
The Chorus in the Chaos: When Big Data Platforms 
Meet Small IoT Devices

Son Nam Nguyen1, Teng Wang1, Ranjan Dahal1, Bin Zhao2, and Bo Sheng1

1Department of Computer Science, University of Massachusetts Boston
2School of Computer Science and Technology, Nanjing Normal University

Son Nam Nguyen
University of Massachusetts Boston
Email: Sonnam.nguyen001@umb.edu

Contact

Motivation: Big Data processing on IoT

 IoT devices participate in the computation rather 
than being merely the data source
 Evolved hardware capability
 Reduce data transfer traffic
 Reduce server load

 Emerging big data platforms such as Hadoop and 
Spark split and process data in a distributed 
manner, suitable for a cluster of IoT devices.

Problems
 IoT devices rely on Wi-Fi connections

 Low and unreliable network bandwidth
 Shuffling data takes a long time
 Serious self-interferences
 Big data tasks tend to finish in waves and 

shuffle their data around the same time.
 Packet scheduling without knowledge of the 

big data jobs

Solution (A Token Based Packet Scheduler) 

 Centralized control to avoid self-interferences
 Only the node granted with the token can 

transmit packets in a time window
 Assign the token and adjust the window size 

 Run-time job execution info (app layer) 
 Link qualities (data link layer)

Problems & Motivation

Monitor Module (slave nodes)
 Report the status of the big data jobs 

 Job progress
 Size of intermediate data generated

 Measure the link quality
 Historic statistics
 Estimation based on signal strengths

Packet Scheduling Algorithm (master node)
 Derive the Estimated Transfer Time (ETT) for 

each node

 The token is granted to the node (i) with the 
largest ETT. Its window size (Wi) is determined 
based on the predication of the data generation.
Wi= argmax t { ETTi(t)>ETTj(t), for any j≠i }

 Among multiple jobs, the job that is close to the 
end of map phase is given a higher priority.

Packet Control Module (slave nodes)
 Enforce the packet schedule by capturing all 

outgoing shuffling packets into a buffer.
 The buffered packets are sent only during the 

scheduled time window.
 Handle lost control messages and transmission 

overtime

Implementation
We implement our solution on Raspberry Pi 3 

with Hadoop Yarn 2.7.2

Experiments
 Testbed: a cluster of 9 Raspberry Pis (1 master 

and 8 slave nodes). All nodes are connected in a 
WiFi ad-hoc network.

Workload: Hadoop benchmark jobs 
 Sort: fixed and large intermediate data size 
WordCount: various and small intermediate 

data size

Results
 Figure 2 shows the WiFi traffic of our solution 

when executing the same job as in Fig.1.

 Figure 3 compares the shuffling time of our 
solution and native Hadoop when executing Sort 
and WordCount jobs. The improvements on the 
shuffling time range from 12.7% to 30.7%.

EvaluationMain Components

System Architecture

Figure 2: Self-interferences are dramatically
reduced yielding a higher throughput and shorter
shuffling time.

Source Code
https://github.com/bboycoi/RPi-Hadoop

Figure 1: An example of self-interferences when
sorting 256M data on a cluster of 9 Raspberry Pis.

MapperMapper

MapperMapper

MapperMapper

ReducerReducer

ReducerReducer

Block 1Block 1

Block 2Block 2

Block nBlock n

OutputOutput

OutputOutput

Input 
data

Input 
data

Job submission Map Reduce Output

Shuffling

MapReduce Process

Figure 3. Comparison of shuffling time


