1158

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

New Scheduling Algorithms for Improving
Performance and Resource Utilization
in Hadoop YARN Clusters

YiYao, Han Gao

, Jiayin Wang

, Bo Sheng, and Ningfang Mi

Abstract—The MapReduce framework has become the defacto scheme for scalable semi-structured and un-structured data
processing in recent years. The Hadoop ecosystem has evolved into its second generation, Hadoop YARN, which adopts fine-grained
resource management schemes for job scheduling. Nowadays, fairness and efficiency are two main concerns in YARN resource
management because resources in YARN are shared and contended by multiple applications. However, the current scheduling in
YARN does not yield the optimal resource arrangement, unnecessarily causing idle resources and inefficient scheduling. It omits the
dependency between tasks which is extremely crucial for the efficiency of resource utilization as well as heterogeneous job features in
real application environments. We thus propose a new YARN scheduler which can effectively reduce the makespan (i.e., the total
execution time) of a batch of MapReduce jobs in Hadoop YARN clusters by leveraging the information of requested resources,
resource capacities and dependency between tasks. For accommodating heterogeneity in MapReduce jobs, we also extend our
scheduler by further considering the job iteration information in the scheduling decisions. We implemented the new scheduling
algorithm as a pluggable scheduler in YARN and evaluated it with a set of classic MapReduce benchmarks. The experimental results
demonstrate that our YARN scheduler effectively reduces the makespans and improves resource utilizations.

Index Terms—MapReduce, Resource Management, YARN, Data Processing

1 INTRODUCTION

IN the age of data explosion, an efficient parallel data proc-
essing scheme is essential to deal with massive volumes
of data. MapReduce, proposed by Google [1], has soon
emerged as a leading paradigm for big data processing due
to its scalability and reliability. Its open source implementa-
tion, Apache Hadoop, has also been widely adopted in both
academia and industry for big data processing and informa-
tion analysis. Nowadays, the Hadoop ecosystem has
evolved into its second generation, Hadoop YARN, which
adopts fine-grained resource management schemes for job
scheduling. When MapReduce is getting popular, fairness
and efficiency become two main concerns in YARN because
resources are shared and contended especially when a
YARN cluster is serving a large set of jobs. However, the
current scheduling in YARN does not yield the optimal
resource arrangement, unnecessarily causing idle resources
and inefficient scheduling. Given a limited set of resources

e Y. Yao, H. Gao, and N. Mi are with the Department of Electrical and
Computer Engineering, Northeastern University, 360 Huntington Ave.,
Boston, MA 02115 USA. E-mail: {yyao, hgao, ningfang}@ece.neu.edu.

o |. Wang is with the Department of Computer Science, Montclair State
University, 1 Normal Ave, Montclair, N 07043 USA.

E-mail: jiayin.wang@montclair.edu.

e B. Sheng is with the Department of Computer Science, University of
Massachusetts Boston, 100 Morrissey Boulevard, Boston, MA 02125
USA. E-mail: shengbo@cs.umb.edu.

Manuscript received 30 Mar. 2016; revised 29 July 2018; accepted 19 Jan.
2019. Date of publication 23 Jan. 2019, date of current version 3 Sept. 2021.
(Corresponding author: Han Gao.)

Recommended for acceptance by P. B. Gibbons.

Digital Object Identifier no. 10.1109/TCC.2019.2894779

in the cluster, when a batch of MapReduce jobs are
launched, how to schedule their executions, i.e., allocating
resources to jobs, becomes crucial to the performance. With-
out an appropriate management, the available resources
may not be efficiently utilized leading to a prolonged finish
time of the jobs.

This paper aims to develop efficient scheduling schemes
in YARN clusters to improve resource utilization and
reduce the makespan (i.e., the completion time) of a given
set of jobs. The current widely adopted scheduling in
YARN, such as FIFO scheduler, however, does not con-
sider the optimal arrangement of cluster resources. For
example, while it is desired to run cpu intensive jobs and
memory intensive jobs simultaneously, the FIFO scheduler
forces jobs to run sequentially which leads to unnecessary
resource idleness. Moreover, the current resource sharing
based schedulers, such as Fair and Capacity scheduler,
omit the dependency between tasks. However, such
dependency is crucial for the efficiency of resource utiliza-
tion when we have multiple jobs running concurrently in
cluster.

Therefore, in this work, we present HaSTE, a new
Hadoop YARN scheduling algorithm based on task-depen-
dency' and resource-demand. HaSTE aims to efficiently uti-
lize the resources for scheduling map/reduce tasks in
Hadoop YARN and improve the makespan of MapReduce
jobs. Specifically, our solution dynamically schedules tasks

1.In this work, we refer to task dependency as the data flow
between phases in MapReduce.

2168-7161 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
mailto:
mailto:
mailto:

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

for execution when resources become available based on
each task’s fitness and urgency. Fitness essentially refers to
the gap between the resource demand of tasks and the
residual resource capacity of nodes. This metric has been
commonly considered in other resource allocation problem
in the literature. The second metric, urgency, is designed to
quantify the “importance” of a task in the entire process. It
allows us to prioritize all the tasks from different jobs and
more importantly, catches the dependency between tasks.

We further extend our new scheduling algorithm to
dynamically determine the execution of tasks from multi-
stage (or iterative) data processing applications. Nowadays,
co-deploying multiple data processing frameworks (e.g.,
Spark [2], Storm [3]) in the same YARN cluster becomes
a common practice. Many of these frameworks support
multi-stage data processing applications. For example,
MapReduce/Hadoop [1], [4] represents a typical two-stage
process. Chained MapReduce jobs for SQL-on-Hadoop
queries [2], [5], [6] and iterative machine learning algo-
rithms (e.g., pagerank [7], k-means [8]) are also representa-
tive multi-stage applications. We found that without
considering the iterative feature in the scheduling, the clus-
ter resources cannot be efficiently utilized for executing iter-
ative jobs, which thus incurs a long tail in the makespan.
Therefore, we present an extended version of our new algo-
rithm, named HaSTE-A, to further accommodate heteroge-
neous workloads with both iterative and non-iterative jobs.
HaSTE-A differentiates iterative jobs from non-iterative
ones by considering the third metric (i.e., alignment) to cap-
ture the number of iterations in an application and the run-
time progress of iteration jobs. Coupled with fitness and
urgency, HaSTE-A enforces both iterative and non-iterative
jobs in a great alignment of their finished times such that
the long tail in the makespan that was caused due to itera-
tive jobs can be effectively reduced.

The rest of this paper is organized as follows. In Section 2,
we briefly introduce the background of scheduling problem
and existing scheduling policies in YARN. We formulate
the scheduling problem of YARN system as resource con-
strained scheduling and propose our new scheduling policy
HaSTE in Section 3. We present the extension of our sched-
uling algorithm to support iterative jobs in Section 4. The
evaluation results of our scheduling algorithms are pre-
sented in Section 5. We describe the related works in
Section 6 and conclude in Section 7.

2 Hapooprp YARN SCHEDULERS

In this section, we briefly introduce the scheduling process
in a Hadoop YARN system and the schedulers that are cur-
rently used in YARN. A Hadoop YARN system consists of
multiple worker nodes and the resources are managed by a
centralized ResourceManager routine and multiple distrib-
uted NodeManager routines each running on a worker
node. Compared to a classic Hadoop system, YARN fea-
tures the following major differences in the design. First,
unlike the JobTracker in Hadoop MapReduce, the Resource-
Manager no longer monitors the running status of each job.
Instead, it launches an ApplicationMaster for each job on a
worker node. Such an ApplicationMaster then generates
resource requests, negotiates resources from the scheduler

1159

of ResourceManager and works with the NodeManagers to
execute and monitor the corresponding job’s map and
reduce tasks. Furthermore, Hadoop YARN abandons the
coarse-grained slot based resource management used in the
old versions, but instead manages the system resources in a
fine-grained manner such that each NodeManager needs to
report the available memory and cpu cores of their worker
node and each ApplicationMaster needs to specify the
memory and cpu core demands for its tasks. The scheduler
in Hadoop YARN will then allocate available resources to
the waiting tasks based on a particular scheduling policy.

Each task request is a tuple <p,7,m,l,y>, where p rep-
resents the priority of a task, 7 gives the resource require-
ment vector of a task, m shows the total number of tasks
which have the same resource requirements 7, [represents
the location of a task’s input data split, and y is a boolean
value to indicate whether a task can be assigned to a Node-
Manager that does not locally have its input data split. The
scheduler also receives heartbeat messages from all active
NodeManagers which report their current resource usage,
including the capacity C' and the current residual capacity
R. If the current residual capacity R of a node is sufficient to
accommodate at least one task and there are tasks waiting
in the system, then the scheduler allocates tasks to that node
according to a particular scheduling policy.

Unlike Hadoop MapReduce, YARN systems no longer
explicitly distinguish map and reduce tasks such that other
parallel data processing applications (such as Spark, Hive,
Pig) can also be supported by YARN. In this work, we
mainly focus on MapReduce applications running in
YARN. Later, we show an extended solution to the problem
of iterative job scheduling. The scheduling policies that are
currently used in a Hadoop YARN system include FIFO,
Fair, and Capacity.

e The FIFO policy sorts all waiting jobs in a nonde-
creasing order of their submission time. All task
requests from each job will be further ordered by
their priorities as well as their localities. Once
ResourceManager receives a heartbeat message from
a NodeManager, the first queuing task request that
fits into the residual capacity of the corresponding
node will be scheduled for service.

e Two Fair scheduling policies have been imple-
mented in Hadoop YARN, i.e., Fair and Dominant
Resource Fairness (DRF) [9]. The Fair policy only
considers the memory usage of each job and
attempts to assign equal share of memory to jobs,
while the DRF policy aims to ensure all jobs to get on
average an equal share on their dominant resource
requirements (e.g., memory or cpu cores in the pres-
ent YARN implementation).

e The Capacity policy works similar to the Fair poli-
cies. Under this policy, the scheduler attempts to
reserve a guaranteed capacity for each job and orders
these jobs by their deficit (i.e., the gap between a job’s
deserved capacity and actual occupied capacity).

Clearly, none of the above policies are designed for optimiz-

ing resource utilization and completion time of MapReduce
jobs. Therefore, in this work, we design a new YARN sched-
uler to reduce the makespan of a batch of MapReduce jobs.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1160
3 HASTE
3.1 Problem Formulation

We consider that a set of n jobs {J;, .Jo, ..., J,} are submit-
ted to a Hadoop YARN cluster consisting of m servers,
{51,852,...,5n}. Each job consists of map tasks and reduce
tasks. We consider all the tasks in all n jobs as a set 17" and
assign each task a unique index number, i.e., t; represents
the ith task in the system. And then, each job J; is repre-
sented by a set of tasks. We further define two subsets MT
and RT to represent all the map tasks and reduce tasks
respectively, i.e., T'= MT'URT. MT NJ; (R'NJ;) repre-
sents all the map (reduce) tasks of job J;. In addition,
assume that & types of computing resources are considered
in the system, indicated by ry, 73, ..., 7;. Note that in the cur-
rent YARN system, only two resources are included, mem-
ory and cpu. Here, we use k to define the problem with a
general setting so that potential extensions can involve other
types of resources, e.g., network bandwidth and disk I/O.
In the rest of the paper, r; and r, represent memory and
cpu resources, respectively. We use a two-dimensional
matrix C' to represent the resource capacity in the cluster.
Cli, j] indicates the amount of available resource r; at server
Si, where i € [1,m] and j € [1, k]. This matrix C' is available
to the scheduler after the cluster is launched and the values
in C are updated during the execution of jobs upon each
heartbeat message received from NodeManagers.

In Hadoop YARN, each task in a job can request user-
specified resources for its execution. All map/reduce tasks
share the same resource requirement. For a task ¢, € T,
R[i,j] is defined to record the amount of resource r;
requested by t;, where R[p, j] = Rlg, j] if t, and t, are the
same type of tasks (either both map tasks or both reduce
tasks) from the same job. The YARN scheduler can assign a
task t; to a work node S; for execution as long as
Vp € [1,k], R[i,p] < C[j, p]. In this paper, given C' and R, our
goal is to design an efficient scheduler that can help the
cluster finish all the MapReduce jobs with the minimum
time (i.e., minimize the makespan). More specifically, let st;
be the starting time of task ¢; € T, t; be the execution time of
t;. We notice that this scheduling problem is equivalent to
the general resource constrained optimization problem
which has been proved to be NP-complete [10].

Many heuristics have been proposed for solving the prob-
lem. Refs. [11], [12], [13] Most of them, however, are not prac-
tical to be directly implemented in the Hadoop YARN
system. The main issue is that the processing time z; of each
task ¢; is required to determine the schedule in the conven-
tional solutions. In practice, the value of 7; cannot be known
as a prior before its execution in the system. Profiling or other
run time estimation techniques may be applied to roughly
estimate the execution time of map tasks [14], [15]. However,
it is extremely hard, if not impossible, to predict the execu-
tion times of reduce tasks in a cluster where multiple jobs
could be running concurrently. In Hadoop YARN, the
reduce tasks of a MapReduce job consist of two main stages,
shuffle and reduce. In the shuffle stage, the output of each
map task of the job is transferred to the worker nodes hosting
the reduce tasks and computation in the reduce stage starts
when all the input data are ready. Therefore, the execution
time of a reduce task are dependent on several map-related
factors, such as the execution times of all map tasks and the

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

size of the intermediate output data. In this paper, we aim to
develop a more practical heuristic that does not require any
prior knowledge of task execution times.

3.2 Sketch of Our Solution HaSTE

We design a scheduler that consists of two components, ini-
tial task assignment (ITA) and real-time task assignment (RTA).
ITA is executed when the cluster is just started and all
ApplicationMasters have submitted the resource requests
for their MapReduce tasks to the scheduler. The goal of ITA
is to assign the first batch of tasks for execution while the
rest of tasks remain pending in the system queue. Specifi-
cally, ITA algorithm needs to select a subset of pending
tasks and select a hosting work node for each of them for
execution. RTA, on the other hand, is launched during the
execution of all the jobs when tasks are finished and the cor-
responding resources are released. When new resources
become available at a worker node, the NodeManager will
notify the scheduler through heartbeat messages. Then the
scheduler will execute RTA to select one or more tasks from
the pending queue and assign them to the worker node
with new resources available. Compared to ITA, RTA is
triggered by heartbeat messages with resource capacity
update and only dispatches tasks to the hosting work node,
i.e., the sender of the heartbeat message.

In our design, without prior knowledge of the execution
time, we exploit the greedy strategy to develop both ITA
and RTA algorithms. ITA is formulated as a variant knap-
sack problem and we use dynamic programming to derive
the best task assignment in the beginning. RTA is a more
complex problem involving the progress of all active tasks
and the dependency between tasks. We develop an algo-
rithm that considers fitness and urgency of tasks and deter-
mines the appropriate task to execute on-the-fly.

3.3 Initial Task Assignment

The objective of ITA is to select a set of tasks to start. Since
the execution of each task is unknown, it is impossible to
yield the optimal solution at this point. The information that
can be leveraged by ITA only includes available resource
capacity and resource demands. Therefore, we remark that
the goal of the ITA algorithm is actually to avoid wasting
any resources in the initial stage. To accomplish this goal,
we adopt the greedy strategy and simplify our objective to
be maximizing resource utilization after ITA. If there is only
one type of resource, this problem is equivalent to the typi-
cal knapsack problem. Consider each worker node as a
knapsack and the resource capacity refers to the knapsack
capacity. Correspondingly, each task can be considered as
an item and the requested resource amount is both the
weight and the value of the item. The optimal solution to
the converted knapsack problem will yield the maximized
resource utilization in our problem setting. However, the
Hadoop YARN system defines two resources (recall that we
consider a general setting of k resources) in which case our
problem cannot directly reduce to the knapsack problem.
We thus need a quantitative means to compare different
types of resources, e.g., “Is utilizing 100 percent cpu and
90 percent memory better than utilizing 90 percent cpu and
100 percent memory?”. We then assume that the cluster

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

specifies a weight w; for each resource r;. The ITA problem
can be formulated as follows:

maximize: E (g Tij - g wy -)
€T \ je[l,m] pe(1,k]

s.t. Z Tij < 1,\V/ti S T;

Je[tm]

D my R

t,eT

[i,p] < C[4,p],¥j € [1,m],p € [L, A].

We design an algorithm using dynamic programming to
solve the problem. The details are illustrated in Algorithm 1.
The main algorithm is simply a loop that assigns tasks to each
of the m servers (lines 1-2). The core algorithm is implemented
in the procedure AssignTusk(j,T), i.e., select tasks from 7' to
assign to server S;. We design a dynamic programming algo-
rithm with two 2-dimensional matrices OPT' and £, where
OPTa,b] is the maximum value of our objective function with
a capacity <a, b> and L records the list of tasks that yield
this optimal solution. The main loops fill all the elements in
OFI" and L (lines 4-17). Eventually, the algorithm finds the
optimal solution (line 18) and assigns the list of tasks to S;
(lines 19-23). When filling an element in the matrixes (lines 6-
17), we enumerate all candidate tasks and based on the previ-
ously filled elements, we check: (1) if the resource capacity is
sufficient to serve the task (lines 9-12); and (2) if the resulting
value of the objective function is better than the current opti-
mal value (lines 13-16). If both conditions are satisfied, we
then update the matrices OPT’ (line 16) and £ (line 17).

Algorithm 1. Initial Task Assignment (ITA)

Data: C\ T, R
Result:
1 forj=1tomdo
2 AssignTask(j, T);
3 Procedure AssignTask (j, T)
4 fora=1toC[j,1] do
5 forb=1to C[j,2] do
6
7
8

foreacht; € T do

L = L[a—R[i1],b—R[,2]];
if t; € L then Continue;
9 if), cp Rlp, 1]+ RIi,1] > athen

10 Continue;
11 i3, ., Rlp.2] +R[i,2] > bthen
12 Continue;
13 V =w - R[i,1] +ws - R[i,2];
14 tmp = OPTa — R[i,1],b — R[i,2]] + V;
15 if OPT[a,b] < tmp then
16 OPT[a,b] = tmp; tmpL = L + {t;};
17 Lla,b] = tmpL;

18 (z,y) = argmax,;OPTa,b);
19 L= L[a,b];

20 T« T-1L;

21 foreacht; € L do

22 Tij =].,'

23 return;

3.4 Real-Time Task Assignment

RTA is the core component in our design of HaSTE as it is
repeatedly conducted during the execution of all the jobs.

Authorized licensed use limited to: University of Massachusetts Boston. Downloade

1161

The main goal of RTA is to select a set of tasks for being
served on a worker node which has the newly released
resources. Given the “snapshot” information only, it is diffi-
cult for the RTA algorithm to make the best decision for the
global optimization, i.e., minimizing the makespan, espe-
cially considering the complexity of a MapReduce process.
In this paper, we develop a novel algorithm that considers
two metrics of each task, namely fitness and urgency. Our
definition of fitness represents the resource availability in
the system and resource demand from each task, while the
urgency metric characterizes the dependency between tasks
and the impact of each task’s progress. In the rest of this sec-
tion, we first describe the calculation of each metric and
then present the overall algorithm of RTA.

3.4.1 Fitness

Using fitness in our design is motivated by the greedy solu-
tion to the classic bin packing problem. We first note that
some special cases of our problem are equivalent to the clas-
sic bin packing problem. Assume that all submitted jobs
have only one type of tasks and all tasks are independent to
each other. Also, assume that the execution times of all tasks
are the same, say v time units. Our scheduling problem thus
becomes packing tasks into the system for each time unit.
The total resource capacity is considered as the bin size and
the makespan is actually the number of bins. Thus, finding
the optimal job scheduling in this setting is equivalent to
minimizing the number of bins in the bin packing problem.
The classic bin packing considers only one type of resource
and has been proven to be NP-hard. A greedy heuristic,
named First Fit Decreasing (FFD), is widely adopted to solve
the problem because it is effective in practice and yields a
B OPT +1 worst case performance [16]. The main idea of
FFD is to sort tasks in a descending order of the resource
requirements and keep allocating the first fitted tasks in the
sorted list to the bins. Fig. 1 illustrates how FFD can improve
the makespan and the resource utilization when scheduling
two jobs with different memory requirements.

In fact, with two types of resources (memory and cpu)
supported in Hadoop YARN, the simplified scheduling
problem is equivalent to the vector bin packing problem in
The literature [17], [18], [19] Different variants of FFD have
been studied for solving the vector bin packing problem [18].
The FFD-DotProduct (dubbed as FFD-DP) has been shown
to be superior under various evaluation sets. It provides rel-
atively good performance compared with other heuristics
for vector bin packing as shown in citations [18] and has
negligible overhead which is important for online schedul-
ing. Therefore, we adopt the FFD-DP method to schedule
map and reduce tasks with two resource requirements. Spe-
cifically, we define fitness as

Fy= 3 Rliypl - Cliipl - w. M

pE[L,k]

RTA wuses Eq. (1) to calculate a fitness score for each
pending task t; when selecting tasks to be executed on the
worker node S;. Recall that for each resource r,, R[i,p] is
the requested amount from t;, C[j, p] is the resource capacity
at Sj, and w, is the weight of the resource. Intuitively, we

dprefer to select the task with the highest fitness score.

on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1162

Memory Capacity: 4G

Byt o et s

(a) FIFO Schedule
Memory Capacity: 4G

- N NN, SN reee———

(b) Fair Schedule
Memory Capacity: 4G

A ot e T

(¢c) FFD Schedule

Fig. 1. Scheduling two jobs under (a) FIFO, (b) Fair and (c) FFD, where a
worker node with 4G memory capacity is processing two jobs each with
4 tasks. Job 1 arrives first and each of its tasks requests 1G memory
(blue blocks), while each task of Job 2 requests 3G memory, see yellow
blocks. Assume that the execution time of each task is one time unit.
Thus, the FFD scheduler uses 4 time units to finish both jobs while FIFO
and Fair need 5 time units.

Therefore, RTA can sort all the pending tasks in the descend-
ing order of their fitness scores, and then assign the first task
to the worker node S;. After updating S;’s resource capacity,
RTA will repeat this selection process to assign more tasks
until there is no sufficient resource on S; to serve any pend-
ing tasks. The FFD-DP algorithm works well with multiple
resource types since it is aware of the skewness of resource
requirements. For example, assume that there are two types
of tasks with different resource requirements: one requests
<1 GB, 3 cores > and the other requests <3 GB, 1 core >;
and RTA tries to assign tasks to a worker node with residual
capacity of <1 0 GB, 6 cores>. The FFD-DP algorithm will
choose 3 tasks of type Il and 1 task of type I, which results in
100 percent resource utilization. The following table shows
the fitness scores of these two types of tasks at each iteration
of the algorithm.

Capacity <10,6> <7,5> <4,4> <3,1>
Typel <1GB, 3 cores> 28 22 16 6
Type Il <3GB, 1 core> 36 26 16 10

3.4.2 Urgency

Scheduling in Hadoop YARN is more complex than the reg-
ular job scheduling problem due to the dependency
between map and reduce tasks. Considering fitness alone

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

may not always lead to good performance in practice.
Although there has been previous work [20], [21], [22], [23]
on job scheduling under the dependency constraints, their
solutions cannot be directly applied to our problem because
the dependency between map and reduce tasks is quite dif-
ferent from the dependency defined in [20], [21], [22], [23].
In traditional scheduling problems, a task t; is said to be
dependent on task t¢;, i.e., ¢; < t;, if ¢; cannot start before ¢;
has been completed. In the MapReduce framework, task
dependency actually represents the data flow between
phases, i.e., reduce tasks need to receive intermediate data
from map tasks before they run. However, reduce tasks,
although depend on the outputs of all map tasks, can start
before the completion of all map tasks for retrieving the
intermediate data from the completed map tasks. This early
start is configured by a system parameter “slowstart” and
renders a better performance in practice.

Consequently, the execution of reduce tasks are highly
dependent on the execution of map tasks. Indeed, such
dependency relationship has been known by Application-
Masters when making reduce task requirements. A new
metric, named “Ideal Reduce Memory Limit”, is calculated
as the product of the progress of map tasks and the total
“available” memory for the corresponding job. The resource
limit of reduce tasks increases gradually with the progress
of map tasks. An ApplicationMaster sends new reduce task
requests to the ResourceManager only when the present
resource limit is enough for running more reduce tasks.

However, we observed that the current schedulers in
Hadoop YARN, which are designed for more general task
scheduling, fail to recognize the impact of dependency in
MapReduce jobs and may lead to ineffective resource
assignments and poor performance as well. For example, a
job that has already launched many reduce tasks may not
be able to have all its map tasks to be executed right away
due to resource contention among other jobs; the launched
reduce tasks will keep occupying the resources when wait-
ing for the completion of all maps tasks of the same job.
This incurs low utilization of resources that are allocated to
those reduce tasks.

To address the above issue, HaSTE uses a new metric,
named “urgency”, to capture the performance impact
caused by the dependency between map and reduce tasks
of MapReduce jobs. Specifically, we have the following
main scheduling rules associated with the urgency.

e RI: A job with more progress in its map phase, will
be more urgent to schedule its map tasks. This rule
can boost the completion of the entire map phase
and further reduce the execution time of the
launched reduce tasks.

e R2: A job with more resources allocated to its run-
ning reduce tasks will be more urgent to schedule its
map tasks in order to avoid low resource utilization
when its reduce tasks are waiting for the completion
of map tasks.

e R3: Reduce tasks should be more urgent than map
tasks of the same job if the ratio between resources
occupied by currently running reduces and all cur-
rently running tasks is lower than the progress of
map phase, vice versa.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

In summary, R1 and R2 are used to compare the urgency
between two different jobs while the urgency of map/
reduce tasks from the same job is compared by R3. We cal-
culate the map task urgency score (U/") and reduce task
urgency score (U]) for job i as follows:

-
U = o (A7 B + A7 - RY™), &)
A OF-RM+OF R
Ul — U‘VIL . 1, 3 1 + T 2 . (3)

7 2

n O;-R;

Here, AI"/AI/AY™ represents the number of map/
reduce/ApplicationMaster tasks that have been assigned
for job i, and R!"/R!/R¢™ represents the resource require-
ment of a single map/reduce/ApplicationMaster task, i.e.,
the weighted summation of memory and cpu requirements.
T!" represents the total number of map tasks of job i. O /O
represents the number of running map/reduce tasks of job ¢
that are currently occupying system resources. All these
metrics are accessible to the scheduler in the current YARN
system. Therefore, we implemented our new scheduler as a
pluggable component to YARN without any needs of
changing other components.

3.4.3 HaSTE Scheduler

Now, we turn to summarize the design of HaSTE by inte-
grating the two new metrics, i.e., fitness and urgency, into
the scheduling decision.

Once a node update message is received from a Node-
Manager, the scheduler first creates a list of all resource
requests that can fit the remaining resource capacity of that
node. Meanwhile, the scheduler calculates the fitness and
urgency scores of those chosen resource requests, and
obtains the preference score for each request by summating
the normalized fitness and urgency scores, see Eq. (4)

E - Fmin

Ui - Umm

P, = ;
Umam - Umin

)

where £}, and F;, (resp. Uy,q, and U,,i,) record the maxi-
mum and minimum fitness (resp. urgency) scores among
these requests.

Such preference scores are then used to sort all resource
requests in the list. The resource request with the highest
score will be chosen for being served. Note that each
resource request can actually represent a set of task requests
since tasks with the same type and from the same job usu-
ally have the same resource requirements. The scheduler
will then choose a task that has the best locality (i.e., node
local or rack local) and assign that task to the NodeManager.
One special type of task request is the request for Applica-
tionMaster. Such requests always have the highest prefer-
ence score in HaSTE due to its special functionality, i.e.,
submitting resource requirements and coordinating the exe-
cution of a job’s tasks.

Finally, we remark that the complexity of our scheduling
algorithm is O(n logn) which is determined by the sorting
process. Here n is the number of running jobs rather than
the number of running tasks since all tasks with the same
type and from the same job could be represented in a single
resource request and then have the same preference score.

1163

Therefore, HaSTE is a light-weighted and practical sched-
uler for the Hadoop YARN system.

4 HASTE-A

With the growth of applications in YARN systems, more and
more iterative algorithms are adopted for the MapReduce
paradigm. For example, the k-means algorithm [24] can be
modeled as a set of identical MapReduce jobs such that each
job’s execution represents one iteration of the algorithm. Pag-
erank [7] is another example of iterative algorithms, which
has multiple stages in each iteration and also needs to instan-
tiate a sequence of jobs for each iteration. The iterative fea-
ture of these algorithms determines that a single round of the
map-reduce procedure is not enough for processing data.
Thus, these applications often submit more than one jobs to
the YARN cluster. The number of jobs for an application
depends on the number of its stages as well as its input data-
set. For example, the stop condition for k-means is controlled
by either the pre-defined maximum number of iterations or
the pre-defined convergence threshold.

We observe that without considering the iterative fea-
ture, the current scheduling (even including HaSTE) cannot
work well under the workloads with iterative applications.
Two limitations can be found under those scheduling algo-
rithms: (1) a long tail appears in the makespan due to the
delayed execution of iterative algorithms, and (2) cluster
resources (e.g., memory and cpu cores) cannot be fully uti-
lized during the execution of those delayed iterative algo-
rithms. In Fig. 2a, we provide a motivation example to
illustrate the impact of iterative jobs on the scheduling per-
formance. Assume that there are three jobs with different
task numbers and resource requirements: Job 1 and Job 2
are non-iterative ones with two tasks each (see yellow and
green blocks) while Job 3 is an iterative job with three tasks
which need to be executed sequentially (see red blocks).
The memory requirement for each job is labeled as well in
the figure. One possible scheduling result under HaSTE is
shown in Fig. 2a, where tasks in Job 1 and Job 2 fill the
capacity first due to their large memory requirements and
Job 3 can only start at the third time unit. In this case, we
observe a long tail since the third time unit, which leads to
low memory utilization and a long makespan.

4.1 Alignment

In HaSTE, fitness represents the matching degree between
resource requirement and current available capacity in the
cluster, while urgency reflects the dependency between map
and reduce tasks in one job and the relative rate among dif-
ferent jobs. To further identify the distinct nature of iterative
applications, we introduce a new metric, called alignment, to
capture the runtime process of iterative applications.
Another three rules associated with the alignment metric
are then defined as follows.

e R4. An iterative job should have a higher alignment
score in order to run its map/reduce tasks earlier
than other non-iterative jobs. This rule helps to align
the processing of both non-iterative and iterative
jobs and thus remove the long tail in the makespan
that is caused by iterative ones.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1164

Memory Capacity: 5G

3G

2G
EN |

t0 1 2 3 t4 t5

(a) HaSTE with iterative job
Memory Capacity: 5G

3G

2G
[1e]]

t0 t1 t2 3 t4 t5

(b) HaSTE-A less aggresive
Memory Capacity: 5G

2G
3G

t0 1 2 3 t4 t5

(c) HaSTE-A more aggresive

Fig. 2. Scheduling three jobs with and without the alignment score.
Assume that the execution time of each task is one time unit and cpu
resouce is sufficient here. (a) HaSTE scheduler schedules Job 1 and
Job 2 first based on the fitness and urgency scores. (b)(c) HaSTE-A fur-
ther uses the alignment score to start Job 3 one or two time unit earlier.
Thus, HaSTE scheduler uses 5 time units to finish all jobs while only
cost three or four time units.

e R5. An iterative job with more stages should have a
higher alignment score than other iterative jobs in
order to shrink the intermediate lagging time among
its stages. This rule can reduce the response time for
such multi-stage jobs and also avoid low resource
utilization at the end of the entire processing.

e R6. More resources should be allocated to jobs with
the higher ratio between the number of finished
stages and the number of total stages, vice versa.
This rule can accelerate those jobs which are
approaching the end of their execution.

R4 differentiates two types (i.e., iterative and regular) of jobs
while R5 describes the relation between two iterative jobs. R6
further considers the dynamic runtime process of each job. In
summary of these three rules, we set up a heuristic equatlon
(Eq. (5)) for both map and reduce task’s alignment A

I + Ig:urrent

A;n/r = lzniLI %)
Jj=1"J

Here, I; represents the total number of stages or iterations?

for job ¢ and I{“"“" represents the current number of

2.In this work, we assume that there is a priori knowledge of the
number of iterations for an iterative application. How to predict the
number of iterations is out of this paper’s scope and will be considered
in our future work.

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

finished stages or iterations. We can see that the alignment
score captures the iteration feature as well as the runtime
process of these iterative jobs. Later, in Section 5.2.3, we
show that the alignment score of iterative jobs increases
across the runtime.

We further use our motivation example to illustrate how
the alignment metric affects the task scheduling under a cer-
tain memory capacity in Figs. 2b and 2c. Under the consid-
eration of alignment, our scheduler can schedule the
iterative job (e.g., Job 3) earlier by starting that job’s first
task at the second unit time (see plot (b) in Fig. 2) or even
more aggressively at the first time unit (see plot (c) in
Fig. 2). As a result, the iterative job runs in parallel with the
non-iterative jobs. The makespan is thus reduced by two
time units and the memory resource is fully utilized under
the aggressive way.

Another target in our design of alignment is to improve the
average job response time. We define a job’s response time
from its submission to its finish. For example, the new sched-
uler using aggressive alignment can decrease the average
response time of three jobs from 3 (see Fig. 2a) to 2.67 (see
Fig. 2¢) time units although Job 2’s response time is increased.

4.2 HaSTE-A Scheduler

Now, we add alignment as the third part of the preference
score and introduce the factor /3 = {Bi, By, B3} to adjust the
weights of each part of the preference score. The preference
score for each request can be redefined by summating the nor-
malized fitness, urgency, and alignment scores, see Eq. (6)

P = ,3 . -Fz - me + ,8 . Ui - Umin
' ! Enaz - Enm : Umaa' - Umin (6)
A Amm
T e — A’

where A,,,. and A,,;, record the maximum and minimum
alignment scores among these requests. The value of each g,
can be pre-defined based on the proportion of iterative jobs in
the cluster and how aggressive the user wants to execute itera-
tive jobs. Intuitively, when we have a few iterative jobs simul-
taneously running with other non-iterative ones, a larger
value will be used for B; (i.e., B35 > B; and B; > B,) such that
HaSTE-A can aggressively accelerate the processing of those
iterative jobs. However, if the majority of jobs are iterative, we
can actually ignore the third factor in the preference score, i.e.,
setting f; as a very small value. HaSTE-A then simply treats
all jobs as the same type and schedules them based on fitness
and urgency only as HaSTE does.

5 [EVALUATION

In this section, we evaluate the performance of HaSTE and
HaSTE-A by conducing experiments in a Hadoop YARN
cluster. We implemented HaSTE, HaSTE-A and FFD-Dot-
Product (abbrev. FFD-DP) schedulers in Hadoop YARN
version 2.2.0 and compared them with the built-in schedu-
lers (i.e., FIFO, Fair, Capacity, and DRF). The performance
metrics considered in the evaluation include makespans of
a batch of MapReduce jobs and resource usage of the
Hadoop YARN cluster. For HaSTE-A, average response
time is additional metric we considered.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN... 1165
TABLE 1
Benchmark Descriptions
Benchmark Description
WordMean Calculate the mean length of words in the input data.
WordCount Count the occurrence of each word in the input data, which are generated using RandomTextWriter.
Terasort A popular benchmark to sort one terabyte of randomly distributed data.
PiEstimate Estimate the value of 7.
Pagerank Pagerank is a link analysis and web ranking algorithm.
Kmeans Kmeans is a clustering analysis algorithm for multi-dimensional numerical samples in data mining.
Scan Scan is a SQL benchmark that creates two external tables and inserts the second table into the first one.
Dfsioe Test the HDFS throughput and I/O rate of tasks by performing writes and reads simultaneously.

5.1 Resource Requests of MapReduce Jobs

In our experiments, we consider different resource require-
ments such that a job can be either memory intensive or cpu
intensive. The resource requirements of map and reduce
tasks of a MapReduce job can be specified by the user when
that job is submitted. The user should set the resource
requirements equal to or slightly more than the actual
resource demands. Otherwise, a task will be killed if it
needs more resources than its required resource amount.’
Such a mechanism adopted in the YARN system can pre-
vent malicious users from faking the resource requirements
and thus from thrashing the system. On the other hand, it is
not proper either to request much more than the actual
demands. In such a case, the concurrency level of MapRe-
duce jobs and the actual resource usage will be reduced and
the performance will be degraded as well. We note that
how to set appropriate resource requirements for each job is
out of this paper’s scope. In our experiments, we vary the
resource requirements for different jobs in order to evaluate
the schedulers under various resource requirements but
keep the resource requirements configuration the same
under different scheduling algorithms.

5.2 Batch Job Experiment Results

Here, we conduct three sets of experiments in a Hadoop
YARN cluster with 8 nodes, each of which is configured
with the capacity of 8 GB memory and 8 virtual cpu cores,
i.e., <8G, 8cores > . The benchmarks we use in these experi-
ments are summarized in Table 1.

5.2.1 Simple Workload

In the first set of experiments, we consider a simple work-
load which consists of four Wordcount jobs. Each job in this
workload parses the same 3.5G wiki category links input
file. Therefore, all the four jobs have the same number of
map and reduce tasks. The map task number is determined
by the input file size and the HDFS block size which is set to
64 MB in this experiment. As described in Section 5.1, for
different jobs, we vary the resource requirements on a single
type of resource for analyzing the impact of resource

3. We note that the virtual cpu cores are not physically isolated from
each task in the YARN system. While the number of virtual cpu cores
requested for a task determines the priority of that task when compet-
ing for cpu times. Therefore, an inappropriate low request of virtual
cpu cores is also not desired because it may lead to insufficient cpu
times that a task can get and dramatically delay the execution of that
task.

requirements on the scheduling performance. The configu-
rations of each job and their resource requirements are
shown in Table 2.

Fig. 3 shows the makespans and the average resource
(mem and cpu) usage under different scheduling policies.
Here, the memory/cpu usage is defined as the average
amount of resources that are allocated for all running tasks
during a specific time period. We observe that all the con-
ventional schedulers (i.e., FIFO, Fair, and DRF) cannot effi-
ciently utilize the system resources, e.g., under 60 percent
cpu core usage and under 30 percent memory usage.
Although these conventional schedulers obtain similar
resource usage, FIFO outperforms Fair by 23.8 percent and
DRF by 29.3 percent. That is because under Fair and DRF
when multiple jobs are running concurrently in the cluster,
their reduce tasks are launched and thus occupy most of the
resources, which may dramatically delay the execution of
map phases. Similarly, the makespan under the FFD-DP
scheduling policy is 10 percent larger than under FIFO,
although FFD-DP achieves the highest resource usage, e.g.,
86.6 percent cpu cores usage in average. While, the new
scheduler HaSTE solves this problem by considering the
impacts of both resource requirements (i.e., fitness) and
dependency between tasks (i.e., urgency) and thus achieves
the best makespan, which is, for example, 27 and 44.6 per-
cent shorter than FIFO and Fair, respectively.

5.2.2 Mixed Workload Case 1

To further validate the effectiveness of HaSTE, we conduct a
more complex workload which is mixed with both cpu
intensive and memory intensive MapReduce jobs. Table 3
shows the detailed workload configuration, where the input
data for Terasort is generated through the Teragen bench-
mark, and the input for Wordcount and Wordmean is the wiki
category links data. In this set of experiments, we set the
HDFS block size equal to 128 MB.

Fig. 4 plots the makespans and the average resource
usage under this mixed workload. Consistently, the three

TABLE 2
Simple Workload Configuration
JobID #Map #Reduce R™ R
1 52 5 <1G, 2 cores> <1G, 2 cores>

2 52 5 <1G, 3 cores> <1G, 2 cores>
3 52 5 <1G, 4 cores> <1G, 3 cores >
4 52 5 <1G, 5 cores> <1G, 3 cores>

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1166

Mékespan —
Memory-Usage m=== | 100
Cores-Usage mmmmm

1000 |

800 1 80

600 - 1 60

Time(Sec)
Percentage(%)

400 | 1 40

200 - 1 20

FIFO Fair

DRF FFD-DP HaSTE

Fig. 3. Makespans and average resource usage under the workload of 4
Wordcount jobs. The left y-axis shows the makespans (sec.) while the
right y-axis shows the cpu and memory resource usage (%).

conventional scheduling policies have similar average
resource usage, e.g., around 50 percent for both cpu and
memory. However, in this experiment, jobs experience simi-
lar makespans under the Fair and DRF policies as well as
under FIFO. We interpret this by observing that the Applica-
tionMasters killed the running reduce tasks to prevent the
starvation of map tasks when these reduce tasks occupy too
many resources. On the other hand, both FFD-DP and
HaSTE increase the average resource usage, e.g., to around
80 percent, through the resource-aware task assignment.
FFD-DP also improves the makespan by 18.1 and 14.8 per-
cent compared to FIFO and Fair, respectively. HaSTE further
improves the performance in terms of makespan by 36.3 and
33.9 percent compared to FIFO and Fair, respectively.

To better understand how these scheduling policies
work, we further plot the runtime memory allocations in
Fig. 5. We observe that the precedence constraint of FIFO
and the fairness constraint of Fair and DRF can both lead to
inefficient resource allocation in the Hadoop YARN cluster.
For example, when cpu intensive jobs are running under
the FIFO policy, see jobs 3, 4, 6, 7 in Fig. 5a, the scheduler
cannot co-schedule memory intensive jobs at the same time,
and a large amount of memory resources in the cluster are
idle for a long period. While, under the Fair and DRF poli-
cies, although all jobs share the resources, the fairness con-
straint, i.e., all jobs should get equal shares on average, in
fact, hinders the efficient resource usage. For example,
when a node has <1GB,4 cores> available resources and
two tasks t; and t, with Ry =<1GB,4cores> and
Ry =<1GB,1core> are waiting for service, Fair may

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

Mékespan —
Memory-Usage mmss= | 100
Cores-Usage s

2000

1600 1 80

1200 1 60

Time(Sec)
Percentage(%)

800 1 40

400 1 20

FIFO Fair

DRF FFD-DP HaSTE

Fig. 4. Makespans and average resource usage under the mixed work-
load of four benchmarks. The left y-axis shows the makespans (sec.)
while the right y-axis shows the cpu and memory resource usage (%).

assign resources to ¢, if this tasks now deserves more share
of resources, which will lead to a waste of 3 cpu cores on the
node. We also observe that by tuning the resource shares
among different jobs, the FFD-DP policy could achieve bet-
ter resource usage across time. More importantly, HaSTE
also achieves high or even slightly higher resource usage
across time. This is because HaSTE allows jobs whose
resource requirements can better fit the available resource
capacities to have higher chance to get resources and thus
improves the resource usage.

In summary, HaSTE achieves non-negligible improve-
ments in terms of makespans and resource usage when the
MapReduce jobs have various resource requirements. By
leveraging the information of job resource requirements and
cluster resource capacities, HaSTE is able to efficiently sched-
ule map/reduce tasks and thus improve the system resource
usage. In addition, the makespans of MapReduce jobs are
further improved by taking the dependency between map
and reduce tasks into consideration when multiple jobs are
competing for resources in the YARN cluster.

5.2.3 Mixed Workload Case 2

We also conduct a mixed workload which consists of both
iterative and non-iterative jobs to further evaluate the effec-
tiveness of our HaSTE-A scheduler with the alignment metric
in the scheduling. Table 4 summarizes the parameter configu-
ration for each job in this workload. Specifically, we generate
five jobs such that three of them are non-iterative MapReduce
jobs (e.g., WordCount, Terasort and Scan) and the remaining
two are iterative jobs such as Pagerank and Kmeans.

TABLE 3
Mixed Workload Case 1 Configuration
Job Type Job ID Input Size #Map #Reduce R™ R
Terasort 1 5GB 38 6 <3GB, 1core> <2GB, 1core>
2 10 GB 76 12 <4GB, 1core> <2GB,1core>
WordCount 3 7 GB 52 12 <2GB, 3 cores> <1GB, 2 cores>
4 3.5GB 26 6 <2GB, 4 cores> <1GB,2cores>
WordMean 5 7 GB 52 8 <2GB,2cores> <1GB,1core>
6 3.5GB 26 4 <2GB, 1core> <1GB, 1 core>
PiEstimate 7 - 50 1 <1GB, 3 cores> <1GB, 1 core>
8 - 100 1 <1GB, 4 cores> <1GB, 1core>

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

(a) FIFO
k=]
2
Q
3
8
o]
>
o
=
[}
=
0 500 1000 1500 2000
Time
(b) Fair
o
2
aQ
3
3
o]
>
S
=
Q
=
0 500 1000 1500 2000
o
o
a
3
8
o
>
S
£
o
=
0 500 1000 1500 2000
Time
(d) FFD-DP
o
2
[
3
3
(o]
>
S
=
o
=
0 200 400 600 800 1000 1200 1400 1600
Time
(e) HaSTE
o
2
Q
5
8
(o]
>
S
£
Q
=

0 200 400 600 800 1000 1200
Time

Fig. 5. lllustrating the memory resources that have been allocated to
each job cross time under different scheduling policies.

In this set of experiments, we consider the makespan, the
average job response time, and the average memory usage
as the performance metrics to compare different scheduling
policies. Fig. 6 shows the experimental results under the
existing schedulers (i.e., FIFO and Fair, FFD-DP) and our
new sched_glers (i.e., HaSTE and HaSTE-A). Here, we set
the factor B used in HaSTE-A as {0.2,0.2,0.6} such that the
preference score under HaSTE-A ranges from 0 to 1.0.

As shown in Fig. 6, the worst performance is found under
the Fair scheduler. By considering the resource capacity and

1167

100

l\/‘lakespan‘—
Average Response Time mmmm
Memory Usage

1400 |

1200 4 80

1000 |

makespan(sec)
o]
o
o
T
percentage(%)

40

@
=3
S
T
L

400 -

FIFO Fair

FFD-DP HaSTE HaSTE-A

Fig. 6. Makespans, average response times and average memory usage
under the mixed workload case 2 including three non-interative and two
iterative benchmarks. The left y-axis shows the makespans (sec.) and
the average response times (sec.), while the right y-axis shows the
memory resource usage (%).

the dependency between tasks, HaSTE can reduce the make-
span as well as the average response time by 26.7 and 17.9
percent, respectively, and increase the memory usage by 15
percent. However, we observe that such an improvement
under HaSTE is not as significant as that under the workload
with non-iterative jobs (see Section 5.2.2) and even diminishes
compared to FIFO and FFD-DP. We interpret it by observing
that HaSTE does not differentiate the iterative jobs by assign-
ing them with high preference scores. Consequently, the non-
iterative jobs (e.g., Terasort and Wordcount) that have higher
fitness scores occupy the resources and even keep the resour-
ces because of their increasing urgency scores.

We also observe that HaSTE-A overcomes the limitation
of HaSTE by further integrating alignment in the preference
score and thus improves the performance for the workload
with both non-iterative and iterative jobs. For example, the
makespan under HaSTE-A is reduced by 26.4, 49.3, and 34.3
percent compared to FIFO, Fair, and FFD-DP, respectively.
Additionally, the average response time is reduced as well
by 9.1, 44.3 and 19.5 percent, respectively. These results
demonstrate that HaSTE-A can effectively shorten the total
execution time of a batch of jobs by boosting the scheduling
of iterative jobs and meanwhile does not sacrifice the aver-
age performance, e.g., average job response time.

Fig. 7 depicts the amount of memory allocated to each of
five jobs across time under different scheduling policies. We
can see that after about 600 seconds, the memory usage
drops to 50 percent (i.e., 30 GB out of 64 GB total capacity)
and even 0 percent periodically under the FIFO, FFD-DP
and HaSTE policies. Such a low memory usage is caused
due to the delayed scheduling of iterative jobs (e.g.,

TABLE 4
Mixed Workload Case 2 Configuration
Job Type #lteration Input Size #Map® #Reduce® R™ R
Terasort 1 5GB 96 12 <3GB, 1core> <2GB, 1core>
WordCount 1 10 GB 81 12 <1GB, 3 cores> <1GB,2cores>
Scan 1 24 GB 20 6 <1GB,1cores> <1GB,1core>
Pagerank 2 240 MB 37 12 <2GB,2cores> <2GB,2core>
Kmeans 6 2GB 120 5 <2GB, 3 cores> <1GB, 3 core>

“The map and reduce number of Pagerank and Kmeans are the sum of all iterations.
Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1168

a) FIFO

T
= Scan
= Kmeans
Pagerank
mmmmm TeraSort
WordCount

memeory

1
1000 1200 1400

Scan
Kmeans
Pagerank
TeraSort
WordCount

memeory
w
o

0 200 400 600 800
time

1000

1200 1400 1600

¢) FFD-DP

Scan
Kmeans
Pagerank
TeraSort
WordCount

memeory

1
1200 1400 1600

Scan
Kmeans
Pagerank
TeraSort
WordCount

memeory

1
1200 1400

0 200 400 600 800
time

1000

e) HaSTE-A

= Scan
fy mm— Kmeans
Pagerank
= TeraSort
WordCount

memeory
wW
o

0 200 400 600 800 1000
time

Fig. 7. Memory resource allocations for each job under different
scheduling polices.

Kmeans) which run alone at the end of the overall process-
ing in order to complete their iterations and thus lag the
total completion time of the batch of five jobs. We also look
closely at the preference scores of each job under HaSTE.
We find that HaSTE treats iterative jobs (such as Pagerank
and Kmeans) as non-iterative ones, neglecting their iteration
feature and assigning them with a low urgency score.

In contrast, our HaSTE-A scheduler makes its scheduling
decisions using the combination of three factors (i.e., fitness,
urgency and alignment). As shown in Fig. 7e, the resource
requirements of tasks from the WordCount and TeroSort jobs
best fit in the resource capacity and are thus scheduled first
because of their high fitness scores. Moreover, HaSTE-A
gives high aligment scores to two iterative jobs (i.e., Pag-
erank and Kmeans) such that these two jobs can get their
required resources earlier and run their iterations in parallel
with other non-iterative ones. As a result, HaSTE-A has
been shown to be superior under the mixed workload with
iterative jobs and achieve the best performance with the
shortest makespan and the highest resource usage.

Fig. 8 further illustrates how the scores of fitness,
urgency and alignment change across time for three repre-
sentative jobs, i.e., Terasort, Kmeans, and Scan. Consistent
with our discussion above, Terasort receives a high fitness
score while the alignment score of Kmeans dominates this

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

a) TeraSort

alignment
0.8 fitness m—
- urgency

0 100 120

0.6

: |
0 20

0
4

Score

o
[N}

0 60 8

Num. of Task

b) Kmeans

alignment
0.8 fitness m—
: urgency
0

Score
o o
~

S e T

20 40 60 80 100
Num. of Task

o

.2

c) Scan
1 T

alignment
fitness m—
urgency .

0.6

Score

0.4

0.2 |
- sl
10 15

Num. of Task

20

Fig. 8. The runtime scores of fitness, urgency and alignment scores for
(a) Terasort, (b) Kmeans and (c) Scan under the scheduling policy
HaSTE-A.

job’s preference score across time and allows HaSTE-A to
start the execution of its tasks earlier than that under the
other scheduling algorithms. Moreover, tasks from Scan
have the low resource (i.e., cpu and memory) requirements
and thus receive a low fitness score across time. As a result,
the Scan job is not able to obtain its required resources
before 110 seconds (see the blue area in Fig. 7e). However,
as the time passes, the urgency score of this job increases
with the increasing of A} and A7 (i.e., the number of map/
reduce tasks that have been assigned for job i), see Eq. (3).
The high urgency score then allows this Scan job to receive
the resources and finish at 150 seconds.

To make a sum, HaSTE-A achieves the best makespan and
average response time when the workload contains iterative
jobs. The alignment metric, as the third component in our
preference score, significantly overcomes the limitation of
HaSTE by scheduling the iterative jobs early and aligning the
execution of these iterative jobs with non-iterative ones.

5.3 Successive Job Experiment Results

In the previous experiments, we considered an extreme case
that a batch of jobs arrives at the same time. Although this
case is not common, it is difficult because all jobs compete
for system resources simultaneously. Now, we further
investigate a more general case that an open arrival process
is used to generate and launch MapReduce jobs from differ-
ent applications. In this set of experiments, we consider
the successive job submission pattern in a heavy-loaded
Hadoop YARN cluster. Fig. 9 shows the experimental
results in terms of makespan and average memory/cpu
resource usage under different scheduling schemems. Spe-
cifically, jobs are submitted with a random interval time
between 0 to 60 seconds and 60 to 120 seconds, as shown in
Figs. 9a and 9b, respectively. We further evaluate the

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

makespan(sec)

2000

1500

1000

500

0

FIFO

Fair

Makespan
Memory-Usage
Cores-Usage mmmmm

Capacity FFD-DP HaSTE

100

80

60

40

20

0

percentage(%)

(a) Submit job successively with 0-60 seconds

random interval

2000

1500

1000

makespan(sec)

500

0

FIFO

Makespan =
Memory-Usage mmmm
Cores-Usage mmmmm

Fair Capacity FFD-DP HaSTE

4 60

1 40

100

4 80

percentage(%)

420

0

(b) Submit job successively with within 60-120
seconds random interval

1169

Fig. 9. Makespans and average resource usage under the mixed workload case 2 with successive job submission pattern. The left y-axis shows the
makespans (sec.) while the right y-axis shows the cpu and memory resource usage (%).

TABLE 5
Mixed Workload Case 3 Configuration

Job Type Job1d #Iteration Input Size #Map® #Reduce” R™ R
Terasort 1 1 10 GB 24 6 <3GB, 1core> <4GB, 2 core>

2 1 20 GB 96 6 <5 GB, 2 core> <6 GB, 4 core>
WordCount 2 1 9 GB 36 12 <2GB, 3 cores> <1GB, 3 cores>

4 1 18 GB 162 12 <4GB, 4 cores> <2GB, 5 cores>
Dfsioe 5 1 2.5GB 64 1 <1GB, 1 cores> <1GB, 3 core>

6 1 4GB 64 1 <3GB, 3 cores> <2GB, 4 core>
Pagerank 7 2 0.5GB 37 24 <1GB, 3 cores> <2GB,2core>

8 2 1GB 37 24 <2GB,5cores> <3GB,4core>
Kmeans 9 4 2 GB 16 3 <2GB,2cores> <1GB, 3 core>

10 5 10 GB 100 4 <4 GB, 4 cores> <2GB, 4 core>

“The map and reduce number of Pagerank and Kmeans are the sum of all iterations.

performance of the Capacity scheduler with a default con-
figuration (ie., all jobs are in the same queue) for
comparison.

As shown in Fig. 9a, we can observe that HaSTE achieves the
best performance (i.e., the shortest makespan) among all con-
sidered schedulers. Meanwhile, we notice that the Capacity
scheduler with the default configuration has similar perfor-
mance as Fair. The batch of jobs experience a long makespan
under these two schedulers because both of them focus on fair-
ness when allocating resources among jobs. As expected, when
the interarrival time between jobs is longer, the performance
improvement of HaSTE becomes less visible, see Fig. 9b. This is
because resources competition is less intensive under this case
even with the same workload and thus efficient scheduling
algorithms becomes not critical. For example, when we increase
the submission interval to 60-120 seconds, only one or two jobs
run together during the most of execution period of time. All
schedulers tend to obtain similar makepsan, as show in Fig. 9b.

5.4 Sensitive Analysis of Cluster Size

Finally, we investigate the effectiness of our new scheduler
in a large cluster that contains more worker nodes and each
node has larger capacity of cpu cores and memory. Specifi-
cally, we build a Hadoop YARN cluster in CloudLab [25]
with 20 nodes, each of which is configured with 32 GB
memory and 16 virtual cpu cores, i.e., <32G,16cores > . The
benchmark configuration is listed in Table 5, where we

consider both non-iterative and iterative MapReduce jobs
with different resource demands. Fig. 10 shows the experi-
mental results (i.e., makespans and average resource
usages) under five scheduling algorithms.

First of all, we notice that Fair and Capacity obtain better
performance than FIFO, which is different from the previ-
ous experiments. We intepret that this large cluster with
more resources actually experiences less pressure on
resource contension and thus running more jobs simulta-
neously under Fair and Capacity can help make more effi-
cient allocation decisions than under FIFO that only runs a
job at one moment. More importantly, we can observe that
HaSTE and HaSTE-A still achieve the best performance and
HaSTE-A outperforms HaSTE because we have iterative
jobs (e.g., Pagerank and Kmeans) in the benchmark.

6 RELATED WORKS

Improving the performance of Hadoop MapReduce systems
has gained considerable research attention over the past few
years. One important direction is the enhanced job schedul-
ing. Zaharia et al. [26] proposed a delay scheduling policy
to improve the performance of Fair scheduler by increasing
the data locality of Hadoop. This work is compatible with
both Fair scheduler and our proposed scheduling policies.
Quincy [27] formulated the scheduling problem in Hadoop
as a minimum flow network problem, and decided the slots

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

1170

300 100

MaRespan —
Memory-Usage
Cores-Usage

200

150

makespan(sec)
percentage(%)

100

FIFO Fair

Capacity FFD-DP HaSTE HaSTE-A

Fig. 10. Makespans and average resource usage under the mixed work-
load case 3 in a large cluster. The left y-axis shows the makespans (sec.)
and the right y-axis shows the cpu and memory resource usage (%).

assignment that obeys the fairness and locality constraints
by solving the minimum flow network problem. However,
the complexity of this scheduler is high and it was designed
for slot based scheduling in the first generation Hadoop.
Verma et al. [28] introduced a heuristic method to minimize
the makespan of a set of independent MapReduce jobs by
applying the classic Johnson’s algorithm. However, their
evaluation is based on simulation only without real imple-
mentation in Hadoop. Wang et al. [29] proposed both static
and dynamic slot configuration algorithms to balance the
tradeoff between the overall fairness and the makespan for
a batch of jobs. Dazhao et al. [30] proposed a self-adaptive
task tuning system to automatically search the optimal con-
figurations in the heterogeneous cluster. Our previous
work [31] proposed a new scheme that uses the slot assign-
ment as a tunable knob for reducing makespan of MapRe-
duce jobs in Hadoop system. Refs. [28], [29], [30], [31], [32]
were all based on the first-generation Hadoop scheme
which utilize the slot concept for resource management.

Fine-grained resource management was also well studied
for Hadoop systems. ThroughputScheduler [33] was pro-
posed to improve the performance of heterogeneous Hadoop
cluster. An explore stage was proposed to learn the resource
requirement of tasks and the capabilities of nodes, and the
best node was then selected to assign tasks in the scheduler.
Polo et al. [34] leveraged job profiling information to dynami-
cally adjust the number of slots on each node, as well as work-
load placement across nodes, to maximize the resource
utilization of the Hadoop cluster. Our schedulers, however,
do not require any learning phases or job profiles for schedul-
ing. Wasi-ur Rahman et al. [35] is the first comprehensive
study of intermediate data for YARN with Lustre and
RDMA. Afrati et al. [36] mathematically investigates the
scheduling problem which is assigning inputs with various
sizes to a set of reducers with capacity. Rayon [37] is proposed
to reserve resources for production jobs and best-effort jobs
such that the SLAs for production jobs can be guaranteed and
meanwhile the execution time of best-effort jobs can be
reduced. We note that our HaSTE scheduler mainly focuses
on how to allocate the reserved resources for best-effort jobs,
which is complementary to Rayon in [37].

Although a bunch of previous works concentrates on the
nature of the job, most of them classify the job into memory

IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 3, JULY-SEPTEMBER 2021

or cpu intensive. Some previous studies [38], [39] designed
a modified framework to handle iterative jobs. However,
we notice that none of these studies focuses on optimizing
the scheduling for a MapReduce environment with iterative
jobs. For example, Twister, proposed in [38], eliminates the
disk read and write operations between map and reduce
phases by differentiate static and variable data. While, our
schedulers can be implemented as a plug-in module to the
existing Hadoop YARN system without any modifications
of those popular data processing frameworks, which
presents high feasibility and flexibility in the scheduling.

7 CONCLUSION

In this paper, we presented two novel scheduling policies,
named HaSTE and HaSTE-A, for Hadoop YARN systems.
The primary goal of our new schedulers is to improve the
usage of resources and reduce the makespan of a given set of
MapReduce jobs. Based on each task’s fitness and urgency,
HaSTE dynamically schedules tasks for execution when
resources become available. By further considering each task’s
alignment, our extended scheduler HaSTE-A effectively
addresses the long tail issue caused by iterative jobs. We
implemented both two schedulers in Hadoop YARN v.2.2.0
and evaluated them by running representative MapReduce
benchmarks. The experimental results demonstrated that
HaSTE and HaSTE-A improve the performance in terms of
makespan under different workloads. In the future, we will
extend our HaSTE scheduler to further allow resource alloca-
tion in YARN for other data-flow based frameworks, e.g.,
Spark. We also plan to derive the solution to an optimization
problem for achieving an offline computed optimal makespan.

ACKNOWLEDGMENTS

This work was partially supported by National Science Founda-
tion Career Award CNS-1452751, CNS 109253 and AFOSR grant
FA9550-14-1-0160.

REFERENCES

[1]1 J. Dean, S. Ghemawat, and G. Inc, “MapReduce: Simplified data
processing on large clusters,” in Proc. 6th Symp. Operating Syst.
Des. Implementation, 2004, pp. 137-150.

[2] Spark SQL. (2018). [Online]. Available: https:/ /spark.apache.org/
sql/

[3] Apache storm. (2018). [Online]. Available: http:/ /storm.apache.
org/

[4] Apache hadoop YARN. (2018). [Online]. Available: http://hadoop.
apache.org/docs/ current/hadoop-yarn/hadoop-yarn-site/YARN.

html

[5] Apache hive. (2018). [Online]. Available: https://hive.apache.
org/

[6] Cloudera impala. (2018). [Online]. Available: http://www.
cloudera.com/content/cloudera/en/products-and-services/cdh/
impala.html

[71 L.Page, “Method for node ranking in a linked database,” U.S. Pat-
ent 6 285 999, Sep. 4, 2001.

[8] Apache mahout. (2018). [Online]. Available: https://mahout.
apache.org/

[91 A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker,

and I. Stoica, “Dominant resource fairness: Fair allocation of mul-

tiple resource types,” in Proc. 8th USENIX Conf. Netw. Syst. Des.

Implementation, 2011, pp. 323-336.

G. Ausiello, Complexity and Approximability Properties: Combinatorial

Optimization Problems and their Approximability Properties. Berlin,

Germany: Springer, 1999.

[10]

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

https://spark.apache.org/sql/
https://spark.apache.org/sql/
http://storm.apache.org/
http://storm.apache.org/
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hive.apache.org/
https://hive.apache.org/
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://mahout.apache.org/
https://mahout.apache.org/

YAO ET AL.: NEW SCHEDULING ALGORITHMS FOR IMPROVING PERFORMANCE AND RESOURCE UTILIZATION IN HADOOP YARN...

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

P. Fattahi, M. S. Mehrabad, and F. Jolai, “Mathematical modeling
and heuristic approaches to flexible job shop scheduling prob-
lems,” J. Intell. Manuf., vol. 18, no. 3, pp. 331-342, 2007.

F. Pezzella, G. Morganti, and G. Ciaschetti, “A genetic algorithm
for the flexible job-shop scheduling problem,” Comput. Operations
Res., vol. 35, no. 10, pp. 3202-3212, 2008.

M. Yazdani, M. Amiri, and M. Zandieh, “Flexible job-shop sched-
uling with parallel variable neighborhood search algorithm,”
Expert Syst. Appl., vol. 37, no. 1, pp. 678-687, 2010.

A.Verma, L. Cherkasova, and R. H. Campbell, “ARIA: Automatic
resource inference and allocation for MapReduce environments,”
in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011, pp. 235-244.
J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Steinder,
and I. Whalley, “Performance-driven task co-scheduling for Map-
Reduce environments,” in Proc. IEEE Netw. Operations Manage.
Symp., 2010, pp. 373-380.

V. V. Vazirani, Approximation Algorithms. Berlin, Germany:
Springer, 2001.

R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and
A. Akella, “Multi-resource packing for cluster schedulers,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, pp. 455-466, 2015.
R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for
vector bin packing,” Research. Microsoft. Com, 2011.

D. S. Johnson, “Vector bin packing,” in Encyclopedia of Algorithms.
Berlin, Germany: Springer, 2014, pp. 1-6.

J. Blazewicz, J. K. Lenstra, and A. Kan, “Scheduling subject to
resource constraints: Classification and complexity,” Discrete
Appl. Math., vol. 5, no. 1, pp. 11-24, 1983.

P. Brucker, A. Drexl, R. Mohring, K. Neumann, and E. Pesch,
“Resource-constrained project scheduling: Notation, classification,
models, and methods,” Eur. J. Oper. Res., vol. 112, no. 1, pp. 3-41, 1999.
T. R. Browning and A. A. Yassine, “Resource-constrained multi-
project scheduling: Priority rule performance revisited,” Int. |.
Prod. Econ., vol. 126, no. 2, pp. 212-228, 2010.

R. Kolisch and S. Hartmann, Heuristic Algorithms for the Resource-
Constrained Project Scheduling Problem: Classification and Computa-
tional Analysis. Berlin, Germany: Springer, 1999.

A. Sinha and P. K. Jana, “A novel MapReduce based k-means
clustering,” in Proc. Ist Int. Conf. Intell. Comput. Commun., 2017,
pp. 247-255.

Cloud lab. (2018). [Online]. Available: https:/ /www.cloudlab.us/
M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
and I. Stoica, “Delay scheduling: A simple technique for achieving
locality and fairness in cluster scheduling,” in Proc. 5th Eur. Conf.
Comput. Syst., 2010, pp. 265-278.

M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and
A. Goldberg, “Quincy: Fair scheduling for distributed computing
clusters,” in Proc. ACM SIGOPS 22nd Symp. Operating Syst. Princi-
ples, 2009, pp. 261-276.

A. Verma, L. Cherkasova, and R. H. Campbell, “Two sides of a
coin: Optimizing the schedule of MapReduce jobs to minimize their
makespan and improve cluster performance,” in Proc. IEEE 20th Int.
Symp. Model. Anal. Simul. Comput. Telecommun. Syst., 2012, pp. 11-18.
J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “Fresh: Fair and effi-
cient slot configuration and scheduling for hadoop clusters,” in
Proc. IEEE 7th Int. Conf. Cloud Comput., 2014, pp. 761-768.

D. Cheng, J. Rao, Y. Guo, C. Jiang, and X. Zhou, “Improving per-
formance of heterogeneous MapReduce clusters with adaptive
task tuning,” IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 3,
pp- 774-786, Mar. 2017.

Y. Yao, J]. Wang, B. Sheng, and N. Mi, “Using a tunable knob for
reducing makespan of MapReduce jobs in a hadoop cluster,” in
Proc. IEEE 6th Int. Conf. Cloud Comput., 2013, pp. 1-8.

S. Tang, B.-S. Lee, and B. He, “Dynamic job ordering and slot con-
figurations for MapReduce workloads,” In IEEE Trans. Services
Computing, vol. 9, no. 1, pp. 4-17, 2016.

S. Gupta, C. Fritz, B. Price, R. Hoover, J. de Kleer, and C. Wit-
teveen, “ThroughputScheduler: Learning to schedule on heteroge-
neous hadoop clusters,” in Proc. 10th ACM Int. Conf. Autonomic
Comput., 2013, pp. 159-165.

J. Polo, C. Castillo, D. Carrera, Y. Becerra, I. Whalley, M. Steinder,
J. Torres, and E. Ayguadé, “Resource-aware adaptive scheduling
for MapReduce clusters,” in Proc. 12th ACM/IFIP/USENIX Int.
Conf. Middleware, 2011, pp. 187-207.

M. Wasi-ur Rahman, N. S. Islam, X. Lu, and D. K. D. Panda, “A
comprehensive study of MapReduce over lustre for intermediate
data placement and shuffle strategies on HPC clusters,” IEEE
Trans. Parallel Distrib. Syst., vol. 28, no. 3, pp. 633646, Mar. 2017.

[36]

[371]

[38]

[39]

171

F. Afrati, S. Dolev, E. Korach, S. Sharma, and J. D. Ullman,
“Assignment problems of different-sized inputs in MapReduce,”
ACM Trans. Knowl. Discovery Data, vol. 11, no. 2, 2016, Art. no. 18.
C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramak-
rishnan, and S. Rao, “Reservation-based scheduling: If you're late
don’t blame us!” in Proc. ACM Symp. Cloud Comput., 2014, pp. 1-14.
J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A runtime for iterative MapReduce,” in Proc. 19th
ACM Int. Symp. High Perform. Distrib. Comput., 2010, pp. 810-818.

Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Effi-
cient iterative data processing on large clusters,” Proc. VLDB
Endowment, vol. 3, no. 1/2, pp. 285-296, 2010.

Yi Yao received the BS and MS degrees in com-
puter science from the Southeast University,
China, in 2007 and 2010, respectively. He is
working toward the PhD degree in the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston, Massachusetts.
His current research interests include resource
management, scheduling, and cloud computing.

Han Gao received the BS degree in communica-
tion engineering from Nankai University, China,
in 2013, and the MS degree in electrical engineer-
ing from Pennsylvania State University, Pennsyl-
vania, in 2015. He is working toward the PhD
degree in the Department of Electrical and
Computer Engineering, Northeastern University,
Boston, Massachusetts. His current research
interests include distributed system, hadoop and
spark scheduling, and cloud computing.

Jiayin Wang received the bachelor’'s degree in
electrical engineering from Xidian University,
China, in 2005, and the PhD degree from the Uni-
versity of Massachusetts Boston, in 2017. She is
currently an assistant professor with the Com-
puter Science Department, Montclair State Uni-
versity. Her research interests include cloud
computing and wireless networks.

Bo Sheng received the PhD degree in computer
science from the College of William and Mary, in
2010. He is an assistant professor with the
Department of Computer Science, University of
Massachusetts Boston. His research interests
include mobile computing, wireless networks,
security, and cloud computing.

Ningfang Mi received the BS degree in computer
science from Nanjing University, China, in 2000,
the MS degree in computer science from the Uni-
versity of Texas at Dallas, Texas, in 2004, and the
PhD degree in computer science from the College
of William and Mary, Virginia, in 2009. She is an
assistant professor with the Department of Electri-
cal and Computer Engineering, Northeastern
University, Boston, Massachusetts. Her current
research interests include performance evalua-
tion, capacity planning, resource management,
simulation, data center, and cloud computing.

> For more information on this or any other computing topic,

please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:19:44 UTC from IEEE Xplore. Restrictions apply.

https://www.cloudlab.us/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

