
Self-Adjusting Slot Configurations
for Homogeneous and Heterogeneous

Hadoop Clusters
Yi Yao, Jiayin Wang, Bo Sheng, Chiu C. Tan, and Ningfang Mi

Abstract—The MapReduce framework and its open source implementation Hadoop have become the defacto platform for scalable

analysis on large data sets in recent years. One of the primary concerns in Hadoop is how to minimize the completion length (i.e.,

makespan) of a set of MapReduce jobs. The current Hadoop only allows static slot configuration, i.e., fixed numbers of map slots and

reduce slots throughout the lifetime of a cluster. However, we found that such a static configuration may lead to low system resource

utilizations as well as long completion length. Motivated by this, we propose simple yet effective schemes which use slot ratio between

map and reduce tasks as a tunable knob for reducing the makespan of a given set. By leveraging the workload information of recently

completed jobs, our schemes dynamically allocates resources (or slots) to map and reduce tasks. We implemented the presented

schemes in Hadoop V0.20.2 and evaluated them with representative MapReduce benchmarks at Amazon EC2. The experimental

results demonstrate the effectiveness and robustness of our schemes under both simple workloads and more complex mixed

workloads.

Index Terms—MapReduce jobs, Hadoop scheduling, reduced makespan, slot configuration

Ç

1 INTRODUCTION

MAPREDUCE[1] has become the leading paradigm in
recent years for parallel big data processing. Its open

source implementation Apache Hadoop [2] has also
emerged as a popular platform for daily data processing
and information analysis. With the rise of cloud computing,
MapReduce is no longer just for internal data process in big
companies. It is now convenient for a regular user to launch
a MapReduce cluster on the cloud, e.g., AWS MapReduce,
for data-intensive applications. When more and more appli-
cations are adopting the MapReduce framework, how to
improve the performance of a MapReduce cluster becomes
a focus of research and development. Both academia and
industry have put tremendous efforts on job scheduling,
resource management, and Hadoop applications [3], [4], [5],
[6], [7], [8], [9], [10], [11]. As a complex system, Hadoop is
configured with a large set of system parameters. While it
provides the flexibility to customize the cluster for different
applications, it is challenging for users to understand and
set the optimal values for those parameters. In this paper,
we aim to develop algorithms for adjusting a basic system
parameter with the goal to improve the performance (i.e.,
reduce the makespan) of a batch of MapReduce jobs.

A classicHadoop cluster includes a singlemaster node and
multiple slave nodes. The master node runs the JobTracker
routine which is responsible for scheduling jobs and coordi-
nating the execution of tasks of each job. Each slave node runs
the TaskTracker daemon for hosting the execution of MapRe-
duce jobs. The concept of “slot” is used to indicate the capac-
ity of accommodating tasks on each node. In a Hadoop
system, a slot is assigned as amap slot or a reduce slot serving
map tasks or reduce tasks, respectively. At any given time,
only one task can be running per slot. The number of available
slots per node indeed provides themaximumdegree of paral-
lelization in Hadoop. Our experiments have shown that the
slot configuration has a significant impact on system perfor-
mance. The Hadoop framework, however, uses fixed num-
bers of map slots and reduce slots at each node as the default
setting throughout the lifetime of a cluster. The values in this
fixed configuration are usually heuristic numbers without
considering job characteristics. Therefore, this static setting
is not well optimized and may hinder the performance
improvement of the entire cluster.

In this work, we propose and implement a new mecha-
nism to dynamically allocate slots for map and reduce tasks.
The primary goal of the new mechanism is to improve the
completion time (i.e., the makespan) of a batch of MapRe-
duce jobs while retain the simplicity in implementation and
management of the slot-based Hadoop design. The key idea
of this new mechanism, named TuMM, is to automate the
slot assignment ratio between map and reduce tasks in a
cluster as a tunable knob for reducing the makespan of
MapReduce jobs. The Workload Monitor (WM) and the Slot
Assigner (SA) are the two major components introduced by
TuMM. The WM that resides in the JobTracker periodically
collects the execution time information of recently finished

� Y. Yao and N. Mi are with Northeastern University, Boston, MA 02115.
E-mail: {yyao, ningfang}@ece.neu.edu.

� J. Wang and B. Sheng are with the University of Massachusetts Boston,
Boston, MA 02125. E-mail: {jane, shengbo}@cs.umb.edu.

� C. C. Tan is with Temple University, Philadelphia, PA 19122.
E-mail: cctan@temple.edu.

Manuscript received 21 Apr. 2014; revised 2 Feb. 2015; accepted 12 Feb. 2015.
Date of publication 23 Mar. 2015; date of current version 7 June 2017.
Recommended for acceptance by C. A. Varela.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCC.2015.2415802

344 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

2168-7161� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

tasks and estimates the present map and reduce workloads
in the cluster. The SA module takes the estimation to decide
and adjust the slot ratio between map and reduce tasks for
each slave node. With TuMM, the map and reduce phases
of jobs could be better pipelined under priority based sched-
ulers, and thus the makespan is reduced. We further investi-
gate the dynamic slot assignments in heterogeneous
environments, and propose a new version of TuMM, named
H_TuMM, which sets the slot configurations for each indi-
vidual node to reduce the makespan of a batch of jobs. We
implemented the presented schemes in Hadoop V0.20.2 and
evaluated them with representative MapReduce bench-
marks at Amazon EC2. The experimental results demon-
strate the effectiveness and robustness of our schemes
under both simple workloads and more complex mixed
workloads.

The rest of the paper is organized as follows. We explain
the motivation of our work through some experimental
examples in Section 2. We formulate the problem and derive
the optimal setting for static slot configuration in a homoge-
neous cluster in Section 3. The design details of the dynamic
mechanism for homogeneous clusters and heterogeneous
clusters are presented in Sections 4 and 5. Section 6 provides
the experimental evaluation of the proposed schemes.
Section 7 describes the related work of this work. We con-
clude in Section 8.

2 MOTIVATION

Currently, the Hadoop framework uses fixed numbers of
map slots and reduce slots on each node throughout the life-
time of a cluster. However, such a fixed slot configuration
may lead to low resource utilizations and poor performance
especially when the system is processing varying work-
loads. We here use two simple cases to exemplify this defi-
ciency. In each case, three jobs are submitted to a Hadoop
cluster with four slave nodes and each slave node has four
available slots. Details of the experimental setup are intro-
duced in Section 6. To illustrate the impact of resource
assignments, we also consider different static settings for
map and reduce slots on a slave node. For example, when
the slot ratio is equal to 1:3, we have one map slot and three
reduce slots available per node. We then measure the over-
all lengths (i.e., makespans) for processing a batch of jobs,
which are shown in Fig. 1.

Case 1. We first submit three Classification jobs to process
a 10 GB movie rating data set. We observe that makespan is

varying under different slot ratio settings and the best per-
formance (i.e., shortest makespan) is achieved when each
slave node has three map slots and one reduce slot, see the
left column of Fig. 1.

To interpret this effect, we further plot the execution
times of each task in Fig. 2. Clearly, Classification is a map-
intensive application; for example, when we equally distrib-
ute resources (or slots) between map and reduce tasks, i.e.,
with the slot ratio of 2:2, the length of a map phase is longer
than that of a reduce phase, see Fig. 2a. It follows that each
job’s reduce phase (including shuffle operations and reduce
operations) overlaps with its map phase for a long period.
However, as the reduce operations can only start after the
end of the map phase, the occupied reduce slots stay in
shuffle for a long period, mainly waiting for the outputs
from the map tasks. Consequently, system resources are
underutilized.

For example, we tracked the CPU utilizations of each task
in a slave node every 5 seconds and Table 1 shows part of the
records in one of such overlapping periods. At eachmoment,
the overall CPU utilization (i.e., the summation of CPU uti-
lizations of the four tasks) is much less than 400 percent, for a
node with four cores. We then notice that when we assign
more slots to map tasks, e.g., with the slot ratio of 3:1, each

Fig. 1. The makespans of jobs under case 1 (i.e., Classification) and
case 2 (i.e., Grep). The map and reduce slot ratios on each slave node
are set to 1:3, 2:2, and 3:1.

Fig. 2. Task execution times of three Classification jobs under different
static slot configurations, where each node has (a) 2 map slots and 2
reduce slots, and (b) 3 map slots and 1 reduce slot. Each arrowed line
represents the execution of one task, and the solid (resp. dashed) ones
represent map (resp. reduce) tasks. In addition, we use three different
colors to discriminate the three jobs.

TABLE 1
Real Time CPU Utilizations of Each Task on a Slave Node in the
Overlapping Time Period of a Job’s Map and Reduce Phases

ProcessId/TaskType

Time
(sec)

3,522/map 3,564/map 3,438/reduce 3,397/reduce

1 147 percent 109 percent 26 percent 0 percent
6 103 percent 93 percent 0 percent 4 percent
11 93 percent 99 percent 8 percent 0 percent
16 100 percent 100 percent 0 percent 0 percent
21 97 percent 103 percent 0 percent 0 percent

The slot ratio per node is 2:2.

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 345

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

job experiences a shorter map phase and most of its reduce
phase overlaps with the following job’s map phase, see
Fig. 2b. The average CPU utilization is also increased by 20
percent compared to those under the slot ratio of 2:2. It
implies that for map-intensive jobs like Classification, one
should assign more resources (slots) to map tasks in order to
improve the performance in terms ofmakespan.

Case 2. In this case, we turn to consider reduce-intensive
applications by submitting three Grep jobs to scan the 10 GB
movie rating data. Similar to case 1, we also investigate
three static slot configurations.

First, we observe that each job takes a longer time to pro-
cess its reduce phase than its map phase when we have two
map and two reduce slots per node, see Fig. 3a. Based on
the observation in case 1, we expect a reduced makespan
when assigning more slots to reduce tasks, e.g., with the
slot ratio of 1:3. However, the experimental results show
that the makespan under this slot ratio setting (1:3) becomes
even longer than that under the setting of 2:2, see the right
column of Fig. 1. We then look closely at the corresponding
task execution times, see Fig. 3b. We find that the reduce
tasks indeed have excess slots such that the reduce phase of
each job starts too early and wastes time waiting for the out-
put from its map phase. In fact, a good slot ratio should be
set between 2:2 and 1:3 to enable each job’s reduce phase to
fully overlap with the following job’s map phase rather
than its own map phase.

In summary, in order to reduce the makespan of a batch
of jobs, more resources (or slots) should be assigned to map
(resp. reduce) tasks if we have map (resp. reduce) intensive
jobs. On the other hand, a simple adjustment in such slot
configurations is not enough. An effective approach should
tune the slot assignments such that the execution times of
map and reduce phases can be well balanced and the make-
span of a given set can be reduced to the end.

3 SYSTEM MODEL AND STATIC SLOT

CONFIGURATION

In this section, we present a homogeneous Hadoop system
model we considered and formulate the problem. In

addition, we analyze the default static slot configuration in
Hadoop and present an algorithm to derive the best
configuration.

3.1 Problem Formulation

In our problem setting, we consider that a Hadoop cluster
consisting of k nodes has received a batch of n jobs for proc-
essing. We use J to represent the set of jobs,
J ¼ fj1; j2; . . . ; jng. Each job ji is configured with nmðiÞmap
tasks and nrðiÞ reduce tasks. Let stðiÞ and ftðiÞ indicate the
start time and the finish time of job ji, respectively. The total
slots number in the Hadoop cluster is equal to S, and let
sm and sr be the number of map slots and reduce slots,
respectively. We then have S ¼ sm þ sr. In this paper, our
objective is to develop an algorithm to dynamically tune the
parameters of sm and sr, given a fixed value of S, in order to
minimize the makespan of the given batch of jobs, i.e.,
minimizefmaxfftðiÞ; 8i 2 ½1; n�gg. Table 2 lists important
notations that have been used in the rest of this paper.

In a Hadoop system, makespan of multiple jobs also
depends on the job scheduling algorithm which is coupled
with our solution of allocating the map and reduce slots on
each node. In this paper, we only consider using the default
first-in-first-out (FIFO) job scheduler because of the follow-
ing two reasons. First, given n jobs waiting for service, the
performance of FIFO is no worse than other schedulers in
terms of makespan. In the example of “Case 2” mentioned
in Section 2, the makespan under FIFO is 594 sec while Fair,
an alternative scheduler in Hadoop, consumes 772 sec to
finish jobs. Second, using FIFO simplifies the performance
analysis because generally speaking, there are fewer concur-
rently running jobs at any time. Usually two jobs, with one
in map phase and the other in reduce phase.

Furthermore, we use execution time to represent the
workload of each job. As a MapReduce job is composed of
two phases, we define wmðiÞ and wrðiÞ as the workload of
map phase and reduce phase in job ji, respectively. We
have developed solutions with and without the prior
knowledge of the workload and we will discuss how to
obtain this information later.

3.2 Static Slot Configuration with Workload
Information

First, we consider the scenario that the workload of a job is
available and present the algorithm for static slot configura-
tion which is default in a Hadoop system. Basically, the
Hadoop cluster preset the values of sm and sr under the

Fig. 3. Task execution times of a batch of Grep jobs under different static
slot configurations, where each node has (a) two map slots and two
reduce slots, and (b) one map slot and three reduce slots.

TABLE 2
Notations Used in This Paper

S; sm; sr number of total/map/reduce slots of cluster;

nmðiÞ; nrðiÞ number of map/reduce tasks of job i;
n0mðiÞ; n0rðiÞ number of unscheduled map/reduce tasks of job i;
tmðiÞ; trðiÞ average map/reduce task execution time of job i;
wmðiÞ; wrðiÞ total execution time of map/reduce tasks of job i;
w0mðiÞ; w0rðiÞ execution time of unscheduled tasks of job i;
stðiÞ; ftðiÞ start/finish time of job i;
rtm; rtr number of currently running map/reduce tasks;

346 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

constraint of S ¼ sm þ sr before executing the batch of jobs,
and the slot assignment will not be changed during the
entire process. We have developed the following
Algorithm 1 to derive the optimal values of sm and sr.

Our algorithm and analysis are based on an observation
that the time needed to finish the workload of map or reduce
phase is inversely proportional to the number of slots
assigned to the phase in a homogeneous Hadoop cluster.
Given sm and sr, the map (resp. reduce) phase of ji needs
nmðiÞ
sm

(resp. nrðiÞsr
) rounds to finish. In each round, sm map tasks

or sr reduce tasks are processed in parallel and the time con-
sumed is equal to the execution time of one map or one

reduce task. Let tmðiÞ and trðiÞ be the average execution time
for a map task and a reduce task, respectively. The work-
loads of map and reduce phases are defined as

wmðiÞ ¼ nmðiÞ � tmðiÞ; wrðiÞ ¼ nrðiÞ � trðiÞ: (1)

Algorithm 1 can derive the best static setting of sm and
sr given the workload information. The outer loop (lines 1-
10) in the algorithm enumerates the value of sm and sr
(i.e., S � sm). For each setting of sm and sr, the algorithm
first calculates the workload (wmðiÞ and wrðiÞ) for each job
ji in lines 3-5. The second inner loop (lines 6-8) is to calcu-
late the finish time of each job. Under the FIFO policy,
there are at most two concurrently running jobs in the
Hadoop cluster. Each job’s map or reduce phase cannot
start before the precedent job’s map or reduce phase is fin-
ished. More specifically, the start time of map tasks of job
ji, i.e., stðiÞ, is the finish time of ji�1’s map phase, i.e.,

stðiÞ ¼ stði� 1Þ þ wmði�1Þ
sm

. Additionally, the start time of ji’s

reduce phase should be no earlier than both the finish
time of ji’s map phase and the finish time of ji�1’s
reduce phase. Therefore, the finish time of ji is

ftðiÞ ¼ maxðstðiÞ þ wmðiÞ
sm

; ftði� 1ÞÞ þ wrðiÞ
sr

. Finally, the varia-

bles Opt SM and Opt MS keep track of the optimal value
of sm and the corresponding makespan (lines 9–10), and
the algorithm returns Opt SM and S �Opt SM as the val-
ues for sm and sr at the end. The time complexity of the
algorithm is OðS � nÞ.

Algorithm 1. Static Slot Configuration

1: for sm ¼ 1 to S do
2: sr ¼ S � sm
3: for i ¼ 1 to n do
4: wmðiÞ ¼ nmðiÞ � tmðiÞ
5: wrðiÞ ¼ nrðiÞ � trðiÞ
6: for i ¼ 1 to n do
7: stðiÞ ¼ stði� 1Þ þ wmði�1Þ

sm
8: ftðiÞ ¼ maxðstðiÞ þ wm ðiÞ

sm
; ftði� 1ÞÞ þ wrðiÞ

sr
9: if ftðnÞ < Opt MS then
10: Opt MS ¼ ftðnÞ; Opt SM ¼ sm
11: return Opt SM and S �Opt SM

4 DYNAMIC SLOT CONFIGURATION UNDER

HOMOGENEOUS ENVIRONMENTS

As discussed in Section 2, the default Hadoop cluster uses
static slot configuration and does not perform well for

varying workloads. The inappropriate setting of sm and sr
may lead to extra overhead because of the following two
cases:

1) If job ji’s map phase is completed later than job ji�1’s
reduce phase, then the reduce slots will be idle for
the interval period of ðstðiÞ þ wmðiÞÞ � ftði� 1Þ, see
Fig. 4a;

2) If job ji’s map phase is completed earlier than the job
ji�1’s reduce phase, then ji’s reduce tasks have to
wait for a period of ftði� 1Þ � ðstðiÞ þ wmðiÞÞ until
reduce slots are released by ji�1, see Fig. 4b.

In this section, we present our solutions that dynamically
allocate the slots to map and reduce tasks during the execu-
tion of jobs. The architecture of our design is shown in
Fig. 5. In dynamic slot configuration, when one slot becomes
available upon the completion of a map or reduce task, the
Hadoop system will re-assign a map or reduce task to the
slot based on the current optimal values of sm and sr. There
are totally

P
i2½1;n�ðnmðiÞ þ nrðiÞÞ tasks and at the end of

each task, Hadoop needs to decide the role of the available
slot (either a map slot or a reduce slot). In this setting, there-
fore, we cannot enumerate all the possible values of sm and

sr (i.e., 2
P

i
ðnmðiÞþnrðiÞÞ combinations) as in Algorithm 1.

Instead, we modify our objective in the dynamic slot config-
uration as there is no closed-form expression of the
makespan.

Our goal now is, for the two concurrently running jobs
(one in map phase and the other in reduce phase), to mini-
mize the completion time of these two phases. Our intuition
is to eliminate the two undesired cases mentioned above by
aligning the completion of ji’s map phase and ji�1’s reduce
phase, see Fig. 4c. Briefly, we use the slot assignment as a
tunable knob to change the level of parallelism of map or
reduce tasks. When we assign more map slots, map tasks
obtain more system resources and could be finished faster,

Fig. 4. Illustration of aligning the map and reduce phases. (a) and (b) are
the two undesired cases mentioned above, and our goal is to achieve
(c).

Fig. 5. The architecture overview of our design. The shade rectangles
indicate our new/modified components in Hadoop.

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 347

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

and vice versa for reduce tasks. In the rest of this section, we
first present our basic solution with the prior knowledge of
job workload. Then, we describe how to estimate the work-
load in practice when it is not available. In addition, we
present a feedback control-based solution to provide more
accurate estimation of the workload. Finally, we discuss the
design of task scheduler in compliance with our solution.

4.1 Basic Sketch With Prior Knowledge of Workload

If the workload information is available, at the end of a task,
Hadoop can obtain the value of the remaining workload for
both map and reduce phases. Intuitively, we should assign
more slots (resources) to the task type that has heavier
remaining workload. Consider ji and ji�1 are two active
jobs and ji�1 is in reduce phase while ji is in map phase. At
the end of a task, we can get the number of remaining map
tasks of ji and remaining reduce tasks of ji�1, indicated by
n0mðiÞ and n0rði� 1Þ. Let w0mðiÞ and w0rði� 1Þ represent the
remaining workload of ji’s map phase and ji�1’s reduce
phase, we have:

w0mðiÞ ¼ n0mðiÞ � tmðiÞ; w0rði� 1Þ ¼ n0rði� 1Þ � trði� 1Þ: (2)

To align the completions of these two phases, the best
parameters should satisfy the following condition:

n0mðiÞ
sm
� tmðiÞ ¼ n0rði�1Þ

sr
� trði� 1Þ) wmðiÞ0

sm
¼ wrði�1Þ0

sr
: (3)

Therefore, the number of map and reduce slots should be
proportional to their remaining workloads as shown in

sm ¼ w0mðiÞ
w0mðiÞ þ w0rði� 1Þ � S

� �
; (4)

sr ¼ S � sm; (5)

where sm and sr represent the target numbers of map and
reduce slots respectively, and S is the total number of slots
in the cluster which is configured based on system capacity.

Furthermore, we introduce the upper bound shm and the

lower bound slm for the map slots assignment. When the
estimated value of sm exceeds the bounds, we use the bound

value as the new sm value instead. In our design, slm is set to
be the number of nodes in the cluster (k) such that there is
at least one map slot on each node at any time. Similarly,

shm is set to be equal to S � slm such that the reduce slots
number in each node is always greater than or equal to 1.
When a map or reduce task is finished, one slot becomes
available. The Hadoop system calculates the values of sm
and sr according to Eqs. (4) and (5). If the current map slots
are fewer than sm, then the available slot will become a map
slot and serve a map task. Otherwise, it turns to a reduce
slot. With this setting, the current map and reduce phases
could finish at approximately the same time with a high sys-
tem resource utilization.

4.2 Workload Estimation

Our solution proposed above depends on prior knowledge
of workload information. In practice, workload can be
derived from job profiles, training phase, or other empirical
settings. In some applications, however, workload informa-
tion may not be available or accurate. In this subsection, we

present a method that estimates the workload during the
job execution without any prior knowledge.

We use w0m and w0r to represent the remaining workload
of a map or reduce phase, i.e., the summation of execution
time of the unfinished map or reduce tasks. Note that we
only track the map/reduce workloads of running jobs, but
not the jobs waiting in the queue. Basically, the workload is
calculated as the multiplication of the number of remaining
tasks and the average task execution time of a job. Specifi-
cally, when a map or reduce task is finished, the current
workload information needs to be updated, as shown in
Algorithm 2, where n0mðiÞ/ n0rðiÞ is the number of unfinished

map/reduce tasks of job ji, and tmðiÞ/ trðiÞ means the aver-
age execution time of finished map/reduce tasks from ji.
Note that the execution time of each finished task is already
collected and reported to the JobTracker in current Hadoop
systems. In addition, we use the Welford’s one pass algo-
rithm to calculate the average of task execution times, which
incurs very low overheads on both time and memory space.

Algorithm 2.Workload Information Collector

if a map task of job ji is finished then
update the average execution time of a map task tmðiÞ
w0mðiÞ ¼ tmðiÞ � n0mðiÞ

if a reduce task of job ji is finished then
update the average execution time of a reduce task trðiÞ
w0rðiÞ ¼ trðiÞ � n0rðiÞ

4.3 Feedback Control-Based Workload Estimation

Theworkload estimation scheme introduced in previous sec-
tion works well under homogeneous system with fixed slots
configuration. Under this case, all tasks from a job have simi-
lar execution time since they are processing the same amount
of data with the same resource assignment. In our system
design, however, the slots assignment is dynamically
changed, which affects the per task execution time in prac-
tice. Assigning more slots to one type of tasks may cause the
contention on a particular system resource and lead to an
increased execution time of each following task in the same
type. For example, in “Case 2” described in Section 2, when
we use 1 map slot on each node, the average execution time
of a map task is 18.5 sec. When we increase the number of
map slots per node to 2, the average execution time of a map
task becomes 23.1 sec with a 25 percent increase.

To overcome this issue, we have designed a feedback
control based mechanism to tune the slots assignment.
Under this mechanism, the slots assignment, sm and sr, is
first calculated through Eqs. (4) and (5). An additional rou-
tine is introduced to periodically update the workload infor-
mation based on newly captured average task execution
times. If the workloads have changed, then the slots assign-
ment will also be updated according to

sm ¼ sm þ a � w0m
w0m þ w0r

� wm

wm þ wr

� �
� S

� �
; (6)

sr ¼ S � sm: (7)

When the new estimated workloads, i.e., w0m and w0r, dif-
fer from the previous estimation, an integral gain parameter

348 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

a is used to control the new assignment of slots based on the
new estimation. The Hadoop system will iteratively calcu-
late sm and sr (Eqs. (6) and (7)) until there is no change on
these two parameters. The value of a is set to be 1.2 in our
system such that the slots assignment could converge
quickly.

4.4 Slot Assigner

The task assignment in Hadoop works in a heartbeat fash-
ion: the TaskTrackers report slots occupation situation to the
JobTracker with heartbeat messages; and the JobTracker
selects tasks from the queue and assigns them to free slots.
There are two new problems need to be addressed when
assigning tasks under TuMM. First, slots of each type should
be evenly distributed across the slave nodes. For example,
when we have a new slot assignment sm ¼ 5; sr ¼ 7 in a clus-
ter with two slave nodes, a 2:3/4:3 map/reduce slots distri-
bution is better than the 1:4/5:2 map/reduce slots
distribution in case of resource contention. Second, the cur-
rently running tasks may stick with their slots and therefore
the new slot assignments may not be able to apply immedi-
ately. To address these problems, our slot assignment mod-
ule (SA) takes both the slots assignment calculated through
Eqs. (6) and (7) and the situation of currently running tasks
into consideration when assigning tasks.

The process of SA is shown in Algorithm 3. The SA first
calculates the map and reduce slot assignments of slave
node x (line 1), indicated by smðxÞ and srðxÞ, based on the
current values of sm and sr and the number of running tasks
in cluster. We use the floor function since slots assignments
on each node must be integers. Due to the flooring opera-
tion, the assigned slots (smðxÞ þ srðxÞ) on node x may be
fewer than the available slots (S=k). In lines 3-6, we increase
either smðxÞ or srðxÞ to compensate slot assignment. The
decision is based on the deficit of current map and reduce
slots (line 3), where sm/ sr represent our target assignment
and rtm/ rtr are the number of current running map/reduce
tasks. Eventually, we assign a task to the available slot in
lines 7-10. Similarly, the decision is made by comparing the
deficit of map and reduce tasks on node x, where smðxÞ/
srðxÞ are our target assignment and rtm(x)/ rtrðxÞ are the
numbers of running tasks.

Algorithm 3. Slot Assigner

0: Input:Number of slave nodes in cluster: k
Total numbers of running map/reduce tasks: rtm, rtr;

0: When receive heartbeat message from node x with the
number of running map/reduce tasks on node x: rtmðxÞ,
rtrðxÞ;

1: Initialize assignment of slots for node x:
smðxÞ bsm=kc; srðxÞ bsr=kc;

2: if ðsmðxÞ þ srðxÞÞ < S=k then
3: if ðsm � rtmÞ > ðsr � rtrÞ then
4: smðxÞ smðxÞ þ 1;
5: else
6: srðxÞ srðxÞ þ 1;
7: if ðsmðxÞ � rtmðxÞÞ > ðsrðxÞ � rtrðxÞÞ then
8: assign a map task to node x;
9: else
10: assign a reduce task to node x.

5 DYNAMIC SLOT CONFIGURATION UNDER

HETEROGENEOUS ENVIRONMENTS

In the previous sections, we discussed about the static and
dynamic slot configuration in a homogeneous Hadoop clus-
ter environment, where all servers have the same comput-
ing and memory capacities. However, heterogeneous
environments are fairly common in today’s cluster systems.
For example, system managers of a private data center
could always scale up their data center by adding new
physical machines. Therefore, physical machines with dif-
ferent models and different resource capacities can exist
simultaneously in a cluster.

When deploying a Hadoop cluster in such a heteroge-
neous environment, tasks from the same job may have dif-
ferent execution times when running on different nodes. In
this case, a task’s execution time highly depends on a partic-
ular node where that task is running. A job’s map tasks may
run faster on a node which has faster cpu per slot while its
reduce tasks may experience shorter execution times on the
other nodes that have more memory per slot. Estimating the
remaining workloads and deciding the slot configuration in
this heterogeneous Hadoop cluster thus becomes more
complex.

For example, consider a Hadoop job with seven map
tasks and a Hadoop cluster with two heterogeneous nodes
such that node 1 is faster than node 2. Consider a cluster
configured with four map slots in total, and one map task
of that job takes 1 second and 2 seconds to finish on node
1 and node 2, respectively. We note that in this heteroge-
neous Hadoop cluster, various slot configurations will
yield different performance (e.g., the execution time) of
this job. As illustrated in Fig. 6 case 1, the total execution
time of the map phase takes 3 seconds if we set 2 map slots
on node 1 and 2 map slot on node 2. However, the map
phase execution time can be improved to 3 seconds if we

Fig. 6. Illustrating a Hadoop job with seven map tasks running in a het-
erogeneous Hadoop cluster with two nodes and four map slots in total.
The map phase of that job run faster when we have (c) three map slots
on Node 1 and one map slot on Node 2, than when we have (a) two map
slot on Node 1 and two map slots on Node 2, and (b) one map slot on
Node 1 and three map slots on Node 2.

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 349

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

change the slot configures on these two nodes, i.e., three
map slot on node 1 and one map slots on node 2. This situ-
ation indicates that it is harder to predict the time needed
to finish the map phase or reduce phase in the heteroge-
neous environment, and evenly distribute the map (or
reduce) slot assignments across the cluster will no longer
work well.

We thus argue that the centralized method (i.e., the algo-
rithms described in Section 4 for a homogeneous Hadoop
cluster) which utilizes the overall workload information to
set the slot assignments over the entire cluster does not
work well any more when the nodes in the cluster become
heterogenous. Motivated by this, we present in this section
a new version of TuMM, named H_TuMM, which dynami-
cally sets the slot configurations for each node in a heteroge-
neous Hadoop cluster in order to reduce the makespan of
Hadoop jobs.

5.1 Problem Formulation

The problem of finding the optimal slot assignment to map
and reduce tasks in a heterogeneous Hadoop cluster that
aligns the current running map and reduce workloads and
minimizes the time required to finish current map and
reduce workloads could be formulated as a linear program-
ming problem as follows:

Minimize max fvim � timg; 8i 2 I; (8)

subject to : sim þ sir ¼ Si; 8i 2 I; (9)

X
vim � sim >¼ n0m; 8i 2 I; (10)

X
vir � sir >¼ n0r; 8i 2 I; (11)

ðvjm � 1Þ � tjm <¼ vim � tim;
8i; j 2 I; if tim < tjm;

(12)

vim � tim <¼ �
vjm þ 1

� � tjm;
8i; j 2 I; if tim < tjm:

(13)

ðvjr � 1Þ � tjr <¼ vir � tir;
8i; j 2 I; if tir < tjr;

(14)

vir � tir <¼ �
vjr þ 1

� � tjr;
8i; j 2 I; if tir < tjr:

(15)

ðvjr � 1Þ � tjr <¼ vim � tim;
8i; j 2 I; if tim < tjr;

(16)

vim � tim <¼ �
vjr þ 1

� � tjr;
8i; j 2 I; if tim < tjr;

(17)

where I represents the set of nodes in the cluster, tim=t
i
r

represents the average map/reduce task execution time
on node i, and n0m=n

0
r represents the remaining unas-

signed map/reduce tasks of jobs that are currently run-

ning under their map/reduce phases. Additionally, vim=v
i
r

denotes the waves of map/reduce tasks that have to run
on node i before the finish time of current map/reduce

phase, sim=s
i
r represents the optimal slot assignment to

map/reduce on node i, and Si represents the constraint
of total available slot number of node i. The target is to
minimize the finish time of the current map phase under
a set of constraints: Eq. (9) states that the slots assigned to
map or reduce tasks on each node should not exceed the
pre-defined slot constraint of that particular node;
Eqs. (10) and (11) state that all the remaining tasks of cur-
rent running jobs need to be assigned across the cluster;
Eqs. (12) and (13) state that the difference between the
times each node takes to execute its assigned map tasks
should not exceed the execution time of one task (this
constraint is decided by the nature of the Hadoop sched-
uler); Eqs. (14) and (15), similarly, state that the time each
node takes to execute its assigned reduce tasks should
be roughly the same; and Eqs. (16) and (17) state that
the finish time of map and reduce workloads that are
dispatched to each node should also be aligned to avoid
slot idleness.

However, it is quite time consuming to solve the above
problem especially when the number of nodes in a Hadoop
cluster is large. In order to make decisions for slot configu-
rations instantly when the workloads change, we instead
present a new algorithm which solves the problem by heu-
ristically assigning slots for map and reduce tasks on each
node in a heterogeneous Hadoop cluster.

5.2 Algorithm Design: H_TuMM

H_TuMM shares the similar idea of TuMM, i.e., dynami-
cally assign slots to map and reduce tasks to align the
process of map and reduce phase based on the collected
workload information. The key difference of H_TuMM is
to set the slot configurations for each node individually in
a heterogeneous cluster, i.e., each of those nodes will have
different slot assignment ratio between map and reduce
tasks.

To accomplish it, H_TuMM collects the workload
information on the entire cluster and on each individual
node as well: when a map/reduce task is finished on
node i, the workload collector updates (1) the average

execution time of map/reduce tasks, i.e., tm=tr; and
(2) the average execution of map/reduce tasks that ran

on node i, i.e., tim=t
i
r.

Based on the collected workload information, H_TuMM
performs slot assignment for each node as shown in
Algorithm 4. Once a slot in node i becomes available,
H_TuMM first updates the slot assignments to map tasks

(sim) and reduce tasks (sir) on node i. Such that the ratio of

slot assignments (i.e., sim=s
i
r) is equal to the ratio of remain-

ing map and reduce workloads (i.e.,
tim�n0m
tir�n0r

, see lines 1-2 in

Algorithm 4. Therefore, map and reduce phases running on
that node are aligned. Similar to Algorithm 3, floor function
is used to make sure that slots assignments are all integers.
If there is one remaining slot, in this case, the free slot will
be assigned to a map (resp. reduce) task if map (resp.
reduce) tasks run relatively faster on this node compared to
the average execution time across the entire cluster in order

350 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

to improve the efficiency, see lines 3-7 in Algorithm 4. When
the slot assignment on the specific node is determined, the
JobTracker can assign tasks based on the new slot configura-
tion and the number of currently running tasks on that node

(i.e., rtim and rtir), see line 8-11 in Algorithm 4.

Algorithm 4. Slot Assignment for Node i

0: Input:Average task execution time on node i and across the
cluster, and the remaining task number of current running
jobs;

0: WhenNode i has free slots and ask for new task assignment
through the heartbeatmessage;

1: sim bSi � tim � n0m
tim�n0m þ tir�n0r

c;

2: sir bSi � tir � n0r
tim�n0m þ tir�n0r

c;

3: if sim þ sir < Si then

4: if
�tim
�tm

> tir
tr
then

5: sir Si � sim;
6: else
7: sim Si � sir.
8: if ðsim � rtimÞ > ðsir � rtirÞ then
9: assign a map task to node i;
10: else
11: assign a reduce task to node i;

6 EVALUATION

6.1 Experimental Setup and Workloads

6.1.1 Implementation

We implemented our new scheme (for homogeneous envi-
ronment and heterogeneous environment) on the top of
Hadoop Version 0.20.2. First, we added two new modules
into the JobTracker: theWorkload Monitor that is responsible
to collect past workload information such as execution
times of completed tasks and to estimate the workloads of
currently running map and reduce tasks and the Slot
Assigner which uses the estimated information received
from WM to adjust the slot ratio between map and reduce
for each slave node. The JobTracker with these additional
modules will then assign tasks to a slave node based on the
adjusted slot ratio and the current slot status at that particu-
lar node. In addition, we modified the TaskTracker as well as
the JvmManager that runs at each slave node to check the
number of individual map and reduce tasks running on
that node based on the new slot ratio received from the Job-
Tracker. The architecture overview of this new Hadoop
framework is shown in Fig. 5.

6.1.2 Benchmarks

We choose five representative data-analyzingHadoop bench-
marks from PurdueMapReduce Benchmarks Suite [12]:

� Inverted Index: Take text documents as input and gen-
erate word to document indexing.

� Histogram Rating: Take the movie rating data as input
and calculate a histogram of input data.

� Word Count: Take text documents as input and count
the occurrence of each word.

� Classification: Take the movie rating data as input
and classify the movies into predefined clusters.

� Grep: Take text documents as input and search for a
pattern in the files.

In addition, we use different sizes of movie rating data
[12] that consists of user ranking information and wiki cate-
gory links data [13] that includes the information about
wiki page categories, as the input to the above five bench-
marks. A 10 GB movie rating data and a 7 GB wiki category
data are used as input for experiments in the homogeneous
cluster. And experiments under the heterogeneous cluster
use a 8 GB movie rating data and a 8 GB wiki category data
as inputs.

We further choose TPC-H [14] queries expressed as Pig
programs [15] to validate the performance of H_TuMM
under heterogeneous environments. A data generator in
TPC-H can be used to create a database with the customized
size. In such a database, there are totally eight tables, i.e.,
customer, supplier, orders, lineitem, part, partsupp, nation, and
region. In our experiments, we generated a database with
4G data in total and selected three queries from the TPC-H
benchmark to evaluate the performance of H_TuMM.

� TPCH-Q15. This query finds the supplier who con-
tributed the most to the overall revenue for parts
shipped during a given quarter of a given year.

� TPCH-Q16. This query counts the number of suppli-
ers who can supply parts that satisfy a particular
customer’s requirements.

� TPCH-Q18. This query finds a list of the top 100 cus-
tomers who have ever placed large quantity orders.
The query lists the customer name, customer key,
the order key, date and total price and the quantity
for the order.

6.2 Evaluation in Homogeneous Environment

In this section, we evaluate the performance of TuMM in
terms of the makespan of a batch of MapReduce jobs in a
homogeneous environment. we launch a Hadoop cluster in
the Amazon EC2 environment which consists of 5 m1.xlarge
Amazon EC2 instances. Specifically, we have one master
node and four slave nodes in the cluster. The number of
slots which can be available on each slave node is set as 4
since an m1.xlarge instance at Amazon EC2 has 4 virtual
cores.

We first consider simple workloads which consist of jobs
from a single MapReduce benchmark and then validate the
robustness of our approach with a mixed workload that is a
combination of MapReduce benchmarks from Purdue Map-
Reduce Benchmarks Suite.

6.2.1 Simple Workloads

We here conduct a set of experiments such that in each
experiment three Hadoop jobs from one of the above bench-
marks (see Section 6.1.2) are waiting for service. We remark
that such a simple workload is often found in real systems
as the same Hadoop jobs may be executed repeatedly to
process similar or different input data sets. In our

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 351

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

experiments, three Hadoop jobs use the same data set as the
input. Furthermore, as the comparisons, we evaluate the
performance under the static slot ratios for map and reduce.
Since all the slave nodes normally have the same slot ratio
in current Hadoop implementations, With our setting in the
evaluation (i.e., total number of slots per node is 4), there
are three static configuration alternatives, i.e., 1:3, 2:2 and
3:1, for a Hadoop cluster. So we enumerate all these three
possible settings for the comparison with our solution.

Fig. 7 shows makespans (i.e., the completion lengths) of a
given set under different slot configurations. We first
observe that the performance varies a lot under three static
slot settings. For example, the Inverted Index jobs experience
the fastest makespan when the slot ratio is equal to 1:3. In
contrast, the Histogram Rating jobs achieve better perfor-
mance when we assign more slots to their map tasks, e.g.,
with slot ratio of 3:1. We also observe that TuMM always
yields the best performance, i.e., the shortest makespan, for
all the five Hadoop benchmarks. We interpret this effect as
the result of dynamic slot ratio adjustments enabled by
TuMM.

Compared to the slot ratio of 2:2, our approach in aver-
age achieves about 20 percent relative improvement in the
makespan. Moreover, such improvement becomes more
visible when the workloads of map and reduce tasks
become more unbalanced. For example, the makespan of
the Inverted Index jobs is reduced by 28 percent where these
jobs have their reduce phases longer than their map phases.

6.2.2 Mixed Workloads

In the previous experiments, each workload only contains
jobs from the same benchmark. Now, we consider a more
complex workload, which mixes jobs from different
Hadoop benchmarks. Reducing the makespan for such a
mixed workload thus becomes non-trivial. One solution to
tackle this problem is to shuffle the execution order of these
jobs. For example, the classic Johnson’s algorithm [16] that
was proposed for building an optimal two-stage job sched-
ule, could be applied to process a set of Hadoop jobs and
minimize the makespan of a given set as well. However,

this algorithm needs to assume a priori knowledge of the
exact execution times of each job’s map and reduce phases,
which unfortunately limits the adoption of this algorithm in
real Hadoop systems. Moreover, for some cases, it may not
be feasible to change the execution order of jobs, especially
when there exists dependency among jobs or some of them
have high priority to be processed first.

To address the above issues, our solution leverages the
knowledge of the completed tasks to estimate the execution
times of the currently running tasks and reduces the make-
span of a set of jobs by dynamically adjusting the slot
assignments for map and reduce tasks. As a result, TuMM
does not need to change the execution order of jobs and
does not need to know the exact task execution times in
advance, either.

We generate the mixed workload for our experiments by
randomly choosing 10 jobs from five different Hadoop
benchmarks. In order to investigate the impact of job execu-
tion order, we also consider three different execution
sequences, including (1) a sequence generated by Johnson’s
algorithm which can be considered as the optimal case in
terms of the makespan; (2) a sequence that is inverse to the
first one and can be considered as the worst case; and (3) a
sequence that is random. Similarly, we evaluate the perfor-
mance (i.e., makespan) under TuMM and three static slot
configurations.

Fig. 9 shows the makespans of the 10 jobs in the mixed
workload. We first observe that among three static settings,
the slot ratio of 2:2 always achieves the best performance
under three different execution orders. This is because the
overall workloads of map tasks and reduce tasks from the
10 jobs are well balanced. We also notice that with a fixed
number of slots per node, different job execution orders
could yield different makespans. While our solution always
achieves the best performance and the impact of execution
sequence on our solution’s performance becomes less visi-
ble. This means that no matter what the execution order is,
TuMM can always serve the jobs with the shortest make-
spans. That is, our approach allows to improve the perfor-
mance in terms of makespan without changing the
execution order of jobs.

Fig. 7. Makespans of five Hadoop applications under TuMM and three static slot configurations.

352 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

To better understand how TuMM uses the slot ratio as a
tunable knob to improve the makespan, we further plot the
task execution times for each job as well as the transient slot
assignments in Fig. 8, where the plots in the first row depict
the running period of each task from the 10 jobs while the
plots in the second row illustrate how the slot assignments
change across time. As shown in Fig. 8, TuMM dynamically
adjusts the slot assignments to map and reduce tasks based
on the estimated workload information. For example, in the
first 1,200 seconds of Fig. 8-(2), TuMM attempts to assign
more slots to reduce tasks. Then, in the later 1,200 seconds,
TuMM turns to allow more available map slots on each
node. This is because the Johnson’s algorithm shuffles the
order of 10 jobs such that all the reduce intensive jobs such
as Inverted Index and Grep run before the map intensive jobs,
e.g., Histogram Rating and Classification. The only exception
is the first 100 seconds where most of the slots are assigned
to map tasks even though the running job actually has
reduce intensive workloads. That is because TuMM does
not consider the reduce workloads of this job in the first 100
seconds until its map tasks are finished. Fig. 8-(1) shows the
corresponding task execution times under TuMM. It is

obvious that each job’s reduce phase successfully overlaps
with the map phase of the following job and the makespan
of 10 jobs is then shortened compared to the static settings.

In summary, TuMM achieves non-negligible improve-
ments in makespan under both simple workloads andmixed
workloads. By leveraging the history information, our solu-
tion accurately captures the changes in map and reduce
workloads and adapts to such changes by adjusting the slot
assignments for these two types of tasks. Furthermore, dif-
ferent job execution orders do not affect TuMM’s perfor-
mance. That is, our solution can still reduce the makespan
without changing the execution order of a given set of jobs.

6.3 Evaluation in Heterogeneous Environment

In this section, we evaluate the performance of H_TuMM in
the heterogeneous environments. The mixed workloads
introduced in previous section and the TPC-H benchmarks
are used to validate the effectiveness and robustness of our
scheme.

We build up two heterogeneous Hadoop clusters in the
Amazon EC2 environment, i.e., Heter1 and Heter2. The
detailed cluster configurations are shown in Table 3.

Fig. 9. Makespans of a mixed workload under TuMM and three static slot configurations. Three execution orders are also considered: (a) a sequence
follows Johnson’s algorithm, (b) a sequence with reversed order of Johnson’s algorithm, and (c) a random sequence.

Fig. 8. Illustrating task execution times and slot assignments across time under TuMM, where the job execution sequence is (a) generated by
Johnson’s algorithm; (b) inverse to the first one; and (c) random. In the plots at the second row, black (resp. gray) areas represent the number of
available map (resp. reduce) slots in the cluster.

TABLE 3
Cluster Configuration of Two Heterogeneous Clusters, i.e., Heter1 and Heter2

Cluster Instance Type Number of Slave Nodes Number of Slots Per Node Average Resources Per Slot

Map Slots Reduce Slots Compute Units Memory

m1.xlarge 3 1 2 2.67 5 GB
Heter1 m1.xlarge 3 2 2 2 3.75 GB

m1.large 3 2 1 1.33 2.5 GB

m1.xlarge 3 2 2 2 3.75 GB
Heter2 c1.xlarge 3 2 2 5 1.75 GB

m2.xlarge 3 2 2 1.63 4.25 GB

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 353

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

Specifically, each cluster has one m1.xlarge type master
node and nine slave nodes. There are three different groups
of slave nodes in each cluster, and slots in different groups
have different physical resource capacities. We list the
approximate number of compute units and memory sizes
that shared by one slot in different node group in Table 3. It
is clear that slots have equally scaled cpu and memory
capacities in different node groups of Heter1, and skewed
cpu and memory capacity ratios in different node groups of
Heter2.

6.3.1 Mixed Workloads

We first conduct experiments using the mixed workload as
described in Section 6.2.2, where the size of input data is
8 GB and the data block size is set to 64MB such that each job
has 128 map tasks. Additionally, the number of reduce tasks
from each job is set to be 150 and 80 for the Inverted Index
benchmark and the remaining benchmarks, respectively.

In order to investigate the impact of heterogeneous envi-
ronments on Hadoop performance, we measured the maxi-
mum and minimum task execution times for each job across
different slave nodes in Heter1 cluster. As shown in Table 4,
each job’s task execution times are no longer uniform, for
example, the slowest map task(s) of a Classification job could
almost run four times longer than the fastest one(s). We
interpret this effect by observing the variance of resource
capacity among the slots on different slave nodes.

Fig. 10 illustrates task execution details (i.e., the running
period of each task) of a batch of mixed benchmarks under

both FIFO and H_TuMM scheduling policies. Plots in the
left (resp. right) column show the results from Heter1 (resp.
Heter2) cluster. We observe that in both clusters, our new
H_TuMM policy dynamically change the slot assignment to
map and reduce tasks over time while keep the number of
total running tasks the same at any given time. Through
tunning the slot assignments, H_TuMM successfully aligns
each jobs reduce phase with the map phase of the following
job and thus avoids the waste of slot resources. As a result,
the makespan of 10 Hadoop jobs in the mixed workload
becomes shorter under H_TuMM than under FIFO.

Fig. 11 further depicts the number of map tasks that are
dispatched by H_TuMM to each node over time in Heter1
cluster. Clearly, our H_TuMM dynamically sets the slot con-
figurations for each node, such that the number of map
tasks running on each node varies over time and each node
is assigned with different number of map tasks (slots) at
each moment.

6.3.2 TPC-H Workloads

We now turn to the experiments which run the TPC-H
benchmark in the heterogeneous clusters. As described in
Section 6.1.2, we chose three different queries from TPC-H
query set. Each of the three queries consists of five sub
queries. A dependency chain exists between the sub queries
from the same query, i.e., each sub query could start only
after its precedent sub query completes. It follows that the
five sub queries form the same query are indeed submitted
and executed sequentially in the predefined order.

TABLE 4
Maximum and Minimum Task Execution Times (in Seconds) of

Each Job across Heter1 Cluster

Map Tasks Reduce Tasks

Benchmarks Min. Max. Min. Max.

Classification 6.5 24.1 9.5 15.9
Histogram Rating 8.5 24.8 9.7 25.5
Inverted Index 5.1 17.4 16.5 48.1
Word Count 11.5 31.4 12.6 25.2
Grep 6.7 25.1 12.7 29.5

Fig. 10. Task execution times of a batch of mixed benchmarks under (a) FIFO and (b) H_TuMM. The plots in the left (resp. right) column show the
results from Heter1 (resp. Heter2) cluster. There are in total 30 (resp. 36) slots across Heter1 (resp. Heter2) cluster, i.e., there are at most 30 (resp.
36) running tasks in Heter1 (resp. Heter2) cluster at any given time.

Fig. 11. Number of map tasks running on each node in Heter1 cluster
under H_TuMM policy.

354 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

Furthermore, the input data sizes of different sub queries
vary even in the same query. Therefore, each sub query has
different map task numbers. For example, in this set of
experiments, the first sub query of all the three queries has
the largest input data size and thus most map tasks are clus-
tered in the first few sub queries, while the following sub
queries have relatively small amount of map tasks.

We submit the three queries (i.e., TPCH-Q15, TPCH-Q16
and TPCH-Q18) to the cluster at the same time, such that
the sub queries of each query could interleave with each
other. The makespans of these three TPC-H queries in two
heterogeneous clusters (i.e., Heter1 and Heter2) are shown
in Table 5 and the execution details of these queries are fur-
ther plotted in Fig. 12. We observe that by dynamically
adjusting slot assignments on each node, H_TuMM
improves the performance (i.e., reducing the makespan) of
all the three TPC-H queries when compared to FIFO. Such
performance improvement can be consistently observed in
both two heterogeneous clusters. Fig. 12 further illustrates
that the map and reduce phases are well aligned under the
H_TuMM policy.

7 RELATED WORKS

An important direction for improving the performance of a
Hadoop system is job scheduling. The default FIFO sched-
uler does not work well in a shared cluster with multiple
users and a variety of jobs. Fair [17] and Capacity [18]
schedulers were proposed to ensure that each job can get a

proper share of the available resources; and Quincy [5]
addressed the scheduling problem with locality and fair-
ness constraints. Zaharia et al. [3] proposed a delay schedul-
ing to further improve the performance of the Fair
scheduler by increasing data locality. Verma et al. [4] intro-
duced a heuristic to minimize the makespan of a set of inde-
pendent MapReduce jobs by applying the classic Johnson’s
algorithm.

Another category of schedulers further consider user-
level goals while improving the performance. ARIA, a
deadline aware scheduler, was recently proposed in [6],
which always schedules a job with the earliest deadline and
uses the Lagrange’s method to find the minimum number
of slots for each job in order to meet the predefined dead-
line. Similarly, Polo et al. [7] estimated the task execution
times based on the average execution times of the com-
pleted tasks instead of the job profiles. Task execution times
were then used to calculate the number of slots that a job
needed to meet its deadline. Different deadline and locality
aware scheduling algorithms are evaluated with empirical
analysis for Hadoop system in [19]. Although these dead-
line aware schedulers support user-level goals, their techni-
ques are still based on static slot configurations, i.e., having
a fixed number of map slots and reduce slots per node
throughout the lifetime of a cluster.

Fine-grained resource aware management is another
important direction for improving performance in
Hadoop. RAS [10] leverages existing profiling information
to dynamically determine the number of job slots and
their placement in the cluster. The goal of this approach
is to maximize the resource utilization of the cluster and
to meet job completion time deadlines. More recently,
[11] introduces a local resource manager at each Task-
Tracker to detect task resource utilization and predict
task finish time, and a global resource manager at the Job-
Tracker to coordinate the resource assignments to each
task; and [9] addresses the cluster resource utilization
problem by developing a dynamic split model of resource
utilization. Our work is complementary to the above
techniques.

The Hadoop community recently released Next Genera-
tion MapReduce (YARN) [8], the latest architecture of

TABLE 5
Makespans of TPC-H Queries under FIFO and H_TuMM

in Two Heterogeneous Clusters

Cluster Query FIFO H_TuMM

Q15 523.6 465.0 (11.1 percent)
Heter1 Q16 564.1 495.3 (12.2 percent)

Q18 598.4 529.2 (11.5 percent)

Q15 452.0 397.7 (12.0 percent)
Heter2 Q16 491.9 437.1 (11.1 percent)

Q18 519.7 456.4 (12.4 percent)

The numbers in the parentheses are the relative improvements against
FIFO.

Fig. 12. Task execution times of three TPC-H queries under (a) FIFO and (b) H_TuMM. The plots in the left (resp. right) column show the results from
Heter1 (resp. Heter2) cluster. Different colors represent different sub queries.

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 355

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

Hadoop MapReduce, which replaces the fixed-size slot with
a resource container that works in a fine-grained resource
level. There is no longer map/reduce slots concept in
YARN system. Specifically, YARN users need to specify
requirements of cpu cores and memory size of each type of
tasks, such as map, reduce and application master. Task
assignment is then based on resource requirement of tasks
and the residual resources of slave nodes. Consequently,
resource management for YARN is quite different from the
schemes that we proposed in this paper. We investigate the
resource management problem in YARN system in our
work [20]. The main objective of this paper is to reduce the
completion length (i.e., makespan) of a set of MapReduce
jobs in slot based first generation Hadoop MapReduce
system.

8 CONCLUSION

In this paper, we presented a novel slot management
scheme, named TuMM, to enable dynamic slot configura-
tion in Hadoop. The main objective of TuMM is to
improve resource utilization and reduce the makespan of
multiple jobs. To meet this goal, the presented scheme
introduces two main components: Workload Monitor peri-
odically tracks the execution information of recently com-
pleted tasks and estimates the present workloads of map
and reduce tasks and Slot Assigner dynamically allocates
the slots to map and reduce tasks by leveraging the esti-
mated workload information. We further extended our
scheme to manage resources (slots) for heterogeneous
clusters. The new version of our scheme, named
H_TuMM, reduces the makespan of multiple jobs by sepa-
rately setting the slot assignments for the node in a hetero-
geneous cluster. We implemented TuMM and H_TuMM
on the top of Hadoop v0.20.2 and evaluated both schemes
by running representative MapReduce benchmarks and
TPC-H query sets in Amazon EC2 clusters. The experi-
mental results demonstrate up to 28 percent reduction in
the makespans and 20 percent increase in resource utiliza-
tions. The effectiveness and the robustness of our new slot
management schemes are validated under both homoge-
neous and heterogeneous cluster environments. In the
future, we will further investigate the optimal total slot
number configuration in the slot based Hadoop platform
as well as the resource management policy in next genera-
tion Hadoop YARN platforms.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation (NSF) grant (CNS-1251129), the AFOSR grant
(FA9550-14-1-0160), and the AWS in Education Research
Grant.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] Apache Hadoop. [Online]. Available: http://hadoop.apache.org/,
2015.

[3] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265–278.

[4] A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a
coin: Optimizing the schedule of mapreduce jobs to minimize
their makespan and improve cluster performance,” in Proc. Proc.
IEEE 20th Int. Symp. Model., Anal., Simul. Comput. Telecommun.,
Aug. 2012, pp. 11–18.

[5] M. Isard, Vijayan Prabhakaran, J. Currey, U. Wieder, K. Talwar,
and A. Goldberg, “Quincy: Fair scheduling for distributed com-
puting clusters,” in Proc. ACM SIGOPS 22nd Symp. Oper. Syst.
Principles, 2009, pp. 261–276.

[6] A. Verma, Ludmila Cherkasova, and R. H. Campbell, “ARIA:
Automatic resource inference and allocation for MapReduce envi-
ronments,” in Proc. 8th ACM Int. Conf. Auton. Comput., 2011,
pp. 235–244.

[7] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad�e, M. Steinder,
and I. Whalley, “Performance-driven task co-scheduling for Map-
Reduce environments,” in Proc. IEEE/IFIP Netw. Oper. Manag.
Symp., 2010, pp. 373–380.

[8] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino,
O. O’Malley, S. Radia, B. Reed, and E. Baldeschwieler, “Apache
Hadoop YARN: Yet another resource negotiator,” in Proc. 4th
Annu. Symp. Cloud Comput., ACM, 2013, p. 5.

[9] X. W. Wang, J. Zhang, H. M. Liao, and L. Zha, “Dynamic split
model of resource utilization in MapReduce,” in Proc. 2nd Int.
Workshop Data Intensive Comput. Clouds, 2011, pp. 21–30.

[10] J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguad�e, “Resource-aware adaptive scheduling
for mapreduce clusters,” in Proc. 12th ACM/IFIP/USENIX Int.
Conf. Middleware, 2011, pp. 187–207.

[11] B. Sharma, R. Prabhakar, S.-H. Lim, M. T. Kandemir, and C. R.
Das, “MROrchestrator: A fine-grained resource orchestration
framework for MapReduce clusters,” in Proc. IEEE 5th Int. Conf.
Cloud Comput., 2012, pp. 1–8.

[12] Purdue MapReduce Benchmarks Suite. [Online]. Available:
http://web.ics.purdue.edu/ ~fahmad/benchmarks.htm, 2015.

[13] Wiki data sets. [Online]. Available: http://dumps.wikimedia.
org/, 2015.

[14] TPC-H benchmark. [Online]. Available: http://www.tpc.org/
tpch/, 2015.

[15] TPC-H benchmark on pig. [Online]. Available: https://issues.
apache.org/jira/browse/PIG-2397, 2015.

[16] S. M. Johnson, “Optimal two- and three-stage production sched-
ules with setup times included,” Naval Res. Logistics Quart., vol. 1,
no. 1, pp. 61–68, 1954.

[17] M. Zaharia, D. Borthakur, J. S. Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Job scheduling for multi-user MapReduce clusters,”
Univ., California, Berkeley, CA, USA, Tech. Rep. UCB/EECS-
2009-55, Apr. 2009.

[18] Capacity scheduler. [Online]. Available: http://hadoop.apache.
org/common/docs/r1.0.0/capacity_scheduler.html, 2015.

[19] L. T. Phan, Z. Zhang, Q. Zheng, B. T. Loo, and I. Lee, “An empiri-
cal analysis of scheduling techniques for real-time cloud-based
data processing,” in Proc. IEEE Int. Conf. Service-Oriented Comput.
Appl., 2011, pp. 1–8.

[20] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi, “HaSTE: Hadoop
YARN scheduling based on task-dependency and resource-
demand,” in Proc. IEEE Int. Conf. Cloud Comput., 2014, pp. 184–191.

Yi Yao received the BS and MS degrees in
computer science from the Southeast Univer-
sity, China, in 2007 and 2010, respectively. He
is currently working toward the PhD degree at
the Department of Electrical and Computer
Engineering, Northeastern University, Boston,
Massachusetts. His current research interests
include resource management, scheduling, and
cloud computing.

356 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 5, NO. 2, APRIL-JUNE 2017

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

Jiayin Wang received the bachelor’s degree in
electrical engineering from Xidian University,
China, in 2005. She is currently working toward
the PhD degree at the Department of Computer
Science, University of Massachusetts Boston.
Her research interests include cloud computing
and wireless networks.

Bo Sheng received the PhD degree in computer
science from the College of William and Mary in
2010. He is currently an assistant professor at
the Department of Computer Science, University
of Massachusetts Boston. His research interests
include mobile computing, wireless networks,
security, and cloud computing.

Chiu C. Tan received the PhD degree from the
College of William and Mary in 2010. He is cur-
rently an assistant professor at the Department
of Computer and Information Sciences, Temple
University. His current research interests include
cloud computing security, smarthealth systems,
and wireless network security. He is also the
director for the NSF/DoD REU Site program at
Temple University.

Ningfang Mi received the BS degree from
Nanjing University, China, in 2000, the MS
degree from the University of Texas at Dallas,
Texas, in 2004, and the PhD degree in computer
science from the College of William and Mary,
Virginia, in 2009, all in computer science. She is
currently an assistant professor at the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts.
Her current research interests include perfor-
mance evaluation, capacity planning, resource

management, simulation, data center, and cloud computing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

YAO ET AL.: SELF-ADJUSTING SLOT CONFIGURATIONS FOR HOMOGENEOUS AND HETEROGENEOUS HADOOP CLUSTERS 357

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:29:58 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

