the workload.
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Fig. 6: Keyword Distribution

2) Keyword Query: In this paper, we simulate q-keyword

query for q ∈ {1, 2, 3, 4}. For each value of q, we generate

5,000 queries each randomly chooses q keywords from the

keyword list in our trace. In order to guarantee that at least

one matching contents can be found, we first randomly choose

one content C from a pool of contents which contain at least q

keywords. And then, we randomly pick q keywords from the



content C’s keyword list. The table below shows the size of

the pool for selecting q keywords, i.e., the number of contents

with at least q keywords.

q’s value 1 2 3 4

size of content pool 21754 13815 8623 5062

In addition, every query is submitted from a randomly

selected AS. The following Table II presents the statistics

of the number of matching contents for each type of 5,000

queries. Basically, queries for more keywords tend to have

fewer matching contents and smaller deviation on the number

of returned contents.

Average Maximum Std Deviation

1 keyword 47.98 1189 171.41

2 keywords 2.23 269 10.40

3 keywords 1.12 111 2.11

4 keywords 1.02 29 0.45

TABLE II: Query Characteristics: # of matching contents

B. Query Response Time

In this subsection, we evaluate the query response time (RT),

one of the major performance metrics we consider. In our

keyword search query, the user often needs to contact multiple

ASes. For example, if the query contains multiple keywords,

those keywords may map to different ASes. Also, the returned

results are likely to contain more than one matching contents

which may be hosted at different ASes. Thus, the time needed

to fetch CIDs is varying. In our setting, we measure the

response time of a query at the user’s side from sending out the

query to receiving the LAST matching CID, i.e., the longest

response time among those for obtaining all matching CIDs.

Intuitively, if the requesting AS has to contact some ASes

far away with large latency, the response time will be large.

Since in our solutions, the mapping to the destination Ases

is based on hash functions, each destination AS has equal

probability to have a large latency. Statistically, contacting

more ASes in a query will lead to a longer response time.

In our simulation, we find that the response time in both

solutions roughly follows the trends in the following Fig. 7

which is the case of searching one keyword in ISM (5000

queries). Fig. 7a illustrates the longest 3000 response time in

a descend order and Fig. 7b plots the histogram of response

time with a bin size of 5ms. First, the sorted response time

is a power-law distribution with a long tail (Fig. 7a). Second,

within a certain range of time values, the response time is

close to a normal distribution, e.g., from 0 to 60ms in Fig. 7b.

Table III compares the average response time in ISM

and IKS. We observe that the response time of q-keyword

query in ISM is increased sublinearly when q increases. The

reason is that in ISM, the user fetches a list of CIDs for

each keyword and applies intersection to obtain the matching

contents. Therefore, query with an additional keyword requires

contacting one more AS or the same number of ASes if the

new keyword is mapped to one of the existing destination

ASes. In contrast, the response time in IKS is consistent for

different number of keywords, because the user always contact

one AS for keyword search.
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Fig. 7: Query Response Time Distribution in ISM (1 keyword)

1 keyword 2 keywords 3 keywords 4 keywords

ISM 37.3 45.1 52.3 57.8

IKS 37.3 36.8 38.3 37.4

TABLE III: Average Query Response Time (ms)

The CDF distributions of response time in ISM and IKS

are presented in Fig. 8 and Fig. 9 respectively. In Fig. 8, all

curves have a flat start, and then increase sharply around their

mean values. Most of the queries are answered within 150ms.

We also observe that querying more keywords incurs longer

latency. For example, when the user searches for one keyword,

87.8% queries are responded in 50ms. With 4 keywords,

however, only 66.4% queries can be completed in 50ms. In

Fig. 9, we can see that there is almost no difference among

the four curves for IKS and they are very close to searching

one keyword in ISM.
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Fig. 8: Query Response Time in ISM
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C. Storage Requirement

In this subsection, we evaluate how much storage space is

required for both ISM and IKS. In our solutions, a keyword

search table is maintained at each AS which consists of

a column of KIDs and a list of CIDs for each KID.

For simplicity, we assume KIDs and CIDs have the same

bit length, e.g., 128 bits in our setting. Thus, the storage

requirement can be quantified and compared by the number

of KIDs and CIDs in the keyword search table.
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Fig. 10: Comparison of Storage Requirements
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Fig. 11: Total Storage in ISM

Fig. 10 compares the storage needed for KIDs and CIDs

in ISM and IKS based on the rank of all ASes (in terms of

the storage requirement, i.e., higher ranked ASes require more

storage). The total storage requirements are shown in Fig. 11.

First, we can see IKS needs more space than ISM as expected

because we enumerate and insert combinations of keywords

in IKS. On average, each AS in ISM stores 3.64 KIDs and

8.7 CIDs. In IKS, however, the average values become 14.16
and 18.25 respectively. Second, as we mentioned earlier, the

storage on each AS is not balanced. The following Table IV

gives a quantitive view by measuring the standard deviations.

Both solutions yield large deviations and IKS is more dynamic

than ISM in terms of storage allocation among ASes. The

largest storage requirement for an AS in ISM is to store 3797

KIDs and CIDs in total which need 60.75K bytes. In IKS,

the largest storage is 9465 KIDs and CIDs (151.44K bytes).

KID storage CID storage total storage

ISM 27.6 72.8 99.6

IKS 106.3 139.9 245.8

TABLE IV: Standard Deviation of Storage

D. Storage-enhanced Solutions

To address the issue of unbalanced storage, we have pro-

posed two storage-enhanced solutions. In this subsection, we

present their performance and due to the page limit, we

focus on the enhanced versions for ISM. The total storage

requirements are compared in Fig. 13 and the breakdowns are

shown in Fig 12.
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Fig. 12: Comparison of Storage Requirements in ISM
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Fig. 13: Total Storage Requirement in ISM

Basically, ISM-split tries to avoid a long list of CIDs for

a particular keyword while ISM-fair targets on balancing the

total storage usage among all (5) candidates when inserting a

keyword. As shown in Fig. 12a, ISM-split does not help in bal-

ancing the KID storage because the keywords are distributed

in the same way as in ISM. ISM-fair, however, significantly

improve the keyword allocation with a much more smoother

curve. The maximum number of keywords hosted at an AS

has dropped to 59 in ISM-fair. In Fig. 12b, both enhancements

improve the storage balance. Due to the impact from keyword

allocation, ISM-fair is still much superior to ISM-split and

ISM. The values of their standard deviations are listed in the

table below.

KID storage CID storage total storage

ISM 27.6 72.8 99.6

ISM-fair 8.0 20.3 26.7

ISM-split 27.6 59.8 87.1

TABLE V: Standard Deviation of Storage

On the other hand, both enhanced versions sacrifice re-

sponse time to achieve the more balanced storage. In ISM-fair,

the user needs to contact 5 candidate ASes for each keyword.

Thus, a q-keyword query in ISM-fair is roughly equivalent to



5 · q-keyword query in ISM. For the same threshold of 50ms

for the response time, ISM-fair can finish 64.7% one keyword

queries and only 11.5% 4-keyword queries. In ISM-split, the

number of ASes the user has to contact is not certain. The

user will keep sending request until there is no AS number

in the returned list. Overall, the response time performance in

ISM-split is much better than ISM-fair especially for multiple

keywords search. Compared to ISM, however, there is still a

big degradation, e.g., for 4-keyword queries, ISM can respond

to 87.6% of them while ISM-split can finish only 61.8%.
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Fig. 14: Response Time in ISM-fair (k = 3)
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Fig. 15: Response Time in ISM-split (τ = 100)

V. DISCUSSIONS AND FUTURE WORK

A. Performance of Inserts and Updates

For simplicity, this paper omits the study on the performance

of insert requests. In the future work, we plan to measure

the overhead of inserting keywords and contents, especially

study how a bursty insert workload may impact the AS

system. In addition, we consider a stable workload setting

in this paper including AS topology, content/keyword, and

the network addresses of contents (CA). Our future work

will investigate more dynamic environments considering BGP

updates, keyword updates for contents, and CA updates for

content host changes (e.g., mobile devices that attach to

different entry networks).

B. Content/Keyword Replicas

To improve the response time, one common approach is

to deploy replicas for both contents and keywords (it is

also discussed in [6]). We have implemented the support for

multiple replicas in both ISM and IKS. By exploiting the

advantage of locality, storing multiple replicas reduces the

response time in both solutions. As a tradeoff, the storage

requirements are increased too. Due to the page limit, we omit

the results in this paper.

C. Keyword Filtering

The keyword workload in our simulation can be further

filtered or pruned. We plan to obtain a bigger trace file and

filter the non-existing words and ‘stop words’ such as ‘the’

and ‘a’ as usual web mining does. We hope the modified

keyword workload would provide us a better understanding on

the performance in a realistic environment. It is also interesting

to explore how we can modify our solutions to deal with typos

in keywords.

VI. CONCLUSION

This paper proposes two solutions, ISM and IKS, that enable

users to search for keywords in a content-centric network. Our

framework is based on and compatible with the current BGP

system formed by ASes. A keyword search table is maintained

at each AS to assist the user to locate the matching contents. In

addition, we propose two enhanced versions that improve the

storage balance. Finally, we evaluate our solution based on

simulation with realistic workload and the results show that

our solutions yield a small keyword query response time with

a reasonable storage requirement.
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