
2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

1

Self-Adjusting Slot Configurations for
Homogeneous and Heterogeneous Hadoop

Clusters
Yi Yao1 Jiayin Wang2 Bo Sheng2 Chiu C. Tan3 Ningfang Mi1

1.Northeastern University, Boston, MA, USA
Email: {yyao, ningfang}@ece.neu.edu

2.University of Massachusetts Boston, Boston, MA, USA
Email: {jane, shengbo}@cs.umb.edu

3. Temple University, Philadelphia, PA, USA
Email: cctan@temple.edu

Abstract—The MapReduce framework and its open source implementation Hadoop have become the defacto platform for scalable
analysis on large data sets in recent years. One of the primary concerns in Hadoop is how to minimize the completion length (i.e.,
makespan) of a set of MapReduce jobs. The current Hadoop only allows static slot configuration, i.e., fixed numbers of map slots
and reduce slots throughout the lifetime of a cluster. However, we found that such a static configuration may lead to low system
resource utilizations as well as long completion length. Motivated by this, we propose simple yet effective schemes which use slot ratio
between map and reduce tasks as a tunable knob for reducing the makespan of a given set. By leveraging the workload information
of recently completed jobs, our schemes dynamically allocates resources (or slots) to map and reduce tasks. We implemented
the presented schemes in Hadoop V0.20.2 and evaluated them with representative MapReduce benchmarks at Amazon EC2. The
experimental results demonstrate the effectiveness and robustness of our schemes under both simple workloads and more complex
mixed workloads.

Index Terms—MapReduce jobs, Hadoop scheduling, reduced makespan, slot configuration

F

1 INTRODUCTION

MapReduce [1] has become the leading paradigm in
recent years for parallel big data processing. Its open
source implementation Apache Hadoop [2] has also
emerged as a popular platform for daily data process-
ing and information analysis. With the rise of cloud
computing, MapReduce is no longer just for internal
data process in big companies. It is now convenient for
a regular user to launch a MapReduce cluster on the
cloud, e.g., AWS MapReduce, for data-intensive appli-
cations. When more and more applications are adopting
the MapReduce framework, how to improve the per-
formance of a MapReduce cluster becomes a focus of
research and development. Both academia and industry
have put tremendous efforts on job scheduling, resource
management, and Hadoop applications [3]–[11]. As a
complex system, Hadoop is configured with a large set
of system parameters. While it provides the flexibility
to customize the cluster for different applications, it is
challenging for users to understand and set the optimal
values for those parameters. In this paper, we aim to de-
velop algorithms for adjusting a basic system parameter
with the goal to improve the performance (i.e., reduce
the makespan) of a batch of MapReduce jobs.

This work was partially supported by the NSF grant (CNS-1251129), the
AFOSR grant (FA9550-14-1-0160), and the AWS in Education Research
Grant.

A classic Hadoop cluster includes a single master node
and multiple slave nodes. The master node runs the
JobTracker routine which is responsible for scheduling
jobs and coordinating the execution of tasks of each job.
Each slave node runs the TaskTracker daemon for hosting
the execution of MapReduce jobs. The concept of “slot”
is used to indicate the capacity of accommodating tasks
on each node. In a Hadoop system, a slot is assigned
as a map slot or a reduce slot serving map tasks or
reduce tasks, respectively. At any given time, only one
task can be running per slot. The number of available
slots per node indeed provides the maximum degree of
parallelization in Hadoop. Our experiments have shown
that the slot configuration has a significant impact on
system performance. The Hadoop framework, however,
uses fixed numbers of map slots and reduce slots at each
node as the default setting throughout the lifetime of a
cluster. The values in this fixed configuration are usually
heuristic numbers without considering job characteris-
tics. Therefore, this static setting is not well optimized
and may hinder the performance improvement of the
entire cluster.

In this work, we propose and implement a new mech-
anism to dynamically allocate slots for map and reduce
tasks. The primary goal of the new mechanism is to
improve the completion time (i.e., the makespan) of a
batch of MapReduce jobs while retain the simplicity
in implementation and management of the slot-based

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

2

Hadoop design. The key idea of this new mechanism,
named TuMM, is to automate the slot assignment ratio
between map and reduce tasks in a cluster as a tunable
knob for reducing the makespan of MapReduce jobs. The
Workload Monitor (WM) and the Slot Assigner (SA) are
the two major components introduced by TuMM. The
WM that resides in the JobTracker periodically collects
the execution time information of recently finished tasks
and estimates the present map and reduce workloads
in the cluster. The SA module takes the estimation to
decide and adjust the slot ratio between map and reduce
tasks for each slave node. With TuMM, the map and
reduce phases of jobs could be better pipelined under
priority based schedulers, and thus the makespan is
reduced. We further investigate the dynamic slot assign-
ments in heterogeneous environments, and propose a
new version of TuMM, named H TuMM, which sets the
slot configurations for each individual node to reduce
the makespan of a batch of jobs. We implemented the
presented schemes in Hadoop V0.20.2 and evaluated
them with representative MapReduce benchmarks at
Amazon EC2. The experimental results demonstrate the
effectiveness and robustness of our schemes under both
simple workloads and more complex mixed workloads.

The rest of the paper is organized as follows. We
explain the motivation of our work through some exper-
imental examples in Section 2. We formulate the problem
and derive the optimal setting for static slot configura-
tion in a homogeneous cluster in Section 3. The design
details of the dynamic mechanism for homogeneous
clusters and heterogeneous clusters are presented in Sec-
tion 4 and Section 5. Section 6 provides the experimental
evaluation of the proposed schemes. Section 7 describes
the related work of this work. We conclude in Section 8.

2 MOTIVATION

Currently, the Hadoop framework uses fixed numbers
of map slots and reduce slots on each node through-
out the lifetime of a cluster. However, such a fixed
slot configuration may lead to low resource utilizations
and poor performance especially when the system is
processing varying workloads. We here use two simple
cases to exemplify this deficiency. In each case, three jobs
are submitted to a Hadoop cluster with 4 slave nodes
and each slave node has 4 available slots. Details of
the experimental setup are introduced in Section 6. To
illustrate the impact of resource assignments, we also
consider different static settings for map and reduce slots
on a slave node. For example, when the slot ratio is
equal to 1:3, we have 1 map slot and 3 reduce slots
available per node. We then measure the overall lengths
(i.e., makespans) for processing a batch of jobs, which
are shown in Fig. 1.

Case 1: We first submit three Classification jobs to
process a 10 GB movie rating data set. We observe that
makespan is varying under different slot ratio settings
and the best performance (i.e., shortest makespan) is

1:3
2:2
3:1

 0

 200

 400

 600

 800

 1000

 1200

Classification Grep

M
ak

eS
p

an
 (

S
ec

)

Fig. 1. The makespans of jobs under case 1 (i.e., Classification)
and case 2 (i.e., Grep). The map and reduce slot ratios on each
slave node are set to 1:3, 2:2, and 3:1.

(a) 2 map slots : 2 reduce slots

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300

S
lo

t

Time (Sec)

(b) 3 map slots : 1 reduce slot

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300

S
lo

t

Time (Sec)

Fig. 2. Task execution times of three Classification jobs under
different static slot configurations, where each node has (a) 2
map slots and 2 reduce slots, and (b) 3 map slots and 1 reduce
slot. Each arrowed line represents the execution of one task,
and the solid (resp. dashed) ones represent map (resp. reduce)
tasks. In addition, we use three different colors to discriminate
the three jobs.

achieved when each slave node has three map slots and
one reduce slot, see the left column of Fig. 1.

To interpret this effect, we further plot the execu-
tion times of each task in Fig. 2. Clearly, Classification
is a map-intensive application; for example, when we
equally distribute resources (or slots) between map and
reduce tasks, i.e., with the slot ratio of 2:2, the length of
a map phase is longer than that of a reduce phase, see
Fig. 2(a). It follows that each job’s reduce phase (includ-
ing shuffle operations and reduce operations) overlaps
with its map phase for a long period. However, as the
reduce operations can only start after the end of the map
phase, the occupied reduce slots stay in shuffle for a long
period, mainly waiting for the outputs from the map
tasks. Consequently, system resources are underutilized.

For example, we tracked the CPU utilizations of each
task in a slave node every 5 seconds and Table 1 shows
part of the records in one of such overlapping periods.
At each moment, the overall CPU utilization (i.e., the
summation of CPU utilizations of the four tasks) is much

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

3

less than 400%, for a node with 4 cores. We then notice
that when we assign more slots to map tasks, e.g., with
the slot ratio of 3:1, each job experiences a shorter map
phase and most of its reduce phase overlaps with the
following job’s map phase, see Fig. 2(b). The average
CPU utilization is also increased by 20% compared to
those under the the slot ratio of 2:2. It implies that for
map-intensive jobs like Classification, one should assign
more resources (slots) to map tasks in order to improve
the performance in terms of makespan.

TABLE 1
Real time CPU utilizations of each task on a slave node in the

overlapping time period of a job’s map and reduce phases. The
slot ratio per node is 2:2.

ProcessId/TaskType
Time(sec) 3522/map 3564/map 3438/reduce 3397/reduce

1 147% 109% 26% 0%
6 103% 93% 0% 4%
11 93% 99% 8% 0%
16 100% 100% 0% 0%
21 97% 103% 0% 0%

Case 2: In this case, we turn to consider reduce-
intensive applications by submitting three Grep jobs to
scan the 10 GB movie rating data. Similar to case 1, we
also investigate three static slot configurations.

First, we observe that each job takes a longer time to
process its reduce phase than its map phase when we
have 2 map and 2 reduce slots per node, see Fig. 3(a).
Based on the observation in case 1, we expect a reduced
makespan when assigning more slots to reduce tasks,
e.g., with the slot ratio of 1:3. However, the experimental
results show that the makespan under this slot ratio
setting (1:3) becomes even longer than that under the
setting of 2:2, see the right column of Fig. 1. We then
look closely at the corresponding task execution times,
see Fig. 3(b). We find that the reduce tasks indeed have
excess slots such that the reduce phase of each job starts
too early and wastes time waiting for the output from
its map phase. In fact, a good slot ratio should be set
between 2:2 and 1:3 to enable each job’s reduce phase to
fully overlap with the following job’s map phase rather
than its own map phase.

In summary, in order to reduce the makespan of
a batch of jobs, more resources (or slots) should be
assigned to map (resp. reduce) tasks if we have map
(resp. reduce) intensive jobs. On the other hand, a simple
adjustment in such slot configurations is not enough. An
effective approach should tune the slot assignments such
that the execution times of map and reduce phases can
be well balanced and the makespan of a given set can
be reduced to the end.

3 SYSTEM MODEL AND STATIC SLOT CON-
FIGURATION
In this section, we present a homogeneous Hadoop sys-
tem model we considered and formulate the problem. In

(a) 2 map slots : 2 reduce slots

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300 400 500 600 700

S
lo

t

Time (Sec)

(b) 1 map slot : 3 reduce slots

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0 100 200 300 400 500 600 700

S
lo

t

Time (Sec)

Fig. 3. Task execution times of a batch of Grep jobs under
different static slot configurations, where each node has (a) 2
map slots and 2 reduce slots, and (b) 1 map slot and 3 reduce
slots.

addition, we analyze the default static slot configuration
in Hadoop and present an algorithm to derive the best
configuration.

3.1 Problem Formulation
In our problem setting, we consider that a Hadoop
cluster consisting of k nodes has received a batch of
n jobs for processing. We use J to represent the set
of jobs, J = {j1, j2, . . . , jn}. Each job ji is configured
with nm(i) map tasks and nr(i) reduce tasks. Let st(i)
and ft(i) indicate the start time and the finish time
of job ji, respectively. The total slots number in the
Hadoop cluster is equal to S, and let sm and sr be the
number of map slots and reduce slots, respectively. We
then have S = sm + sr. In this paper, our objective
is to develop an algorithm to dynamically tune the
parameters of sm and sr, given a fixed value of S, in
order to minimize the makespan of the given batch of
jobs, i.e., minimize{max{ft(i),∀i ∈ [1, n]}}. Table 2 lists
important notations that have been used in the rest of
this paper.

TABLE 2
Notations used in this paper.

S, sm, sr number of total/map/reduce slots of cluster;
nm(i), nr(i) number of map/reduce tasks of job i;
n′m(i), n′r(i) number of unscheduled map/reduce tasks of job i;
tm(i), tr(i) average map/reduce task execution time of job i;
wm(i), wr(i) total execution time of map/reduce tasks of job i;
w′m(i), w′r(i) execution time of unscheduled tasks of job i;
st(i), ft(i) start/finish time of job i;
rtm, rtr number of currently running map/reduce tasks;

In a Hadoop system, makespan of multiple jobs also
depends on the job scheduling algorithm which is cou-
pled with our solution of allocating the map and reduce
slots on each node. In this paper, we only consider

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

4

using the default FIFO (First-In-First-Out) job scheduler
because of the following two reasons. First, given n jobs
waiting for service, the performance of FIFO is no worse
than other schedulers in terms of makespan. In the ex-
ample of “Case 2” mentioned in Section 2, the makespan
under FIFO is 594 sec while Fair, an alternative scheduler
in Hadoop, consumes 772 sec to finish jobs. Second,
using FIFO simplifies the performance analysis because
generally speaking, there are fewer concurrently running
jobs at any time. Usually two jobs, with one in map
phase and the other in reduce phase.

Furthermore, we use execution time to represent the
workload of each job. As a MapReduce job is com-
posed of two phases, we define wm(i) and wr(i) as
the workload of map phase and reduce phase in job
ji, respectively. We have developed solutions with and
without the prior knowledge of the workload and we
will discuss how to obtain this information later.

3.2 Static Slot Configuration with Workload Informa-
tion
First, we consider the scenario that the workload of
a job is available and present the algorithm for static
slot configuration which is default in a Hadoop system.
Basically, the Hadoop cluster preset the values of sm and
sr under the constraint of S = sm + sr before executing
the batch of jobs, and the slot assignment will not be
changed during the entire process. We have developed
the following Algorithm 1 to derive the optimal values
of sm and sr.

Our algorithm and analysis are based on an observa-
tion that the time needed to finish the workload of map
or reduce phase is inversely proportional to the number
of slots assigned to the phase in a homogeneous Hadoop
cluster. Given sm and sr, the map (resp. reduce) phase
of ji needs nm(i)

sm
(resp. nr(i)

sr
) rounds to finish. In each

round, sm map tasks or sr reduce tasks are processed in
parallel and the time consumed is equal to the execution
time of one map or one reduce task. Let tm(i) and tr(i) be
the average execution time for a map task and a reduce
task, respectively. The workloads of map and reduce
phases are defined as

wm(i) = nm(i) · tm(i), wr(i) = nr(i) · tr(i). (1)

Algorithm 1 can derive the best static setting of sm and
sr given the workload information. The outer loop (lines
1–10) in the algorithm enumerates the value of sm and sr
(i.e., S−sm). For each setting of sm and sr, the algorithm
first calculates the workload (wm(i) and wr(i)) for each
job ji in lines 3–5. The second inner loop (lines 6–8) is
to calculate the finish time of each job. Under the FIFO
policy, there are at most two concurrently running jobs
in the Hadoop cluster. Each job’s map or reduce phase
cannot start before the precedent job’s map or reduce
phase is finished. More specifically, the start time of map
tasks of job ji, i.e., st(i), is the finish time of ji−1’s map
phase, i.e., st(i) = st(i − 1) + wm(i−1)

sm
. Additionally, the

start time of ji’s reduce phase should be no earlier than
both the finish time of ji’s map phase and the finish
time of ji−1’s reduce phase. Therefore, the finish time of
ji is ft(i) = max(st(i) + wm(i)

sm
, ft(i− 1)) + wr(i)

sr
. Finally,

the variables Opt SM and Opt MS keep track of the
optimal value of sm and the corresponding makespan
(lines 9–10), and the algorithm returns Opt SM and S−
Opt SM as the values for sm and sr at the end. The time
complexity of the algorithm is O(S · n).

Algorithm 1 Static Slot Configuration
1: for sm = 1 to S do
2: sr = S − sm
3: for i = 1 to n do
4: wm(i) = nm(i) · tm(i)
5: wr(i) = nr(i) · tr(i)
6: for i = 1 to n do
7: st(i) = st(i− 1) + wm(i−1)

sm

8: ft(i) = max(st(i) + wm(i)
sm

, ft(i− 1)) + wr(i)
sr

9: if ft(n) < Opt MS then
10: Opt MS = ft(n); Opt SM = sm
11: return Opt SM and S −Opt SM

4 DYNAMIC SLOT CONFIGURATION UNDER
HOMOGENEOUS ENVIRONMENTS

As discussed in Section 2, the default Hadoop cluster
uses static slot configuration and does not perform well
for varying workloads. The inappropriate setting of sm
and sr may lead to extra overhead because of the fol-
lowing two cases:
(1) if job ji’s map phase is completed later than job ji−1’s
reduce phase, then the reduce slots will be idle for the
interval period of (st(i)+wm(i))−ft(i−1), see Fig. 4(a);
(2) if job ji’s map phase is completed earlier than the job
ji−1’s reduce phase, then ji’s reduce tasks have to wait
for a period of ft(i − 1) − (st(i) + wm(i)) until reduce
slots are released by ji−1, see Fig. 4(b).

job i

job i-1 job i

job i

job i-1 job i

job i

job i-1 job i

Map

Reduce

(a) (b) (c)

Fig. 4. Illustration of aligning the map and reduce phases. (a)
and (b) are the two undesired cases mentioned above, and our
goal is to achieve (c).

In this section, we present our solutions that dy-
namically allocate the slots to map and reduce tasks
during the execution of jobs. The architecture of our
design is shown in Fig. 5. In dynamic slot configuration,
when one slot becomes available upon the completion
of a map or reduce task, the Hadoop system will re-
assign a map or reduce task to the slot based on the
current optimal values of sm and sr. There are totally∑

i∈[1,n](nm(i) + nr(i)) tasks and at the end of each
task, Hadoop needs to decide the role of the available
slot (either a map slot or a reduce slot). In this setting,

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

5

Job Tracker

Scheduler

Task Tracker

Task Manager

Task Tracker

Task Manager

Task Tracker

Task Manager

...

Submit a batch

 of jobs

Status

Report
Task

Assignment

Users

(1) Estimate the present workloads

(2) Decide the best slot assignment

of each node

(3) Assign task to slave nodes

(4) Monitor the task execution and

the slot occupation situation

Fig. 5. The architecture overview of our design. The shade
rectangles indicate our new/modified components in Hadoop.

therefore, we cannot enumerate all the possible values
of sm and sr (i.e., 2

∑
i
(nm(i)+nr(i)) combinations) as in

Algorithm 1. Instead, we modify our objective in the
dynamic slot configuration as there is no closed-form
expression of the makespan.

Our goal now is, for the two concurrently running
jobs (one in map phase and the other in reduce phase),
to minimize the completion time of these two phases.
Our intuition is to eliminate the two undesired cases
mentioned above by aligning the completion of ji’s map
phase and ji−1’s reduce phase, see Fig. 4(c). Briefly, we
use the slot assignment as a tunable knob to change the
level of parallelism of map or reduce tasks. When we
assign more map slots, map tasks obtain more system
resources and could be finished faster, and vice versa
for reduce tasks. In the rest of this section, we first
present our basic solution with the prior knowledge of
job workload. Then, we describe how to estimate the
workload in practice when it is not available. In addition,
we present a feedback control-based solution to provide
more accurate estimation of the workload. Finally, we
discuss the design of task scheduler in compliance with
our solution.

4.1 Basic Sketch With Prior Knowledge of Workload

If the workload information is available, at the end of
a task, Hadoop can obtain the value of the remaining
workload for both map and reduce phases. Intuitively,
we should assign more slots (resources) to the task type
that has heavier remaining workload. Consider ji and
ji−1 are two active jobs and ji−1 is in reduce phase while
ji is in map phase. At the end of a task, we can get
the number of remaining map tasks of ji and remaining
reduce tasks of ji−1, indicated by n′m(i) and n′r(i−1). Let
w′m(i) and w′r(i − 1) represent the remaining workload
of ji’s map phase and ji−1’s reduce phase, we have:

w′m(i) = n′m(i) · tm(i), w′r(i− 1) = n′r(i− 1) · tr(i− 1), (2)

To align the completions of these two phases, the best
parameters should satisfy the following condition:

n′
m(i)
sm
· tm(i) =

n′
r(i−1)
sr

· tr(i− 1) ⇒ wm(i)′

sm
= wr(i−1)′

sr
(3)

Therefore, the number of map and reduce slots should
be proportional to their remaining workloads as shown
in Eq. 4-5,

sm = b w′m(i)

w′m(i) + w′r(i− 1)
· Sc, (4)

sr = S − sm, (5)

where sm and sr represent the target numbers of map
and reduce slots respectively, and S is the total number
of slots in the cluster which is configured based on
system capacity. The floor function is used to ensure that
the slot assignments are integer values. Furthermore, we
introduce the upper bound shm and the lower bound slm
for the map slots assignment. When the estimated value
of sm exceeds the bounds, we use the bound value as the
new sm value instead. In our design, slm is set to be the
number of nodes in the cluster (k) such that there is at
least one map slot on each node. Similarly, shm is set to be
equal to S−slm such that the reduce slots number in each
node is always greater than or equal to 1. The Hadoop
system updates the values of sm and sr according to
Eq. 4-5 every time a task is finished. If the current map
slots are fewer than sm, then the free slot will become
a map slot and serve a map task. Otherwise, it turns
to a reduce slot. With this setting, the current map and
reduce phases could finish at approximately the same
time with a high system resource utilization.

4.2 Workload Estimation
Our solution proposed above depends on prior knowl-
edge of workload information. In practice, workload
can be derived from job profiles, training phase, or
other empirical settings. In some applications, however,
workload information may not be available or accurate.
In this subsection, we present a method that estimates
the workload during the job execution without any prior
knowledge.

We use w′m and w′r to represent the remaining work-
load of a map or reduce phase, i.e., the summation of
execution time of the unfinished map or reduce tasks.
Note that we only track the map/reduce workloads of
running jobs, but not the jobs waiting in the queue.
Basically, the workload is calculated as the multiplication
of the number of remaining tasks and the average task
execution time of a job. Specifically, when a map or
reduce task is finished, the current workload information
needs to be updated, as shown in Algorithm 2, where
n′m(i)/ n′r(i) is the number of unfinished map/reduce
tasks of job ji, and tm(i)/ tr(i) means the average
execution time of finished map/reduce tasks from ji.
Note that the execution time of each finished task is al-
ready collected and reported to the JobTracker in current
Hadoop systems. In addition, we use the Welford’s one

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

6

pass algorithm to calculate the average of task execution
times, which incurs very low overheads on both time
and memory space.

Algorithm 2 Workload Information Collector
if a map task of job ji is finished then

update the average execution time of a map task tm(i)
w′m(i) = tm(i) · n′m(i)

if a reduce task of job ji is finished then
update the average execution time of a reduce task tr(i)
w′r(i) = tr(i) · n′r(i)

4.3 Feedback Control-based Workload Estimation
The workload estimation scheme introduced in previous
section works well under homogeneous system with
fixed slots configuration. Under this case, all tasks from
a job have similar execution time since they are process-
ing the same amount of data with the same resource
assignment. In our system design, however, the slots
assignment is dynamically changed, which affects the
per task execution time in practice. Assigning more
slots to one type of tasks may cause the contention on
a particular system resource and lead to an increased
execution time of each following task in the same type.
For example, in “Case 2” described in Section 2, when we
use 1 map slot on each node, the average execution time
of a map task is 18.5 sec. When we increase the number
of map slots per node to 2, the average execution time
of a map task becomes 23.1 sec with a 25% increase.

To overcome this issue, we have designed a feedback
control based mechanism to tune the slots assignment.
Under this mechanism, the slots assignment, sm and sr,
is first calculated through Eq. 4-5. An additional routine
is introduced to periodically update the workload infor-
mation based on newly captured average task execution
times. If the workloads have changed, then the slots
assignment will also be updated according to Eq. 6-7.

sm = sm + bα · (w′m
w′m + w′r

− wm

wm + wr
) · Sc, (6)

sr = S − sm. (7)

When the new estimated workloads, i.e., w′m and w′r,
differ from the previous estimation, an integral gain
parameter α is used to control the new assignment of
slots based on the new estimation. The Hadoop system
will iteratively calculate sm and sr (Eq. 6-7) until there
is no change on these two parameters. The value of α is
set to be 1.2 in our system such that the slots assignment
could converge quickly.

4.4 Slot Assigner
The task assignment in Hadoop works in a heartbeat
fashion: the TaskTrackers report slots occupation situ-
ation to the JobTracker with heartbeat messages; and
the JobTracker selects tasks from the queue and assigns
them to free slots. There are two new problems need to

be addressed when assigning tasks under TuMM. First,
slots of each type should be evenly distributed across
the slave nodes. For example, when we have a new slot
assignment sm = 5, sr = 7 in a cluster with 2 slave
nodes, a 2:3/4:3 map/reduce slots distribution is better
than the 1:4/5:2 map/reduce slots distribution in case
of resource contention. Second, the currently running
tasks may stick with their slots and therefore the new
slot assignments may not be able to apply immediately.
To address these problems, our slot assignment module
(SA) takes both the slots assignment calculated through
Eq. 6-7 and the situation of currently running tasks into
consideration when assigning tasks.

The process of SA is shown in Algorithm 3. The SA
first calculates the map and reduce slot assignments of
slave node x (line 1), indicated by sm(x) and sr(x),
based on the current values of sm and sr and the
number of running tasks in cluster. We use the floor
function since slots assignments on each node must be
integers. Due to the flooring operation, the assigned slots
(sm(x)+sr(x)) on node x may be fewer than the available
slots (S/k). In lines 3–6, we increase either sm(x) or sr(x)
to compensate slot assignment. The decision is based on
the deficit of current map and reduce slots (line 3), where
sm/ sr represent our target assignment and rtm/ rtr
are the number of current running map/reduce tasks.
Eventually, we assign a task to the available slot in lines
7–10. Similarly, the decision is made by comparing the
deficit of map and reduce tasks on node x, where sm(x)/
sr(x) are our target assignment and rtm(x)/ rtr(x) are
the numbers of running tasks.

Algorithm 3 Slot Assigner
0: Input: Number of slave nodes in cluster: k

Total numbers of running map/reduce tasks: rtm, rtr ;
0: When receive heartbeat message from node x with the

number of running map/reduce tasks on node x: rtm(x),
rtr(x);

1: Initialize assignment of slots for node x:
sm(x)← bsm/kc, sr(x)← bsr/kc;

2: if (sm(x) + sr(x)) < S/k then
3: if (sm − rtm) > (sr − rtr) then
4: sm(x)← sm(x) + 1;
5: else
6: sr(x)← sr(x) + 1;
7: if (sm(x)− rtm(x)) > (sr(x)− rtr(x)) then
8: assign a map task to node x;
9: else

10: assign a reduce task to node x.

5 DYNAMIC SLOT CONFIGURATION UNDER
HETEROGENEOUS ENVIRONMENTS

In the previous sections, we discussed about the static
and dynamic slot configuration in a homogeneous
Hadoop cluster environment, where all servers have
the same computing and memory capacities. However,
heterogeneous environments are fairly common in to-
day’s cluster systems. For example, system managers

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

7

Node 1

Node 2

0 2 4

m3

m2

m1 m5

m6

m7

m4

31

Node 1

Node 2

0 2 4

m3

m1 m5 m6

m4

31

m2 m7

Node 1

Node 2

0 2 4

m3

m1 m5

m4

31

m2m2

m3

m6

m7

(a) Case 1:

(b) Case 2:

(c) Case 3:

Fig. 6. Illustrating a Hadoop job with 7 map tasks running in a
heterogeneous Hadoop cluster with 2 nodes and 4 map slots in
total. The map phase of that job run faster when we have (c) 3
map slots on Node 1 and 1 map slot on Node 2, than when we
have (a) 2 map slot on Node 1 and 2 map slots on Node 2, and
(b) 1 map slot on Node 1 and 3 map slots on Node 2.

of a private data center could always scale up their
data center by adding new physical machines. Therefore,
physical machines with different models and different
resource capacities can exist simultaneously in a cluster.

When deploying a Hadoop cluster in such a het-
erogeneous environment, tasks from the same job may
have different execution times when running on differ-
ent nodes. In this case, a task’s execution time highly
depends on a particular node where that task is run-
ning. A job’s map tasks may run faster on a node
which has faster cpu per slot while its reduce tasks
may experience shorter execution times on the other
nodes that have more memory per slot. Estimating the
remaining workloads and deciding the slot configuration
in this heterogeneous Hadoop cluster thus becomes more
complex.

For example, consider a Hadoop job with 7 map tasks
and a Hadoop cluster with two heterogeneous nodes
such that node 1 is faster than node 2. Consider a
cluster configured with 4 map slots in total, and one
map task of that job takes 1 second and 2 seconds
to finish on node 1 and node 2, respectively. We note
that in this heterogeneous Hadoop cluster, various slot
configurations will yield different performance (e.g., the
execution time) of this job. As illustrated in Figure 6
case 1, the total execution time of the map phase takes 3
seconds if we set 2 map slots on node 1 and 2 map slot on
node 2. However, the map phase execution time can be
improved to 3 seconds if we change the slot configures
on these two nodes, i.e., 3 map slot on node 1 and 1
map slots on node 2. This situation indicates that it is
harder to predict the time needed to finish the map phase

or reduce phase in the heterogeneous environment, and
evenly distribute the map (or reduce) slot assignments
across the cluster will no longer work well.

We thus argue that the centralized method (i.e., the
algorithms described in Section 4 for a homogeneous
Hadoop cluster) which utilizes the overall workload
information to set the slot assignments over the entire
cluster does not work well any more when the nodes in
the cluster become heterogenous. Motivated by this, we
present in this section a new version of TuMM, named
H TuMM, which dynamically sets the slot configura-
tions for each node in a heterogeneous Hadoop cluster
in order to reduce the makespan of Hadoop jobs.

5.1 Problem Formulation

The problem of finding the optimal slot assignment
to map and reduce tasks in a heterogeneous Hadoop
cluster that aligns the current running map and reduce
workloads and minimizes the time required to finish
current map and reduce workloads could be formulated
as a linear programming problem as follows:

Minimize max {vim ∗ tim},∀i ∈ I, (8)
subject to :

sim + sir = Si, ∀i ∈ I, (9)∑
vim ∗ sim >= n′m, ∀i ∈ I, (10)∑
vir ∗ sir >= n′r, ∀i ∈ I, (11)

(vjm − 1) ∗ tjm <= vim ∗ tim,
∀i, j ∈ I, if tim < tjm, (12)

vim ∗ tim <= (vjm + 1) ∗ tjm,
∀i, j ∈ I, if tim < tjm. (13)

(vjr − 1) ∗ tjr <= vir ∗ tir,
∀i, j ∈ I, if tir < tjr, (14)

vir ∗ tir <= (vjr + 1) ∗ tjr,
∀i, j ∈ I, if tir < tjr. (15)

(vjr − 1) ∗ tjr <= vim ∗ tim,
∀i, j ∈ I, if tim < tjr, (16)

vim ∗ tim <= (vjr + 1) ∗ tjr,
∀i, j ∈ I, if tim < tjr, (17)

Where, I represents the set of nodes in the cluster,
tim/t

i
r represents the average map/reduce task execution

time on node i, and n′m/n
′
r represents the remaining

unassigned map/reduce tasks of jobs that are currently
running under their map/reduce phases. Additionally,
vim/v

i
r denotes the waves of map/reduce tasks that have

to run on node i before the finish time of current
map/reduce phase, sim/sir represents the optimal slot
assignment to map/reduce on node i, and Si represents
the constraint of total available slot number of node i.
The target is to minimize the finish time of the current
map phase under a set of constraints: Eq.(9) states that

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

8

the slots assigned to map or reduce tasks on each node
should not exceed the pre-defined slot constraint of that
particular node; Eq.s(10)-(11) state that all the remaining
tasks of current running jobs need to be assigned across
the cluster; Eq.s(12)-(13) state that the difference between
the times each node takes to execute its assigned map
tasks should not exceed the execution time of one task
(this constraint is decided by the nature of the Hadoop
scheduler); Eq.s(14)-(15), similarly, state that the time
each node takes to execute its assigned reduce tasks
should be roughly the same; and Eq.s(16)-(17) state that
the finish time of map and reduce workloads that are
dispatched to each node should also be aligned to avoid
slot idleness.

However, it is quite time consuming to solve the
above problem especially when the number of nodes in
a Hadoop cluster is large. In order to make decisions
for slot configurations instantly when the workloads
change, we instead present a new algorithm which
solves the problem by heuristically assigning slots for
map and reduce tasks on each node in a heterogeneous
Hadoop cluster.

5.2 Algorithm Design: H TuMM
H TuMM shares the similar idea of TuMM, i.e., dynam-
ically assign slots to map and reduce tasks to align the
process of map and reduce phase based on the collected
workload information. The key difference of H TuMM is
to set the slot configurations for each node individually
in a heterogeneous cluster, i.e., each of those nodes will
have different slot assignment ratio between map and
reduce tasks.

To accomplish it, H TuMM collects the workload in-
formation on the entire cluster and on each individual
node as well: when a map/reduce task is finished on
node i, the workload collector updates (1) the average
execution time of map/reduce tasks, i.e., tm/tr; and (2)
the average execution of map/reduce tasks that ran on
node i, i.e., tim/tir.

Based on the collected workload information,
H TuMM performs slot assignment for each node as
shown in Algorithm 4. Once a slot in node i becomes
available, H TuMM first updates the slot assignments
to map tasks (sim) and reduce tasks (sir) on node i. Such
that the ratio of slot assignments (i.e., sim/sir) is equal to
the ratio of remaining map and reduce workloads (i.e.,
tim∗n

′
m

tir∗n′
r

, see line 1-2 in Algorithm 4. Therefore, map and
reduce phases running on that node are aligned. Similar
to Algorithm 3, floor function is used to make sure
that slots assignments are all integers. If there is one
remaining slot, in this case, the free slot will be assigned
to a map (resp. reduce) task if map (resp. reduce) tasks
run relatively faster on this node compared to the
average execution time across the entire cluster in order
to improve the efficiency, see line 3-7 in Algorithm 4.
When the slot assignment on the specific node is
determined, the JobTracker can assign tasks based on

the new slot configuration and the number of currently
running tasks on that node (i.e., rtim and rtir), see line
8-11 in Algorithm 4.

Algorithm 4 Slot Assignment for Node i

0: Input: Average task execution time on node i and across
the cluster, and the remaining task number of current
running jobs;

0: When Node i has free slots and ask for new task assign-
ment through the heartbeat message;

1: sim ← bSi ∗ tim∗n
′
m

tim∗n′
m+tir∗n′

r

c;

2: sir ← bSi ∗ tir∗n
′
r

tim∗n′
m+tir∗n′

r

c;
3: if sim + sir < Si then
4: if t̄im

t̄m
>

tir
tr

then
5: sir ← Si − sim;
6: else
7: sim ← Si − sir .
8: if (sim − rtim) > (sir − rtir) then
9: assign a map task to node i;

10: else
11: assign a reduce task to node i;

6 EVALUATION

6.1 Experimental Setup and Workloads

6.1.1 Implementation
We implemented our new scheme (for homogeneous
environment and heterogeneous environment) on the
top of Hadoop Version 0.20.2. First, we added two new
modules into the JobTracker: the Workload Monitor (WM)
that is responsible to collect past workload information
such as execution times of completed tasks and to
estimate the workloads of currently running map and
reduce tasks and the Slot Assigner (SA) which uses the
estimated information received from WM to adjust the
slot ratio between map and reduce for each slave node.
The JobTracker with these additional modules will then
assign tasks to a slave node based on the adjusted slot
ratio and the current slot status at that particular node.
In addition, we modified the TaskTracker as well as the
JvmManager that runs at each slave node to check the
number of individual map and reduce tasks running on
that node based on the new slot ratio received from the
JobTracker. The architecture overview of this new Hadoop
framework is shown in Fig. 5.

6.1.2 Benchmarks
We choose five representative data-analyzing Hadoop
benchmarks from Purdue MapReduce Benchmarks
Suite [12]:
• Inverted Index: take text documents as input and

generate word to document indexing.
• Histogram Rating: take the movie rating data as input

and calculate a histogram of input data.
• Word Count: take text documents as input and count

the occurrence of each word.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

9

TuMM TuMM TuMM

TuMM TuMM

1:3 2:2 3:1 1:3 2:2 3:1 1:3 2:2 3:1

1:3 2:2 3:1 1:3 2:2 3:1
 0

 100

 200

 300

 400

 500

 600

M
ak

eS
p
an

 (
S

ec
)

 0

 200

 400

 600

 800

 1000

 1200

M
ak

eS
p
an

 (
S

ec
)

(d) Classification (e) Grep

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

M
ak

eS
p
an

 (
S

ec
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

M
ak

eS
p
an

 (
S

ec
)

 0

 200

 400

 600

 800

 1000

 1200

 1400

M
ak

eS
p
an

 (
S

ec
)

(c) Word Count(b) Histogram Rating(a) Inverted Index

Fig. 7. Makespans of five Hadoop applications under TuMM and three static slot configurations.

• Classification: take the movie rating data as input and
classify the movies into predefined clusters.

• Grep: take text documents as input and search for a
pattern in the files.

In addition, we use different sizes of movie rating
data [12] that consists of user ranking information and
wiki category links data [13] that includes the informa-
tion about wiki page categories, as the input to the above
five benchmarks. A 10GB movie rating data and a 7GB
wiki category data are used as input for experiments in
the homogeneous cluster. And experiments under the
heterogeneous cluster use a 8GB movie rating data and
a 8GB wiki category data as inputs.

We further choose TPC-H [14] queries expressed as Pig
programs [15] to validate the performance of H TuMM
under heterogeneous environments. A data generator
in TPC-H can be used to create a database with the
customized size. In such a database, there are totally
eight tables, i.e., customer, supplier, orders, lineitem, part,
partsupp, nation, and region. In our experiments, we
generated a database with 4G data in total and selected
three queries from the TPC-H benchmark to evaluate the
performance of H TuMM.
• TPCH-Q15: This query finds the supplier who con-

tributed the most to the overall revenue for parts
shipped during a given quarter of a given year.

• TPCH-Q16: This query counts the number of sup-
pliers who can supply parts that satisfy a particular
customer’s requirements.

• TPCH-Q18: This query finds a list of the top 100
customers who have ever placed large quantity
orders.The query lists the customer name, customer
key, the order key, date and total price and the
quantity for the order.

6.2 Evaluation in Homogeneous Environment
In this section, we evaluate the performance of TuMM
in terms of the makespan of a batch of MapReduce jobs

in a homogeneous environment. we launch a Hadoop
cluster in the Amazon EC2 environment which consists
of 5 m1.xlarge Amazon EC2 instances. Specifically, we
have one master node and four slave nodes in the cluster.
The number of slots which can be available on each slave
node is set as 4 since an m1.xlarge instance at Amazon
EC2 has 4 virtual cores.

We first consider simple workloads which consist of
jobs from a single MapReduce benchmark and then
validate the robustness of our approach with a mixed
workload that is a combination of MapReduce bench-
marks from Purdue MapReduce Benchmarks Suite.

6.2.1 Simple Workloads

We here conduct a set of experiments such that in
each experiment 3 Hadoop jobs from one of the above
benchmarks (see Section 6.1.2) are waiting for service.
We remark that such a simple workload is often found in
real systems as the same Hadoop jobs may be executed
repeatedly to process similar or different input data sets.
In our experiments, three Hadoop jobs use the same data
set as the input. Furthermore, as the comparisons, we
evaluate the performance under the static slot ratios for
map and reduce. Since all the slave nodes normally have
the same slot ratio in current Hadoop implementations,
With our setting in the evaluation (i.e., total number of
slots per node is 4), there are three static configuration
alternatives, i.e., 1:3, 2:2 and 3:1, for a Hadoop cluster.
So we enumerate all these three possible settings for the
comparison with our solution.

Fig. 7 shows makespans (i.e., the completion lengths)
of a given set under different slot configurations. We first
observe that the performance varies a lot under three
static slot settings. For example, the Inverted Index jobs
experience the fastest makespan when the slot ratio is
equal to 1:3. In contrast, the Histogram Rating jobs achieve
better performance when we assign more slots to their
map tasks, e.g., with slot ratio of 3:1. We also observe

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

10

that TuMM always yields the best performance, i.e., the
shortest makespan, for all the five Hadoop benchmarks.
We interpret this effect as the result of dynamic slot ratio
adjustments enabled by TuMM.

Compared to the slot ratio of 2:2, our approach in
average achieves about 20% relative improvement in the
makespan. Moreover, such improvement becomes more
visible when the workloads of map and reduce tasks
become more unbalanced. For example, the makespan of
the Inverted Index jobs is reduced by 28% where these jobs
have their reduce phases longer than their map phases.

6.2.2 Mixed Workloads
In the previous experiments, each workload only con-
tains jobs from the same benchmark. Now, we consider
a more complex workload, which mixes jobs from dif-
ferent Hadoop benchmarks. Reducing the makespan for
such a mixed workload thus becomes non-trivial. One
solution to tackle this problem is to shuffle the execution
order of these jobs. For example, the classic Johnson’s
algorithm [16] that was proposed for building an optimal
two-stage job schedule, could be applied to process a set
of Hadoop jobs and minimize the makespan of a given
set as well. However, this algorithm needs to assume
a priori knowledge of the exact execution times of each
job’s map and reduce phases, which unfortunately limits
the adoption of this algorithm in real Hadoop systems.
Moreover, for some cases, it may not be feasible to
change the execution order of jobs, especially when there
exists dependency among jobs or some of them have
high priority to be processed first.

To address the above issues, our solution leverages the
knowledge of the completed tasks to estimate the execu-
tion times of the currently running tasks and reduces the
makespan of a set of jobs by dynamically adjusting the
slot assignments for map and reduce tasks. As a result,
TuMM does not need to change the execution order of
jobs and does not need to know the exact task execution
times in advance, either.

We generate the mixed workload for our experiments
by randomly choosing 10 jobs from 5 different Hadoop
benchmarks. In order to investigate the impact of job
execution order, we also consider three different exe-
cution sequences, including (1) a sequence generated
by Johnson’s algorithm which can be considered as the
optimal case in terms of the makespan; (2) a sequence
that is inverse to the first one and can be considered
as the worst case; and (3) a sequence that is random.
Similarly, we evaluate the performance (i.e., makespan)
under TuMM and three static slot configurations.

Fig. 9 shows the makespans of the 10 jobs in the
mixed workload. We first observe that among three static
settings, the slot ratio of 2:2 always achieves the best per-
formance under three different execution orders. This is
because the overall workloads of map tasks and reduce
tasks from the 10 jobs are well balanced. We also notice
that with a fixed number of slots per node, different
job execution orders could yield different makespans.

While our solution always achieves the best performance
and the impact of execution sequence on our solution’s
performance becomes less visible. This means that no
matter what the execution order is, TuMM can always
serve the jobs with the shortest makespans. That is, our
approach allows to improve the performance in terms of
makespan without changing the execution order of jobs.

To better understand how TuMM uses the slot ratio
as a tunable knob to improve the makespan, we further
plot the task execution times for each job as well as the
transient slot assignments in Fig. 8, where the plots in
the first row depict the running period of each task from
the 10 jobs while the plots in the second row illustrate
how the slot assignments change across time. As shown
in Fig. 8, TuMM dynamically adjusts the slot assign-
ments to map and reduce tasks based on the estimated
workload information. For example, in the first 1200
seconds of Fig. 8-(2), TuMM attempts to assign more
slots to reduce tasks. Then, in the later 1200 seconds,
TuMM turns to allow more available map slots on each
node. This is because the Johnson’s algorithm shuffles
the order of 10 jobs such that all the reduce intensive
jobs such as Inverted Index and Grep run before the map
intensive jobs, e.g., Histogram Rating and Classification.
The only exception is the first 100s where most of the
slots are assigned to map tasks even though the running
job actually has reduce intensive workloads. That is
because TuMM does not consider the reduce workloads
of this job in the first 100 seconds until its map tasks
are finished. Fig. 8-(1) shows the corresponding task
execution times under TuMM. It is obvious that each
job’s reduce phase successfully overlaps with the map
phase of the following job and the makespan of 10 jobs
is then shortened compared to the static settings.

In summary, TuMM achieves non-negligible improve-
ments in makespan under both simple workloads and
mixed workloads. By leveraging the history information,
our solution accurately captures the changes in map
and reduce workloads and adapts to such changes by
adjusting the slot assignments for these two types of
tasks. Furthermore, different job execution orders do not
affect TuMM’s performance. That is, our solution can still
reduce the makespan without changing the execution
order of a given set of jobs.

TABLE 4
Maximum and minimum task execution times (in seconds) of

each job across Heter1 cluster.

Map Tasks Reduce Tasks
Benchmarks Min. Max. Min. Max.
Classification 6.5 24.1 9.5 15.9

Histogram Rating 8.5 24.8 9.7 25.5
Inverted Index 5.1 17.4 16.5 48.1
Word Count 11.5 31.4 12.6 25.2

Grep 6.7 25.1 12.7 29.5

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

11

 0

 5

 10

 15

 20

 25

 0 300 600 900 1200 1500 1800 2100 2400

S
lo

t

Time (Sec)

(a) Johnson’s Algorithm

(1)

 0

 5

 10

 15

 20

 25

 0 300 600 900 1200 1500 1800 2100 2400

S
lo

t

Time (Sec)

(b) Reversed Johnson’s Algorithm

(3)

 0

 5

 10

 15

 20

 25

 0 300 600 900 1200 1500 1800 2100 2400

S
lo

t

Time (Sec)

(c) Random Sequence

(5)

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000

S
lo

ts
 N

u
m

b
e

r

Time (Sec)
(2)

Map Slots
Reduce Slots

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000

S
lo

ts
 N

u
m

b
e

r

Time (Sec)
(4)

Map Slots
Reduce Slots

 0
 2
 4
 6
 8

 10
 12
 14
 16

 0 500 1000 1500 2000

S
lo

ts
 N

u
m

b
e

r

Time (Sec)
(6)

Map Slots
Reduce Slots

Fig. 8. Illustrating task execution times and slot assignments across time under TuMM, where the job execution sequence is (a)
generated by Johnson’s algorithm; (b) inverse to the first one; and (c) random. In the plots at the second row, black (resp. gray)
areas represent the number of available map (resp. reduce) slots in the cluster.

TuMM TuMM TuMM1:3 2:2 3:1 1:3 2:2 3:1 1:3 2:2 3:1

 4000

 3000

 2000 2000

 3000

 4000

(b) Reversed Johnson’s Algorithm

 2000

 3000

 4000

(c) Random

M
ak

eS
p
an

 (
S

ec
)

(a) Johnson’s Algorithm

Fig. 9. Makespans of a mixed workload under TuMM and three static slot configurations. Three execution orders are also
considered: (a) a sequence follows Johnson’s algorithm, (b) a sequence with reversed order of Johnson’s algorithm, and (c) a
random sequence.

TABLE 3
Cluster configuration of two heterogeneous clusters, i.e., Heter1 and Heter2.

Cluster Instance Type Number of Slave Nodes Number of Slots Per Node Average Resources Per Slot
Map Slots Reduce Slots Compute Units Memory

m1.xlarge 3 1 2 2.67 5 GB
Heter1 m1.xlarge 3 2 2 2 3.75 GB

m1.large 3 2 1 1.33 2.5 GB
m1.xlarge 3 2 2 2 3.75 GB

Heter2 c1.xlarge 3 2 2 5 1.75 GB
m2.xlarge 3 2 2 1.63 4.25 GB

6.3 Evaluation in Heterogeneous Environment

In this section, we evaluate the performance of H TuMM
in the heterogeneous environments. The mixed work-
loads introduced in previous section and the TPC-H
benchmarks are used to validate the effectiveness and
robustness of our scheme.

We build up two heterogeneous Hadoop clusters in
the Amazon EC2 environment, i.e., Heter1 and Heter2.
The detailed cluster configurations are shown in Table 3.
Specifically, each cluster has one m1.xlarge type master
node and 9 slave nodes. There are three different groups
of slave nodes in each cluster, and slots in different
groups have different physical resource capacities. We
list the approximate number of compute units and mem-
ory sizes that shared by one slot in different node group
in Table 3. It is clear that slots have equally scaled

cpu and memory capacities in different node groups of
Heter1, and skewed cpu and memory capacity ratios in
different node groups of Heter2.

6.3.1 Mixed Workloads
We first conduct experiments using the mixed workload
as described in Section 6.2.2, where the size of input
data is 8GB and the data block size is set to 64MB
such that each job has 128 map tasks. Additionally, the
number of reduce tasks from each job is set to be 150 and
80 for the Inverted Index benchmark and the remaining
benchmarks, respectively.

In order to investigate the impact of heterogeneous
environments on Hadoop performance, we measured
the maximum and minimum task execution times for
each job across different slave nodes in Heter1 cluster.
As shown in Table 4, each job’s task execution times

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

12

(a) FIFO

 0 200 400 600 800 1000 1200 1400

S
lo

t

Time (Sec)

 0 200 400 600 800 1000 1200

S
lo

t

Time (Sec)

(b) H TuMM

 0 200 400 600 800 1000 1200 1400

S
lo

t

Time (Sec)

 0 200 400 600 800 1000 1200

S
lo

t

Time (Sec)

Fig. 10. Task execution times of a batch of mixed benchmarks under (a) FIFO and (b) H TuMM. The plots in the left (resp. right)
column show the results from Heter1 (resp. Heter2) cluster. There are in total 30 (resp. 36) slots across Heter1 (resp. Heter2)
cluster, i.e., there are at most 30 (resp. 36) running tasks in Heter1 (resp. Heter2) cluster at any given time.

are no longer uniform, for example, the slowest map
task(s) of a Classification job could almost run four times
longer than the fastest one(s). We interpret this effect by
observing the variance of resource capacity among the
slots on different slave nodes.

Figure 10 illustrates task execution details (i.e., the run-
ning period of each task) of a batch of mixed benchmarks
under both FIFO and H TuMM scheduling policies.
Plots in the left (resp. right) column show the results
from Heter1 (resp. Heter2) cluster. We observe that in
both clusters, our new H TuMM policy dynamically
change the slot assignment to map and reduce tasks
over time while keep the number of total running tasks
the same at any given time. Through tunning the slot
assignments, H TuMM successfully aligns each jobs re-
duce phase with the map phase of the following job and
thus avoids the waste of slot resources. As a result, the
makespan of 10 Hadoop jobs in the mixed workload
becomes shorter under H TuMM than under FIFO.

Figure 11 further depicts the number of map tasks
that are dispatched by H TuMM to each node over time
in Heter1 cluster. Clearly, our H TuMM dynamically
sets the slot configurations for each node, such that the
number of map tasks running on each node varies over
time and each node is assigned with different number
of map tasks (slots) at each moment.

6.3.2 TPC-H Workloads
We now turn to the experiments which run the TPC-H
benchmark in the heterogeneous clusters. As described
in Section 6.1.2, we chose 3 different queries from TPC-
H query set. Each of the three queries consists of 5
sub queries. A dependency chain exists between the
sub queries from the same query, i.e., each sub query
could start only after its precedent sub query completes.
It follows that the 5 sub queries form the same query
are indeed submitted and executed sequentially in the

 1
 2
 3
 4
 5
 6
 7
 8
 9 0 200 400 600 800 1000 1200 1400

 0

 1

 2

 3

nodes

time(sec)

 0
 0.5
 1
 1.5
 2
 2.5
 3

Fig. 11. Number of map tasks running on each node in Heter1
cluster under H TuMM policy.

predefined order. Furthermore, the input data sizes of
different sub queries vary even in the same query. There-
fore, each sub query has different map task numbers. For
example, in this set of experiments, the first sub query of
all the three queries has the largest input data size and
thus most map tasks are clustered in the first few sub
queries, while the following sub queries have relatively
small amount of map tasks.

We submit the 3 queries (i.e., TPCH-Q15, TPCH-Q16
and TPCH-Q18) to the cluster at the same time, such
that the sub queries of each query could interleave with
each other. The makespans of these three TPC-H queries
in two heterogeneous clusters (i.e., Heter1 and Heter2)
are shown in Table 5 and the execution details of these
queries are further plotted in Figure 12. We observe
that by dynamically adjusting slot assignments on each
node, H TuMM improves the performance (i.e., reducing
the makespan) of all the three TPC-H queries when
compared to FIFO. Such performance improvement can
be consistently observed in both two heterogeneous clus-
ters. Figure 12 further illustrates that the map and reduce
phases are well aligned under the H TuMM policy.

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

13

(a) FIFO

 0 200 400 600

S
lo

t

Time (Sec)

 0 200 400

S
lo

t

Time (Sec)

(b) H TuMM

 0 200 400 600

S
lo

t

Time (Sec)

 0 200 400

S
lo

t

Time (Sec)

Fig. 12. Task execution times of three TPC-H queries under (a) FIFO and (b) H TuMM. The plots in the left (resp. right) column
show the results from Heter1 (resp. Heter2) cluster. Different colors represent different sub queries.

TABLE 5
Makespans of TPC-H queries under FIFO and H TuMM in two
heterogeneous clusters. The numbers in the parentheses are

the relative improvements against FIFO.

Cluster Query FIFO H TuMM
Q15 523.6 465.0 (11.1%)

Heter1 Q16 564.1 495.3 (12.2%)
Q18 598.4 529.2 (11.5%)
Q15 452.0 397.7 (12.0%)

Heter2 Q16 491.9 437.1 (11.1%)
Q18 519.7 456.4 (12.4%)

7 RELATED WORKS

An important direction for improving the performance
of a Hadoop system is job scheduling. The default FIFO
scheduler does not work well in a shared cluster with
multiple users and a variety of jobs. Fair [17] and Ca-
pacity [18] schedulers were proposed to ensure that each
job can get a proper share of the available resources; and
Quincy [5] addressed the scheduling problem with local-
ity and fairness constraints. Zaharia et al. [3] proposed a
delay scheduling to further improve the performance of
the Fair scheduler by increasing data locality. Verma et
al. [4] introduced a heuristic to minimize the makespan
of a set of independent MapReduce jobs by applying the
classic Johnson’s algorithm.

Another category of schedulers further consider user-
level goals while improving the performance. ARIA, a
deadline aware scheduler, was recently proposed in [6],
which always schedules a job with the earliest deadline
and uses the Lagrange’s method to find the minimum
number of slots for each job in order to meet the prede-
fined deadline. Similarly, Polo et al. [7] estimated the task
execution times based on the average execution times
of the completed tasks instead of the job profiles. Task
execution times were then used to calculate the number

of slots that a job needed to meet its deadline. Different
deadline and locality aware scheduling algorithms are
evaluated with empirical analysis for Hadoop system
in [19]. Although these deadline aware schedulers sup-
port user-level goals, their techniques are still based on
static slot configurations, i.e., having a fixed number of
map slots and reduce slots per node throughout the
lifetime of a cluster.

Fine-grained resource aware management is an-
other important direction for improving performance in
Hadoop. RAS [10] leverages existing profiling informa-
tion to dynamically determine the number of job slots
and their placement in the cluster. The goal of this
approach is to maximize the resource utilization of the
cluster and to meet job completion time deadlines. More
recently, [11] introduces a local resource manager at
each TaskTracker to detect task resource utilization and
predict task finish time, and a global resource manager
at the JobTracker to coordinate the resource assignments
to each task; and [9] addresses the cluster resource
utilization problem by developing a dynamic split model
of resource utilization. Our work is complementary to
the above techniques.

The Hadoop community recently released Next Gen-
eration MapReduce (YARN) [8], the latest architecture
of Hadoop MapReduce, which replaces the fixed-size
slot with a resource container that works in a fine-
grained resource level. There is no longer map/reduce
slots concept in YARN system. Specifically, YARN users
need to specify requirements of cpu cores and memory
size of each type of tasks, such as map, reduce and appli-
cation master. Task assignment is then based on resource
requirement of tasks and the residual resources of slave
nodes. Consequently, resource management for YARN
is quite different from the schemes that we proposed
in this paper. We investigate the resource management
problem in YARN system in our work [20]. The main
objective of this paper is to reduce the completion length

2168-7161 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TCC.2015.2415802, IEEE Transactions on Cloud Computing

14

(i.e., makespan) of a set of MapReduce jobs in slot based
first generation Hadoop MapReduce system.

8 CONCLUSION

In this paper, we presented a novel slot management
scheme, named TuMM, to enable dynamic slot config-
uration in Hadoop. The main objective of TuMM is to
improve resource utilization and reduce the makespan
of multiple jobs. To meet this goal, the presented scheme
introduces two main components: Workload Monitor pe-
riodically tracks the execution information of recently
completed tasks and estimates the present workloads
of map and reduce tasks and Slot Assigner dynamically
allocates the slots to map and reduce tasks by lever-
aging the estimated workload information. We further
extended our scheme to manage resources (slots) for
heterogeneous clusters. The new version of our scheme,
named H TuMM, reduces the makespan of multiple jobs
by separately setting the slot assignments for the node
in a heterogeneous cluster. We implemented TuMM and
H TuMM on the top of Hadoop v0.20.2 and evaluated
both schemes by running representative MapReduce
benchmarks and TPC-H query sets in Amazon EC2
clusters. The experimental results demonstrate up to 28%
reduction in the makespans and 20% increase in resource
utilizations. The effectiveness and the robustness of our
new slot management schemes are validated under both
homogeneous and heterogeneous cluster environments.
In the future, we will further investigate the optimal
total slot number configuration in the slot based Hadoop
platform as well as the resource management policy in
next generation Hadoop YARN platforms.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data process-
ing on large clusters,” Communications of the ACM, vol. 51, no. 1,
pp. 107–113, 2008.

[2] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/
[3] M. Zaharia, D. Borthakur, J. S. Sarma et al., “Delay scheduling:

A simple technique for achieving locality and fairness in cluster
scheduling,” in EuroSys’10, 2010.

[4] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of
a coin: Optimizing the schedule of mapreduce jobs to minimize
their makespan and improve cluster performance,” in MAS-
COTS’12, Aug 2012.

[5] M. Isard, Vijayan Prabhakaran, J. Currey et al., “Quincy: fair
scheduling for distributed computing clusters,” in SOSP’09, 2009,
pp. 261–276.

[6] A. Verma, Ludmila Cherkasova, and R. H. Campbell, “Aria:
Automatic resource inference and allocation for mapreduce en-
vironments,” in ICAC’11, 2011, pp. 235–244.

[7] J. Polo, D. Carrera, Y. Becerra et al., “Performance-driven task co-
scheduling for mapreduce environments,” in NOMS’10, 2010.

[8] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proceedings of
the 4th annual Symposium on Cloud Computing. ACM, 2013, p. 5.

[9] X. W. Wang, J. Zhang, H. M. Liao, and L. Zha, “Dynamic split
model of resource utilization in mapreduce,” in DataCloud-SC ’11,
2011.

[10] J. Polo, C. Castillo, D. Carrera et al., “Resource-aware adaptive
scheduling for mapreduce clusters,” in Proceedings of the 12th
ACM/IFIP/USENIX international conference on Middleware, 2011.

[11] B. Sharma, R. Prabhakar, S.-H. Lim et al., “Mrorchestrator: A
fine-grained resource orchestration framework for mapreduce
clusters,” in CLOUD’12, 2012.

[12] Purdue mapreduce benchmarks suite. [Online]. Available: http:
//web.ics.purdue.edu/∼fahmad/benchmarks.htm

[13] Wiki data sets. [Online]. Available: http://dumps.wikimedia.org/
[14] Tpc-h benchmark. [Online]. Available: http://www.tpc.org/

tpch/
[15] Tpc-h benchmark on pig. [Online]. Available: https://issues.

apache.org/jira/browse/PIG-2397
[16] S. M. Johnson, “Optimal two- and three-stage production sched-

ules with setup times included,” Naval Research Logistics Quarterly,
vol. 1, no. 1, pp. 61–68, 1954.

[17] M. Zaharia, D. Borthakur, J. S. Sarma et al., “Job scheduling for
multi-user mapreduce clusters,” University of California, Berke-
ley, Tech. Rep., Apr. 2009.

[18] Capacity scheduler. [Online]. Available: http://hadoop.apache.
org/common/docs/r1.0.0/capacity scheduler.html

[19] L. T. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee, “An empir-
ical analysis of scheduling techniques for real-time cloud-based
data processing,” in Service-Oriented Computing and Applications
(SOCA), 2011 IEEE International Conference on. IEEE, 2011, pp.
1–8.

[20] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi, “Haste: Hadoop yarn
scheduling based on task-dependency and resource-demand,” in
IEEE International Conference on Cloud Computing (Cloud’14), 2014.

Yi Yao is a Ph.D. student at Northeastern Uni-
versity, Department of Electrical and Computer
Engineering, Boston, MA. He received his M.S.
and B.S. in Computer Science from the South-
east University, China, in 2010 and 2007. His
current research interests are resource manage-
ment, scheduling and cloud computing.

Jiayin Wang is currently a Ph.D. student at Uni-
versity of Massachusetts Boston, Department of
Computer Science, Boston, MA. She received
her Bachelor degree in Electrical Engineering
from XIDIAN University, China in 2005. Her re-
search interests include cloud computing and
wireless networks.

Bo Sheng is an assistant professor in the De-
partment of Computer Science at University of
Massachusetts Boston. He received his Ph.D. in
computer science from the College of William
and Mary in 2010. His research interests include
mobile computing, wireless networks, security
and cloud computing.

Chiu C. Tan is an assistant professor in the
Department of Computer and Information Sci-
ences at Temple University. He received his
PhD from the College of William and Mary in
2010. His current research interests are in cloud
computing security, smarthealth systems, and
wireless network security. He is also the director
for the NSF/DoD REU Site program at Temple
University.

Ningfang Mi is an Assistant Professor at North-
eastern University, Department of Electrical and
Computer Engineering, Boston, MA. She re-
ceived her Ph.D. degree in Computer Science
from the College of William and Mary, VA in
2009. She received her M.S. in Computer Sci-
ence from the University of Texas at Dallas, TX
in 2004 and her B.S. in Computer Science from
Nanjing University, China, in 2000. Her current
research interests are performance evaluation,
capacity planning, resource management, simu-

lation, data center and cloud computing.

