
New YARN Non-Exclusive Resource
Management Scheme through Opportunistic

Idle Resource Assignment
Zhengyu Yang , Yi Yao, Han Gao , Jiayin Wang , Ningfang Mi, and Bo Sheng

Abstract—Efficiently managing resources and improving throughput in a large-scale cluster has become a crucial problem with

the explosion of data processing applications in recent years. Hadoop YARN and Mesos, as two universal resource management

platforms, have been widely adopted in the commodity cluster for co-deploying multiple data processing frameworks, such as Hadoop

MapReduce and Apache Spark. However, in the existing resource management, a certain amount of resources are exclusively

allocated to a running task and can only be re-assigned after that task is completed. This exclusive mode unfortunately leads to a

potential problem that may under-utilize the cluster resources and degrade system performance. To address this issue, we propose

a novel opportunistic and efficient resource allocation scheme, named OPERA, which breaks the barriers among the encapsulated

resource containers by leveraging the knowledge of actual runtime resource utilizations to re-assign opportunistic available resources

to the pending tasks. OPERA avoids incurring severe performance interference to active tasks by further using two approaches to

efficiently balances the starvations of reserved tasks and normal queued tasks. We implement and evaluate OPERA in Hadoop YARN

v2.5. Our experimental results show that OPERA significantly reduces the average job execution time and increases the resource

(CPU and memory) utilizations.

Index Terms—Resource allocation, MapReduce scheduling, Hadoop YARN, spark, opportunistic, starvation, reservation

Ç

1 INTRODUCTION

WITH the rise of big data analytics and cloud computing,
cluster-based large-scale data processing becomes a

common paradigm in many applications and services. Many
cluster computing frameworks have been developed to sim-
plify distributed data processing on clusters of commodity
servers in the past decades. For example, Hadoop MapRe-
duce [1], [2], as one of the prominent frameworks, has been
widely adopted in both academia and industry for un-struc-
tured data processing [3]. As data sources become more
diverse and parallel data processing algorithms become
more complex, it is not possible for a single framework to be
optimal for all applications. New frameworks are emerging
in recent years and thriving to address different large-scale
data processing problems. For example, Apache Spark [4],
[5] was introduced to optimize iterative data processing and
Apache Storm [6] was proposed to deal with streaming data.

A fundamental research issue in the field is that given
the available computing resources in a cluster, how to
efficiently manage the executions of a large volume of jobs.
The emerging data processing systems as well as their
resource management frameworks possess unique features
compared to the traditional cluster computing systems. To
better accommodate diverse data processing requirements,
the common practice is to co-deploy multiple frameworks
in the same cluster and choose the most suitable ones for
different applications. A centralized resource management
service is deployed to allocate a certain amount of resources
to form a resource container at one of the servers to execute a
task.Two popular and representative resource management
platforms are Hadoop YARN [7] and Apache Mesos [8],
which share the similar designs with centralized resource
allocation and fine-grained resource representation. When
the cluster is initially launched, each node declares its
resource capacities, e.g., the number of CPU cores and the
memory size. Meanwhile, applications from different
frameworks send resource requests for their tasks to the
centralized resource manager. The resource management
tracks the available resources when allocating the contain-
ers, and guarantees that the resources occupied by all the
containers on a host do not exceed its capacities.

While providing easy management and performance iso-
lation, the existing exclusive mode of resource container
leads to a potential problem that may underutilize the clus-
ter resources and degrade system performance significantly.
For example, a production cluster at Twitter managed by
Mesos has reported to have its aggregated CPU utilization

� Z. Yang, Y. Yao, H. Gao, and N. Mi are with the Department of Electrical &
Computer Engineering, Northeastern University, 360 Huntington Ave.,
Boston,MA 02115 USA. E-mail: yang.zhe@husky.neu.edu, {yyao, ningfang}
@ece.neu.edu, gaohapply@gmail.com.

� B. Sheng is with the Department of Computer Science, University of
Massachusetts Boston, 100Morrissey Boulevard, Boston,MA 02125. USA
E-mail: shengbo@cs.umb.edu.

� J. Wang is with Computer Science Department, Montclair State Univer-
sity, 1 Normal Ave, Montclair, NJ 07043 USA. E-mail: jane@cs.umb.edu.

Manuscript received 8 Nov. 2016; revised 23 Jan. 2018; accepted 25 Aug.
2018. Date of publication 29 Aug. 2018; date of current version 4 June 2021.
(Corresponding author: Zhengyu Yang).
Recommended for acceptance by G. Agrawal.
Digital Object Identifier no. 10.1109/TCC.2018.2867580

696 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

2168-7161 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9822-5843
https://orcid.org/0000-0002-9822-5843
https://orcid.org/0000-0002-9822-5843
https://orcid.org/0000-0002-9822-5843
https://orcid.org/0000-0002-9822-5843
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0003-2399-5007
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
https://orcid.org/0000-0001-5103-6132
mailto:
mailto:
mailto:
mailto:
mailto:
mailto:

lower than 20 percent [9] when reservations reach up to 80
percent. Similarly, Google’s Borg system has reported an
aggregated CPU utilization of 25-35 percent while reserved
CPU resources exceed 70 percent [10]. The major reason of
such a low utilization is that the resources (e.g., CPU cores
and memory) occupied by a task will not be released until
that task is finished. However, tasks from many data proc-
essing applications often exhibit fluctuating resource usage
patterns. These tasks may not fully use all the resources
throughout their executions. As an example, a reduce task
in MapReduce usually has low CPU utilization during its
shuffle stage but demands more CPU resources once all
intermediate data are received. Another example is an inter-
active Spark job. The resource usage of its tasks can be
extremely low during a user’s thinking time but signifi-
cantly increases upon the arrival of a user request.

To solve this problem, we present a new opportunistic
and efficient resource allocation scheme, named OPERA,
which aims to break the barriers among the encapsulated
resource containers by sharing their occupied resources.
Rather than developing one-off solutions for a specific sys-
tem like Hadoop, our goal is to develop general techniques
that can be integrated into a unified resource management
framework such that the cluster resources can be shared by
multiple data processing paradigms to increase resource
utilization and cost efficiency. The main idea of our
approach is to leverage the knowledge of actual runtime
resource utilizations as well as future resource availability
for task assignments. When a task becomes idle or is not
fully utilizing its reserved resources, OPERA re-assigns the
idle resources to other pending tasks for execution.

In particular, when a running task is observed to be idle or
not fully utilize its assigned resources, OPERA aggressively
assigns the spare resources to waiting tasks. There are two
key problems that we need to consider in the design of this
new approach. First, resource usage can dynamically change
across time. Second, a server node can be overloaded due to
resource over-provisioning, which may incur performance
interference and degrade the performance of all active tasks.
Therefore, in this paper, our solution presents the following
contributions to solve these problems:

� dynamically monitors the runtime resource
utilization;

� classifies the pending tasks to determine if each task
is eligible for the new opportunistic resource
allocation;

� efficiently assigns the idle resources occupied by the
running tasks to other eligible pending tasks, and
integrates the new approach with the existing
resource allocation;

� mitigates severe resource contentions caused by
opportunistic resource allocation;

� effectively avoids the starvation of both reserved
tasks and normal queued tasks.

We implement OPERA in Hadoop YARN and evaluate its
performance with a set of representative MapReduce and
Spark applications. Our experimental results show that our
OPERA with three resource releasing schemes can signifi-
cantly reduce the average job execution time and increase
the resource (memory and CPU) utilizations. We also show

that OPERA is able to make better use of the opportunistic
resources when Spark or interactive jobs are waiting for
intermediate data or user input and further improve the
overall performance. Three schemes for releasing resources
when severe resource contentions happen have been investi-
gated in our evaluation as well. We find that although the
conservative scheme does not aggressively utilize idle
resources, this scheme reduces both the number of killed
tasks and the amount of wasted work and thus mitigates the
performance degradation incurred by resource contention.

The organization of this paper is as follows. We present
our understandings of task resource usage patterns and the
intuition of opportunistic resource allocation in Section 2.
Section 3 describes details of our new opportunistic resource
allocation scheme. The performance of this new scheme is
evaluated under the workloads mixed with MapReduce and
Spark jobs in Section 4. The related work is presented in Sec-
tion 5.We finally give our conclusion in Section 6.

2 MOTIVATION

2.1 Understanding Task Resource Usage Patterns

In the current resource management, a certain amount of
resources are exclusively allocated to each running task, and
will be recycled (i.e., re-assigned) only after the task is com-
pleted. This mechanism works well with short-lived, fine-
grained tasks that usually process a consistent workload
throughout their executions. When the cluster resources are
repeatedly assigned to serve this type of tasks, the entire
system can consistently keep a high resource utilization.
However, if data processing jobs include tasks with long life
cycles, the current resource management may not work effi-
ciently. Long tasks usually consist of multiple internal
stages and may have different resource usage patterns in
each stage. For example, reduce tasks include two stages:
data transfer/shuffling and reduce. Network bandwidth is
the main resource consumed in the former stage and CPU
resources are mainly used in the latter stage. The current
framework allocates a fixed amount of resources through-
out the life time of the task often leading to low resource uti-
lization. In the above example of reduce tasks, the CPU
utilization is low in the first stage of shuffling.

To explore this issue, we conduct experiments in a YARN
cluster of 20 slave nodes (8 CPU cores and 16 GB memory
per node) to better understand the task resource usage pat-
terns. In these experiments, we launch a TeraSort job (sorting
a randomly generated 50 GB input data) on a MapReduce
Hadoop platform and a pathSim job (a data mining algorithm
to analyze the similarity between authors using the academic
paper submission records [11]) on a Spark platform. Fig. 1
shows the measured CPU and memory utilizations during
the execution of different tasks. We observe that resource
usages of all tasks, especially CPU utilizations, are fluctuat-
ing over the time. For example, the CPU utilizations of
reduce tasks (see Fig. 1b) are extremely low for a long period
(e.g., 100s � 140s) because reduce tasks are waiting for the
output ofmap tasks. Similarly, the resource usages of a Spark
job change across time, see Fig. 1c and 1f. The CPU utili-
zations of that Spark job range from 20 to 96 percent.
Meanwhile, as Spark is a memory processing framework,
we request 9 GB memory for each task of that Spark job.

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 697

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

However, we find that the assignedmemory (i.e., 9 GB) is not
always fully utilized by each task, especially at the beginning
of the processing, as shown in Fig. 1f.

2.2 Impact of Opportunistic Resource Allocation

One possible solution to avoid low resource utilizations is to
use time series data (such as actual resource demands) for
resource allocation. However, this solution is barely practical.
It is difficult to accurately predict actual resource usages of
tasks running in many frameworks. It can also dramatically
increase the complexity of resource allocation even if a precise
prior knowledge is available. Therefore, we consider an alter-
native solution that attempts to improve resource utilizations
by opportunistically allocating resources for tasks, i.e., reas-
signing the occupied but idle resources to other pending tasks.

We here investigate the impact of such an opportunistic
scheduling on data processing performance in order to
understand how to best utilize system resources without
causing severe performance interference. We execute Spark
jobs in a YARN cluster under both the existing resource
allocation scheme (i.e., the current scheme which reserves
resources during the lifetime of a task) and a simple oppor-
tunistic resource allocation scheme. In these experiments,
we set two slave nodes with the capacity of 12 CPU cores
and 44 GB memory each and submit 2 Spark jobs, each of
which has 8 executor tasks.

Fig. 2 depicts the runtime memory usages of each execu-
tor task running on a slave node, and Fig. 3 shows the run-
time IOwait ratios of that node. We observe that when we
request 9 GB memory for each task, only 4 tasks (or execu-
tors) can be launched on each node under the existing
scheme, see Fig. 2a. On each node, 36 GB memory in total
has been reserved for the first job while the remaining 8 GB
memory is not enough to run the tasks from the second job.
In such a case, the second job has to wait till the first
one completes and releases its resources, i.e., around time
600 seconds in Fig. 2a. Obviously, memory resources are
not always fully utilized across time under the existing

scheme. On the other hand, low IOwait ratios are observed
in Fig. 3a, which indicates that no resource contention hap-
pens since each task is guaranteed to maintain its requested
9 GB memory during the entire period of its execution.

To make better use of the resources, we consider a simple
opportunistic resource allocation solution that simply enfor-
ces both jobs to be executed concurrently by ignoring the
resource capacity limit. The memory utilization is signifi-
cantly improved as shown in Fig. 2b. However, we find that
the total completion length (i.e., makespan) of two jobs is
increased. This is due to the fact that the total effective
demand of memory eventually exceeds the capacity, which

Fig. 1. The CPU and memory utilizations of the tasks from a MapReduce TeraSort job and a Spark pathSim job.

Fig. 2. Runtime memory usages on a node. Plot (a) shows the results
under the existing resource allocation and Plot (b) shows the results
under a simple opportunistic resource allocation scheme.

698 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

causes a severe memory contention when the running tasks
from both jobs start to request more memory resources.
Such memory contention incurs more IOs for swapping
(e.g., the high IOwait ratios in Fig. 3d), which further
degrades overall performance.

The above results give us some implications that oppor-
tunistic resource allocation does have potentials to improve
the resource utilization. However, it comes with the risk of
severe resource contention. Simply reassigning idle resour-
ces to a random pending task may not work well in practice.
Motivated by theses findings, we develop a new approach,
OPERA, that can identify an appropriate set of idle resour-
ces and assign them to suitable pending tasks.

3 THE DESIGN OF OPERA

In this section, we present a new opportunistic resource allo-
cation approach, namedOPERA, which leverages the knowl-
edge of the actual runtime resource utilizations to determine
the availability of system resources and dynamically re-
assigns idle resources to the waiting tasks. The primary goal
of this design is to break the barriers among the encapsulated
resource containers and share the reserved resources among
different tasks (or containers) such that the overall resource
utilization and system throughput can be improved.

3.1 Sketch of OPERA

As a resource management scheme, OPERA’s goal is to
assign the available resources in the system to the pending
tasks. However, the definition of “available resources” in
OPERA is different from that in the traditional systems. They
include not only the resources that have not yet been
assigned to any tasks, but also the occupied resources that
are idle at the runtime. Therefore, OPERA includes two types
of resource allocations, normal resource allocation and opportu-
nistic resource allocation, referring to assigning the former and
the latter types of available resources, respectively. Then, the

basic design of OPERA boils down to two tasks, identifying
the available resources under the new definition, and select-
ing a candidate pending task for execution.

We first define some terms that will be used in our
design:

� Opportunistic/guaranteed available resources: When
assigning guaranteed available resources to a task, our
OPERA system always guarantees that those resour-
ces are available throughout that task’s lifetime. On
the other hand, if a task is assigned with opportunistic
available resources, it might lose these resources and
get terminated during its execution.

� Opportunistic/normal tasks: The tasks that are served
with/without opportunistic available resources.

In particular, we develop OPERA on the top of the exist-
ing Hadoop YARN framework. The architecture is illus-
trated in Fig. 4. We develop the following three major
components (the grey parts in Fig. 4).

Task Classifier. The goal of this component is to identify the
eligible pending tasks for opportunistic resource allocation.
As we discussed in Section 2, opportunistic resource alloca-
tion is not suitable for all tasks. It is based on resource over-
provisioning, and could cause severe resource contentions.
In our design, only short tasks are eligible for opportunistic
resource allocation because longer tasks are more likely to
cause resource contentions. However, estimating the execu-
tion time of task is challenging in practice. This component is
developed to dynamically and accurately classify all the
pending tasks into two categories, i.e., short and long.

NodeManager Monitor. This component runs on each clus-
ter node and mainly provides two functions. First, it moni-
tors the dynamic usage of the occupied resources, i.e., the
CPU and memory serving the active tasks on the node, and
periodically reports the status to the ResourceManager.
This function helps the ResourceManager estimate the
available resources on each node for opportunistic resource
allocation. Accurate reports in a timely fashion are crucial
to the system performance. The second function of this com-
ponent is to mitigate severe resource contentions when the
total effective resource utilization is close to or over 100 per-
cent. Multiple strategies are adopted in this component.

Opportunistic Scheduler. The last component is the core in
our system. This component manages both normal and

Fig. 3. Runtime IOwait ratios on a node. Plot (a) shows the results under
the existing resource allocation and Plot (b) shows the results under a
simple opportunistic resource allocation scheme.

Fig. 4. The architecture of the OPERA-based YARN framework. The
modified and newly designed components are marked in grey.

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 699

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

opportunistic resource allocations. When applying opportu-
nistic resource allocation, this component identifies the avail-
able resources in the system based on the actual resource
usage collected by NodeManager Monitor, and allocates them
to the eligible pending tasks determined by Task Classifier.

The details of the above components are discussed in the
following subsections. Table 1 lists a summary of notations
used in this section.

3.2 Task Classifier

Task Classifier is expected to classify all the pending tasks
into two categories (i.e., short and long), indicating whether
they are eligible for the opportunistic resource allocation.
Our design basically includes two steps: (1) estimate the
execution time of a task; (2) compare it to a threshold to
determine the category it belongs to. The classification accu-
racy is the major concern in our design.

The execution time of a task is hard to be profiled before
the execution because it depends on some runtime parame-
ters such as the hardware of the processing cluster. Prior
work [12], [13] attempted to use historic statistics of the same
type of tasks in the same job to estimate the execution time.
We adopt the same approach and extend it to consider the
historic information from other applications and even other
frameworks. The intuition is that the tasks from the same
processing stage of the same type of applications usually
have an identical function, process the input data with simi-
lar size, and thus have similar execution time. For example,
in a MapReduce system, the input data size of each map task
is configured by a systemparameter. Consider a cluster proc-
essing two wordcount applications such that one with 10 GB
input data and the other with 100 GB input data. Different
input data sizes only yield different numbers of map tasks.
All map tasks in these two applications will process similar
size of input files and have similar execution time.

Obviously, the historic task execution information is help-
ful. However, the challenge here is to estimate the execution
time when there is no exactly matching historic information.
For example, the first batch ofmap tasks of a new type ofMap-
Reduce application and reduce tasks in general MapReduce
jobs (usually there are only a few reduce tasks and they may
not become effective references to each other). Our solution
aims to derive an estimation based on the information from
different processing stages, applications, and frameworks.

In OPERA, we adopt the naive Bayes classifier [14] to
identify tasks as short or long. It has been widely used in text

classification and spam filtering due to its high accuracy
and low overhead on both storage and computation. And
we address the challenges of task classification by present-
ing a new hierarchy approach that considers the following
five properties of each task t.

� Ft: the framework of task t, e.g., MapReduce, Spark,
and Storm;

� At: the application name of task t, e.g., wordcount
and sort;

� St: the processing stage that task t belongs to;
� Pt: the progress of the application that task t belongs

to;
� Dt: the resource demands of task t.
The first three properties (fFt; At; Stg) identify the com-

putation process of each task t, e.g., {MapReduce, Word-
Count, Map}, and {Spark, PageRank, Stage 3}. Their values
represent the computation details with different granular-
ities. The last two properties are runtime parameters config-
ured by the users. Apparently, with different resource
demands (Dt), the execution time of the same task could
vary. The progress of the application (Pt) is another implicit
factor that may affect the execution time. For example, the
user can configure a MapReduce application such that its
reduce tasks will start after all its map tasks are finished or
the reduce tasks can start when half of the map tasks are
completed. In either of these configurations, given different
progress values (e.g., all or half of map tasks finish) of the
job, the execution time of a reduce task will be different. We
then define the features of each task t as a tuple using Eq. 1.

F t ¼ ffFtg; fFt; Atg; fFt; At; Stg;
fFt; At; St; Ptg; fFt; At; St; Pt;Dtgg

(1)

We find that combining these task properties together to
form such hierarchy features provides more meaningful hints
for a better prediction accuracy. In fact, considering each of
these properties individually does not provide useful infor-
mation for classification. For example, the map tasks (same
St) in different MapReduce applications may yield different
execution times; the tasks from the same application “sort”
(same At) in MapReduce and Spark frameworks may not
have the same execution time. However, on the other extreme
side, if we classify tasks only based on the historic information
from the tasks with the same values of all properties, there
will be a lack of information for many tasks and we will miss
the correlation between the tasks that share a subset of the
properties. Therefore, we decide to combine different task
properties in a hierarchical structure in order to explore the
correlation between “similar” tasks and confine our estima-
tion in a reasonable scope to accurately classify the tasks.

Once a task t’s features (F t) are determined, we calculate
the posterior probability (P ðCjF tÞ) of its category (Ct) using
Eq. (2), (3) as follows.

P ðCtjF tÞ / P ðCtÞ � P ðF tjCtÞ; (2)

P ðF tjCtÞ ¼
Y

i

P ðF i
tjCtÞ; (3)

whereCt 2 fshort; longg andF i
t represents the ith element of

the feature tupleF t. Task t is then classified to one of the two

TABLE 1
Notations in this Section

Notation Description

ni / t node i / task t
r a general resource r 2 fCPU, memoryg
CiðrÞ resource capacity (r) of ni

NTi / OTi normal / opportunistic task set on ni

RTi set of all running tasks on ni, RTi ¼ NTi [OTi

DtðrÞ resource demand (r) of task t
NUiðrÞ total resource usage (r) on ni

TUtðrÞ resource usage (r) of task t,NUiðrÞ ¼
P

t2RTi TUt

GAiðrÞ guaranteed available resource (r) on ni

OAiðrÞ opportunistic available resource (r) on ni

tri reserved task on node i

700 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

categorieswhich yields a higher posterior probability. Proba-
bilities, e.g., P ðCtÞ; P ðF i

tjCtÞ used in Eq. (2), (3), are on-line
learned and updated upon the completion of tasks. We
determine the category (short or long) of the finished tasks
by checking if their execution times are less than a threshold
(e.g., 1 minute) and update all the related probabilities with
tasks’ features and category information. There is a special
case when an application with all new features is submitted,
i.e., no historical information can be referred. In our solution,
we opt to conservatively classify the task as a long one.

3.3 NodeManager Monitor

The key idea of our newopportunistic scheduling scheme is to
assign idle resources to the pending tasks based on the actual
runtime resource usages. Therefore, we develop a monitor
module on NodeManagers to (1) keep tracking both CPU and
memory usages of the running tasks and sending the collected
usage information to ResourceManager through heartbeat
messages; and (2) detect and solve performance interferences
caused by resource contentions when the resources on a node
have been over provisioned and the overall resources occu-
pied by the running tasks exceed the node’s capacity.

Algorithm 1.Node Monitoring

DATA: CiðrÞ; POLICY;BRi;BTi

1: Procedure Monitoring()
2: While TRUE do
3: NUiðrÞ 0, op false, c “NONE”;
4: foreach t in RTi (the set of running tasks) do
5: NUiðrÞ NUiðrÞ þ CurrentUsageðrÞ;
6: if t is an opportunistic task then
7: op true;
8: if op then
9: c ¼ CResðNUiÞ;
10: RelieveContentionðc; POLICY Þ;
11: SLEEPMonitorInterval;
12: Procedure CRes (NUi)
13: if NUiðmemÞ > r � CiðmemÞ then
14: return ‘‘Memory”;
15: if NUiðCPUÞ > r � CiðCPUÞ then
16: return “CPU”;
17: return “NONE”;
18: Procedure RelieveContention (c; PO)
19: if PO ¼ AGGRESSIVE and c ¼Memory then
20: kill the most recently launched opportunistic task;
21: else if PO ¼ NEUTRAL and c 6¼ NONE then
22: kill the most recently launched opportunistic task;
23: else if PO ¼ PRESERVE then
24: if c 6¼ NONE then
25: kill the most recently launched opportunistic task;
26: BRi a �BRi;
27: BTi a �BTi;
28: LastReliefTime ¼ CurrentTime;
29: else
30: if CurrentTime� LastReliefTime > BTi

31: then
32: BRi BRi=a;
33: BTi BTi=a;
34: LastReliefTime ¼ CurrentTime;

Algorithm 1 shows the main process for monitoring
resource utilization, detecting and mitigating resource

contention on a working node which consists of three mod-
ules. In particular, the first module (lines 1–11) periodically
collects the CPU and memory usages of the running tasks.
NUiðCPUÞ and NUiðmemÞ represent the CPU and memory
usage on node ni, respectively. We use op to check if there
exists any opportunistic task on the node (lines 6-7). If op is
false, there will be no resource contention caused by the
opportunistic resource allocation. Otherwise, resource con-
tention is possible, and we call the function CRes (line 9) to
check the effective resource utilization and return the type
of contented resource indicated by variable c. Eventually,
the algorithm calls RelieveContention function to mitigate
the resource contention. The arguments passed to the func-
tion are the type of the resource that causes the contention
(“CPU”, “Memory”, or “NONE”), and the user-specified
policy for handling the contention.

The second module, CRes (lines 12-17), simply compares
the resource usage NUiðCPUÞ and NUiðmemÞ with a pre-
defined threshold. If the threshold has been exceeded, the
algorithm determines that there exist resource contentions,
and reports the type of the contended resource to the main
monitoring module. In the algorithm, we set the threshold
as r � Ci, where CiðCPUÞ and CiðmemÞ are the CPU and
memory capacity of node ni. r is an adjusting parameter
that can tune the performance of our scheme. By default, we
set r to 0.95. Note that if both CPU and memory have con-
tentions, this module returns “Memory” as we give memory
contention a higher priority to be mitigated.

Finally, in the third module, RelieveContention (lines 18–
33), offers the following policies to solve the problem of per-
formance interference caused by resource contentions.

� AGGRESSIVE: this policy kills the most recently
launched opportunistic task only when the monitor
detects contention on memory resources.

� NEUTRAL: this policy kills the most recently
launched opportunistic task under either CPU or
memory contention.

� PRESERVE: this policy applies the same behaviors as
NEUTRAL. It further blocks some opportunistic
available resources on the node for a period of time.

In all three policies, when resource contentions are
detected, the NodeManager attempts to kill the most
recently launched opportunistic task to reduce the resource
consumption.

AGGRESSIVE policy (lines 19–20) only checks memory
contentions. This policy ignores the CPU contention because
it is usually less harmful and does not lead to task failures as
memory contention does. As opportunistic tasks are rela-
tively short and can release the occupied resources quickly,
AGGRESSIVE policy tends to aggressively keep these oppor-
tunistic tasks running even under CPU contentions for
achieving a better overall performance. On the other hand,
the drawback of this policy is that the normally reserved
resources cannot always be guaranteed especially during the
periods of system overloading. In contrast, NEUTRAL is a
conservative policy (lines 21–22) that kills opportunistic
tasks under both CPU and memory resource contentions.
Clearly, this policy can guarantee the reserved resources but
might incur frequent task terminations, especially when
resource utilizations of the running tasks are oscillating.

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 701

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

To guarantee the reserved resources without killing too
many tasks, we further present a PRESERVE policy for con-
tention mitigation, by introducing the concepts of blocked
resource (BRi) and block time (BTi), see lines 23-33 of Algo-
rithm 1. Besides killing opportunistic tasks, this policy fur-
ther blocks a certain amount (BRi) of opportunistic available
resources of node ni for a time window (BTi). Under the
PRESERVE policy, the opportunistic scheduler estimates
opportunistic available resources (OAi) by considering both
the actual resource usage of running tasks (TUt) and the
amount of blocked resources (BRi), as shown in Eq. (4).

OAiðrÞ ¼ CiðrÞ �
X

t2RTi

TUtðrÞ �BRiðrÞ: (4)

The values of BRi and BTi are adjusted exponentially in our
solution. As shown in lines 26–27, We double the values of
BRi (i.e., to reserve more blocked resources) and BTi (i.e., to
decrease the availability of opportunistic assignment) to be
more conservative if a new resource contention is detected
within the current block time window. Similarly, the values
of BRi and BTi are decreased exponentially by a factor of a,
if no resource contention has been detected in the past time
window BTi, see line 31 to 32.

3.4 Opportunistic Scheduler

Next, we present the last component in this subsection. As
discussed in Section 2, the ResourceManager under the cur-
rent YARN framework considers each resource container
exclusively allocated for a single task. When assigning
resources to a pending task, the ResourceManager checks
the available resources on each node as follows,

CiðrÞ �
X

t2RTi

DtðrÞ: (5)

However, in practice, the tasks do not always fully utilize their
assigned resources during their executions. The traditional
resource allocation often leads to a low resource utilization.

To address this issue, we develop the opportunistic
scheduler, which considers both guaranteed available resour-
ces and opportunistic available resources. The key difference
between these two types of resource allocations is the calcu-
lation of the available resources. The guaranteed available
resources (GAiðrÞ) are defined in Eq. (6), which equal to the
differences between the resource capacities and the total
resource demands of the normal tasks on node ni. When cal-
culating the opportunistic available resources (OAiðrÞ), we
consider the runtime resource usages of the running tasks
rather than their resource demands, see Eq. (7).

GAiðrÞ ¼ CiðrÞ �
X

t2NTi

DtðrÞ; (6)

OAiðrÞ ¼ CiðrÞ �
X

t2RTi

TUtðrÞ; (7)

where CiðrÞ represents the capacity of resource r of node ni

and DtðrÞ and TUtðrÞ represent task t’s resource demand
and resource usage, respectively.

Algorithm 2 presents the high level idea of our scheduling
scheme. When allocating available resources, the opportunis-
tic scheduler always first tries to assign guaranteed available

resources, i.e., normal resource assignment (lines 2–3). If the
resource demand of the task cannot be fulfilled, the scheduler
then attempts to allocate opportunistic available resources
(lines 4–5).

Algorithm 2. Task Assignment

Data: ni;GAi; OAi; tri;Dt

1: Procedure Assign (t,Dt)
2: if NormalAssign (t,Dt) then
3: return true;
4: else if OpportunisticAssign(t,Dt) then
5: return true;
6: return false;
7: Procedure NormalAssign (t;Dt)
8: ifDtðrÞ < GAiðrÞ then
9: GAiðrÞ GAiðrÞ �DtðrÞ;
10: OAiðrÞ OAiðrÞ �DtðrÞ;
11: Assign task t to node ni;
12: return true;
13: return false;
14: Procedure OpportunisticAssign(t,Dt)
15: if t is eligible for opportunistic resource allocation then
16: ifDtðrÞ < OAiðrÞ then
17: OAiðrÞ OAiðrÞ �DtðrÞ;
18: Assign task t to node ni;
19: return true;
20: return false;

3.5 Task Reservation

The last problem of task assignment is how to address the
“insufficient resource” scenario for both normal and oppor-
tunistic assignment. That is, neither guaranteed resources
nor opportunistic resources are sufficient for task and the
Assign function in Algorithm 2 returns false. Here, we pres-
ent two approaches to handle this insufficiency scenario.

3.5.1 Strict Reservation Approach

Our first approach is to strictly follow the order of tasks in the
task queue (i.e., strict reservation). When an “insufficiency”
event happens (i.e., the task is not eligible for opportunistic
scheduling or still cannot fit into the opportunistic available
resources on the node), the scheduler reserves this task on
the node and stops the assignment process until receiving
the next heartbeat message. Our scheduler treats the
selected task as a reserved one which has a higher priority to
receive the available resources in the future.

Algorithm 3 shows the main procedure of this strictly
approach for node update. As discussed in Section 3.1, the
NodeManager of each working node periodically sends
heartbeat messages to the ResourceManager, which includes
the node’s health status and runtime resource utilizations of
each running task. Once receiving a heartbeat message from
one working node, our scheduler updates both guaranteed
and opportunistic available resources of that node using
Eqs. (6) and (7) (line 2) , and then tries to fulfill the previous
reserved task (tri) on the particular node if there exists one
(line 5 to 9). Otherwise, the scheduler sorts the task queue
based on the Fair queuing discipline (i.e., the deficit between
their deserved fair share of cluster resources and actual occu-
pied resources) to choose a task t for assigning the available
resources to, see in lines 10 to 14. As discussed, this task will

702 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

be reserved as tri line 13, if the scheduler cannot assign either
guaranteed or opportunistic available resources for the task
t. The scheduler will return and assign the available resource
to this reserved task in the next round.

Algorithm 3.Node Update (Strict Approach)

Data: ni;GAi;OAi; tri;Dt

1: Procedure NodeUpdate (ni)
2: Update GAi;OAi;
3: if GAi < MinTaskDemand and

OAi < MinTaskDemand then
4: return;
5: tri GetReservedTaskðniÞ;
6: if tri 6¼ NULL then
7: if Assignðtri;DtriÞ then
8: tri ¼ NULL;
9: return;
10: else
11: t GetNextTaskFromQueueðÞ;
12: if Assign(t;Dt)==false then
13: tri ¼ t;
14: return;

3.5.2 Multi-Chance Reservation Approach

The strict reservation approach does not assign resources to
other tasks if there is a reserved one, which is effective for
preventing the starvation of the reserved task. However,
this approach may cause the starvation on other waiting
tasks, if the reserved task’s resource demand is not easy to
be satisfied. Therefore, we present the second approach
called “multi-chance reservation”, which aims to avoid the
starvation of both reserved and queued tasks by consider-
ing more than one tasks to be reserved and allowing those
reserved tasks to be “skippable” for other tasks that are eli-
gible to be assigned during runtime.

As shown in Algorithm 4, a reservation queue with a
fixed size (i.e., vector ~tri) is used to store those reserved
tasks. To avoid starvations, we set up two thresholds – the
maximum length of the reservation queue (i.e., "r), and the
maximum time that each reserved task can be “skipped” by
any other tasks (i.e., "s). In detail, the scheduler first attempts
to assign resources to tasks in the reservation queue based
on the FIFO policy (see line 6 to 13). If the Assign function
returns true, the reserved task trij will be dequeued from
the reservation queue ~tri and run with the assigned resour-
ces, seeline 8 and 9. If a reserved task trij is not able to be
assigned to the current node due to insufficient resource,
and it is eligible to be “skipped” (line 12), then the scheduler
increases trij’s skipCount by 1 (line 11), and then moves on
to check the next reserved task in ~tri. Otherwise, if that
reserved task trij has reached the preset skip counter thresh-
old "s, the scheduler will return and wait for the next round
to assign resources to task trij.

Furthermore, if the current length of reservation queue is
less than "r, and the maximum skip counter of the reserva-
tion queue is less than "s, then the scheduler can further
select a normal task for assign resource by calling function
GetNextTaskFromQueue in line 15.

Once that normal task is assigned with available resour-
ces, the skip counters for all reserved tasks will be increased
by 1 (line 18). Similarly, if that normal task cannot get

enough resources, then that task will be queued in the reser-
vation queue with its skip counter initialed as 1 (line 20–21).

Algorithm 4.Node Update (Multi-Chance Approach)

Data: ni; GAi; OAi; tri;Dt

1: Procedure NodeUpdate (ni)
2: Update GAi;OAi;
3: if GAi < MinTaskDemand and

OAi < MinTaskDemand then
4: return;
5: ~tri GetReservedTaskQueueðniÞ;
6: if ~tri 6¼ ; then
7: for trij 2 ~tri do
8: if Assignðtrij; DtrijÞ then
9: ~tri� ¼ trij;
10: else
11: skipCount½trij�þ ¼ 1;
12: if skipCount½trij� > "s then
13: return;
14: while j ~trij � "r andmaxSkipð ~triÞ � "s do
15: t GetNextTaskFromQueueðÞ;
16: if Assign(t;Dt) then
17: for each trij 2 ~tri do
18: skipCount½trij�þ ¼ 1;
19: else
20: ~triþ ¼ t;
21: skipCount½t� ¼ 1;
22: return;

4 EVALUATION

We implement the proposed opportunistic resource alloca-
tion scheme, OPERA, on Hadoop YARN v2.5. Specifically,
we modify the scheduler component in the ResourceMan-
ager of YARN (on top of the Fair scheduler) to include a
task classifier for separating the opportunistic task assign-
ment from the normal task assignment. We note that
OPERA can also be integrated with any other scheduling
algorithms. In the NodeManager, we enable the mecha-
nisms of runtime resource monitoring/reporting as well as
contention detection and integrate these mechanisms in the
ContainerMonitor component. The communication proto-
cols and messages among the ResourceManager, NodeMan-
agers, and ApplicationMasters are also modified to convey
the actual resource usage and the assignment type (i.e., nor-
mal or opportunistic) information of tasks. We evaluate
OPERA in a real YARN cluster with different data process-
ing workloads which include mixed sets of representative
MapReduce and Spark jobs.

4.1 Experiment Settings

We conduct our experiments in a YARN cluster which is
deployed in a cloud environment provided by Clou-
dLab [15]. This YARN cluster is configured with one master
node and 20 working nodes, each of which has 8 physical
cores. We configure 2 virtual cores for each physical core
such that there are 16 vCores in total on each working node.
Among those 16 vCores, we use one vCore for NodeMan-
ager and the HDFS usage, and the remaining 15 vCores for
running cluster computing applications. Each node is con-
figured with memory capacity of 12 GB. Thus, the total
resource capacity of this cluster is < 300vCores; 240GB >

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 703

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

for CPU vCores and memory. The CloudLab provides
2x10 Gbps network interfaces to every node via software-
defined networking. Besides, we use multiple 500 GB SATA
drives (Intel DC S3500) in the cluster for HDFS.

The following four benchmarks are considered in our
experiments:

� pathSim: a Spark application [11] that computes the
meta path based on the similarity among academic
paper authors. The input data contains 1.2 million
paper submission records.

� terasort: a MapReduce application that sorts the input
records.We use 50GB input data generated by teragen.

� wordcount: a MapReduce application that counts the
occurrences of each word in the input files. Each
input file with 50 GB data is generated through
randomTextWriter.

� piEstimate: a MapReduce application that estimates
the value of p using the quasi-Monte Carlo method.
Each task processes 300 million data points.

Table 2 shows the configurations of each application,
including task numbers and task resource requests. By
default, we configure each task’s resource request according
to their actual resource usage. The CPU demand of a task is
equal to 75 percent of its peak CPU usage and the memory
requirement is set to that task’s maximum memory usage.
These applications thus have various resource requirements.
For example, the tasks from Spark applications are memory
intensivewhileMapReduce tasks aremainly CPU intensive.

In our experiments, we set the results under the original
YARN framework with the Fair scheduler as a baseline for
comparison. The major performance metrics we consider
for evaluating OPERA include resource utilizations and job
execution times.

4.2 Workloads with MapReduce Jobs Only

In the first set of experiments, we generate a workload of
6 MapReduce jobs, where each MapReduce application

listed in Table 2 launches 2 jobs. We execute this workload
under both the traditional YARN resource allocation
scheme with the Fair scheduler and with our OPERA
scheme with three mitigation policies, i.e., AGGRESSIVE,
NEUTRAL, and PRESERVE.

Fig. 5 presents the average cluster resource usages (i.e.,
the number of used vCores) and average job execution times
(in seconds). We observe that our OPERA scheduler is able
to more efficiently utilize cluster resources as shown in
Fig. 5a. As mentioned in Section 4.1, the total CPU capacity
in our YARN cluster is 300 vCores, i.e., 15 vCores � 20nodes.
We can see that the original YARN system with Fair only
uses about 50 percent (164) of vCores in average. OPERA
increases the number of actually used vCores up to 240
(e.g., with the AGGRESSIVE scheme), which accelerates the
overall processing by using more CPU resources. As a
result, compared to Fair, our OPERA significantly improves
the average job execution times for each MapReduce appli-
cation, with relative improvements of 19.7, 28.7, and
32.4 percent, respectively, see Fig. 5b.

While improving resource utilization and job through-
put, opportunistic scheduling may compromise average the
task execution times. For example, Fig. 5c presents the aver-
age map task execution times of different applications. The
reason we focus on investigating map task execution times
is that the reduce task execution times highly depend on
how long they overlap with map tasks and thus are more
random. It is clear that task execution time degrades differ-
ently under different resource contention relief policies. If
we assign opportunistic tasks more aggressively and do not
kill tasks under CPU contention, i.e., AGGRESSIVE policy,
then tasks experience longer execution time due to more fre-
quent performance interference, but average job execution
times are improved because of higher task concurrency in
the cluster. On the other hand, the PRESERVE policy can
provide better task performance isolation, but less improve-
ment in system resource utilization and job throughputs.
Compared to the Fair scheduler, average task execution
time of our proposed three policies degraded only by 2.8,
6.8, and 8.2 percent, respectively. This is because those
opportunistically assigned tasks are very short and do not
introduce severe resource contentions.

To better understand how OPERA and Fair work, we also
present the CPU vCore usages, the number of normal tasks,
and the number of opportunistic tasks across time on a single
cluster node in Figs. 6 and 7. Obviously, under the Fair policy,
the number of vCores that are actually used is low and fluctu-
ating across time, see Fig. 6a.Moreover, the number of normal
tasks does not change much under Fair (see Fig. 7a), which

TABLE 2
Task Configurations of Applications

Framework Application Task Num. Task Resource Req.

Spark pathSim 10 executors < 4vCores; 9GB>

terasort 374 mappers < 4vCores; 1GB>
100 reducers < 2vCores; 1GB>

MapReduce wordcount 414 mappers < 4vCores; 1GB>
50 reducers < 2vCores; 1GB>

piEstimate 500 mappers < 3vCores; 1GB>
1 reducers < 2vCores; 1GB>

Fig. 5. The overall performance in the experiments with 6 MapReduce jobs

704 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

further indicates that these tasks running under the traditional
resource allocationwith the Fair scheduler yield varying CPU
usage patterns. On the other hand, through the opportunistic
resource allocation, the system resources (e.g., CPU vCores)
are better utilized because more tasks are scheduled to run in
a node when we detect underutilized resources on that node,
as shown in Fig. 6b, 6c, 6d. Particularly, OPERA with
AGGRESSIVE or NEUTRAL always keeps CPU resources
fully utilized (i.e., around 15 vCores in use per node), see plots
(c) and (d) in Fig. 6.

Table 3 further shows the prediction accuracy of our task
classifier which adopts the hierarchy feature-based naive
Bayes classification algorithm as described in Section 3.2. In
this table, the “Fact” column shows the total number of actual
short (resp. long) tasks, while the “Classification” column
presents the predicted results, i.e., the numbers of tasks that
are predicted to be short and long the predication accuracy.

We observe that our task classifier is able to accurately
categorize most of short and long tasks with high prediction
accuracy ratios, i.e., 87 and 98 percent, respectively. More
importantly, our classifier successfully avoids the false posi-
tives (i.e., predicting a long task as short) that can incur
severe resource contention and other harmful consequen-
ces. As shown in Table 3, only 1.9 percent (i.e., 2 out of 107)
of the long tasks are classified as short ones. On the other
hand, we notice that the false negative (i.e., predicting a
short task as long) ratio is slightly high, i.e., 13 percent.
However, it is still in a low range and only prevents us from
assigning opportunistic available resources to those tasks,
which in general does not degrade the overall performance.

4.3 Workloads with MapReduce and Spark Jobs

In the second set of experiments, we launch two Spark jobs,
i.e., pathSim [11], together with 6 MapReduce jobs that are
the same as we have in the first set of experiments. Here,
each Spark executor occupies 10 GB (i.e., 9 GB executor
memory request and 1 GB overhead) memory resource on a
cluster node.

Fig. 8 shows the experimental results, including the aver-
age job and task execution times and the average vCore usage
under different scheduling policies. Obviously, all MapRe-
duce jobs receive a significant performance improvement
underOPERA.As shown in Fig. 8b and 8c, the average job exe-
cution time of allMapReduce jobs is reduced by 25.5, 29.3, and
36.1 percent under PRESERVE, NEUTRAL, and AGGRES-
SIVE, respectively. On the other hand, the two Spark jobs (i.e.,
pathSim) do not benefit from our opportunistic resource allo-
cation. The reason is that all tasks in pathSim are launched
together in a single wave. The parallelism of these Spark jobs
thus cannot be further improved through opportunistic
resource allocation. Moreover, the performance of two Spark
jobs becomes slightly worse under our opportunistic resource
allocation due to the resource contention caused by other
opportunistically scheduledMapReduce tasks.

Consistent to the experiments in Section 4.2, the average
resource utilization becomes much higher under OPERA
than that under the Fair policy. As shown in Fig. 8a, such an
improvement comes from the increasing in the number of
vCores (see the green parts) that are used through the
opportunistic resource allocation. Furthermore, although
having the lower resource utilization, the PRESERVE
scheme achieves better performance isolation for normally
assigned tasks (e.g., tasks from Spark jobs) compared with
the other two resource release schemes.

4.4 Analysis on Resource Contention Relief
Schemes

We now present the evaluation of different resource conten-
tion relief schemes as introduced in Algorithm 3.3. First,
under theworkloadswithMapReduce jobs, we notice that the

Fig. 6. Runtime CPU usages on a single cluster node under the workload with 6 MapReduce jobs

Fig. 7. The numbers of normal tasks and opportunistic tasks on a single cluster node under the workload with 6 MapReduce jobs

TABLE 3
Task Classification

Fact Classification

Task Number Short Long Pred. Accuracy

Short 2777 2417 360 87.0%
Long 107 2 105 98.1%

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 705

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

CPU utilization becomes slightly low during some time peri-
ods under OPERA with the PRESERVE scheme. We look
closely at PRESERVE and find that this scheme conservatively
performs opportunistic resource allocation by blocking avail-
able opportunistic resources when resource contention hap-
pens frequently. Fig. 12 depicts the amount of blocked
opportunistic CPU resources under this scheme.When severe
resource contention happens at time 700, PRESERVE
increases the blocked opportunistic CPU vCores from 2 to 7.
As a result, this schememisses some opportunities for serving
more tasks and improving overall resource utilizations. How-
ever, PRESERVE can successfully avoid severe performance
interference during busy periods, e.g., spikes in CPU usages
between 900 seconds and 1,100 seconds in Fig. 6b.

Fig. 9 further shows the number of killed opportunistically
launched tasks across time under twoworkloads (i.e., without
and with Spark jobs), when we use the PRESERVE and NEU-
TRAL schemes. Asdescribed in Section 3.3, PRESERVEblocks
some resources for opportunistic scheduling once it detects
resource contention. Since tasks have more oscillating CPU
usage patterns at around 700 seconds, see Fig. 6, NodeMan-
ager detects resource contention and kills opportunistic
scheduled tasks more frequently, see Fig. 9a. Moreover, the
PRESERVE policy then tries to avoid more contentions by
increasing the blocked vCores at 700 seconds, see Fig. 12,
which results in fewer opportunistic scheduled tasks in the
following time period, see Fig. 7b. Compared with the NEU-
TRAL policy (see Fig. 9b) which simply kills opportunistic
tasks when resource contention happens, PRESERVE can sig-
nificantly reduce the number of killed tasks as well as the
amount ofwastework. For example, the total number of killed
tasks in the entire cluster is reduced from 632 to 248, and the
amount of wasted work is reduced from 4,575 seconds to
2,400 seconds by using the PRESERVE policy.

Consistently, PRESERVE terminates much less running
opportunistic tasks than the NEUTRAL scheme when we
have both MapReduce and Spark jobs in the workload.
Fig. 9c and 9d show the accumulated number of killed tasks
as well as the accumulated amount of wasted work on a

single cluster node under both the PRESERVE and NEU-
TRAL schemes. We can see that PRESERVE significantly
reduces the number of killed tasks and the amount of
wasted work from 36 and 318 seconds under NEUTRAL to
12 and 90 seconds for each cluster node.

4.5 Workloads with Interactive Jobs

Lastly, we investigate how our proposed scheduler with
task reservation enabled feature achieves better perfor-
mance improvement. In order to see the difference, we
hereby focus on a more realistic “interactive” scenario,
where heterogeneous workloads comes and have long idles
periods when they are waiting for user inputs or incoming
data streams. To emulate such a scenario, we generate a
workload mixed with two Spark jobs and six MapReduce
jobs (the same as those in the second set of experiments),
but further introduce sleeping periods (e.g., 5 minutes) into
the two Spark jobs (i.e., pathSim) after parsing the author
information but before calculating the author similarities.
Such a 5-minute sleeping time is then used to simulate the
user thinking time in interactive jobs. Fig. 10 presents the
experimental results (e.g., average job execution time and
average vCore usage) under this workload.

We first observe that the average execution time of pathSim
jobs is increased by about 300 seconds because of the addition-
ally injected sleeping periods. Moreover, all the other MapRe-
duce jobs also experience longer execution times under the
Fair scheduler, compared to the experiments when there are
no sleeping periods, see Figs. 10a and 8a. In contrast, our
OPERAmakes better use of idle resources during those sleep-
ing periods by opportunistically scheduling available resour-
ces to pending tasks. As a result, compared to Fair, all
MapReduce jobs under OPERA experience even better perfor-
mance improvement, with a reduction of 29.1, 33.9, and
39.8 percent in job execution times whenwe have PRESERVE,
NEUTRAL, andAGGRESSIVE, respectively.

Fig. 11 further shows the actual resource (memory and
CPU vCores) usages across time under the Fair and OPERA-
PRESERVE policies. As shown in Fig. 11a and 11c, both

Fig. 8. The overall performance in the experiments with MapReduce and Spark jobs

Fig. 9. Accumulated numbers of killed tasks and accumulated amounts of wasted execution (in seconds) under the workloads (a)(b) with MapReduce
jobs, and (c)(d) with MapReduce and Spark jobs.

706 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

memory and CPU resources are under-utilized during the
first 5 minutes when we have the Fair scheduler. This is
because the two pathSim jobs are in the sleep mode during
these 5 minutes such that their occupied resources become
idle and cannot be assigned to the other waiting tasks.
While, our proposed scheduler addresses this issue through
the opportunistic resource assignment (see the green curves
in Fig. 11b and 11d) and thus significantly increases the total
cluster resource utilization especially during those sleeping
periods. The overall task throughputs are improved as well
under the opportunistic resource allocation. Furthermore,
by carefully selecting tasks that have short execution times
for opportunistic scheduling, we can minimize the side
effect, e.g., increase of task execution time, caused by
increasing the chance of resource contentions.

5 RELATED WORK

Improving resource efficiency and throughput of cluster
computing platforms was extensively studied in recent
years. Our previous works [16], [17], [18] focus on the first
generation Hadoop system which adopts coarse-grained
resource management. For fine-grained resource mana-
gement, we proposed a scheduler HaSTE in Hadoop
YARN [19] that improves resource utilization using more
efficient task packing according to diverse resource require-
ments of tasks on different resource types and dependencies
between tasks. However, HaSTE only considers the task
dependencies in the MapReduce framework and assigns
resources according to task requests without considering
real time resource usages. DynMR [20] presents that reduce
tasks in the MapReduce framework bundle multiple phases
and have changing resource utilization, and proposes to
assemble multiple reduce tasks into a progressive queue for
management and backfill map tasks to fully utilize system
resources. Their work is closely bounded with the Map-
Reduce framework, and involves complex task manage-
ment that cannot be easily extended to other frameworks.

Quasar [9] designs resource efficient and QoS-aware cluster
management. Classification techniques are used to find
appropriate resource allocations to applications in order to
fulfill their QoS requirements and maximize system
resource utilization. Resource assignment in their work is to
assign one or multiple nodes to the application, which is dif-
ferent from task assignment in cluster computing. MR-
SPS [21] designs a scalable parallel scheduling algorithm
which improves scalability and performance of a cluster by
managing workload and data locality. Studies [22], [23], [24]
further investigate storage-related resource management
problems, in order to improve the system performance bot-
tlenecked by I/Os. BGMRS [25] is a MapReduce Scheduler
based on the Bipartite Graph model. BGMRS reaches the
optimal solution of the deadline-constrained scheduling
problem by transforming the problem into the “minimum
weighted bipartite matching” problem. Study [26] proposes
an alternative approach to solve the problem by spiting
each job into tasks using an appropriate splitting ratio, and
assigns tasks to slave servers based on server processing
performance and network resource availability. The previ-
ous studies mainly address the inefficient resource utiliza-
tion caused by the gap between user specified application

Fig. 10. The overall performance in the experiments with MapReduce and Spark jobs that have 5-minute interactive periods.

Fig. 11. Illustrating actual memory and CPU vCore usages across time on a cluster node under Fair and OPERA-PRESERVE.

Fig. 12. The amount of blocked opportunistic CPU resources across time
under the workload with MapReduce jobs when running the PRESERVE
policy.

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 707

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

resource requirements and actual resource usages of appli-
cations. While, our work mainly addresses the issue of
resource underutilization that is caused by the fluctuating
resource usage patterns of tasks.

Resource utilization is of greater importance in large
enterprise data centers since increasing utilization by few
percentages can save a lot in a large-scale cluster. Recent
published works reveal some technique details of Google’s
Borg [27] and Microsoft’s Apollo [28] systems. They both
have the design ideas similar to our work, i.e., improving
cluster resource utilization by exploring the actual resource
usage of running jobs and assigning idle resources to pend-
ing tasks. Borg classifies jobs into the categories of high prior-
ity and low priority, monitors the resource usage of high
priority tasks, and predicts their future resource usage by
adding safety margins. If high priority tasks are not using all
their reserved resources, resource manager can reclaim these
resources and assign to low priority tasks. Low priority tasks
may be killed or throttled when high priority tasks require
more resources. Apollo starts opportunistic scheduling after
all available resource tokens have been assigned to regular
tasks. Fairness is achieved by assigning a maximum amount
of opportunistic tasks for each job and randomly selecting
opportunistic tasks fromwaiting jobs when scheduling.

Although sharing the similar idea, we differentiate our
work from the other designs (e.g., Borg and Apollo) in the fol-
lowing aspects. First, instead of using user-defined task priori-
ties or scheduling the fixed amount of opportunistic tasks for
each job that is proportional to that job’s resource tokens, we
automatically classify tasks according to their estimated exe-
cution time and choose short tasks only to get the opportunis-
tic resources in order to avoid severe resource contention as
well as the waste of work when regular tasks need resources.
As a result, the interference introduced by opportunistic
scheduling and the penalty of killing unfinished opportunistic
tasks can be minimized under our proposed approach. Sec-
ond, in our approach, high priority tasks can also benefit from
opportunistic scheduling as long as these tasks are classified
as short ones by our task classifier, which is different from
those under the Borg system. Furthermore, the amount of
opportunistic tasks of each job is not fixed (like Apollo does)
but instead is determined based on task resource require-
ments, estimated task execution time, and available opportu-
nistic resource capacity. Finally, our approach uses three
resource release schemes that consider different degrees of
aggressiveness of opportunistic scheduling. We show that the
selection of these resource release schemes can bemade based
on the consideration of resource utilization, task properties,
performance interference, etc.

We also remark that our opportunistic scheduler is com-
plementary with any resource sharing based scheduling
algorithms. That is, each job can still get their required
resources that are allocated according to a particular sched-
uling algorithm. Our OpERA further re-assigns those allo-
cated but unused resources to other pending tasks, without
any non-negligible impacts on regular scheduling.

6 CONCLUSION

In this paper, we developed a novel resource management
scheme, named OPERA, to enable the sharing of occupied

resources among different tasks (or resource containers). The
main objective of OPERA is to improve the overall resource
utilization and reduce the executions time for data processing
jobs. To meet this goal, OPERA leverages the knowledge of
actual runtime resource utilizations to detect underutilized
resources and opportunistically re-assigns these resources to
other pending tasks.We further classify pending tasks accord-
ing to their expected running time and only allow the
expected short tasks for opportunistic scheduling. By this
way, we can guarantee that performance interference can be
minimized and killing opportunistically launched tasks does
not lead to a significant waste of work. Three different
approaches are considered by OPERA to release opportunistic
resources when severe resource contention happens. We fur-
ther develop two approaches to avoid the starvation of both
reserved and queued tasks. We implemented OPERA on the
top of Hadoop YARN v2.5 and evaluated our proposed
scheduler in a cloud environment provided by CloudLab.
Diverse workloads mixed with MapReduce and Spark jobs
have been produced to evaluate OPERA under different sce-
narios We also investigate the performance of OPERA under
the workload with interactive jobs. The experimental results
show that our OPERA is able to achieve up to 39.8 percent
reduction in average job execution time and 30 percent
increase in resource utilizations. In the future, we plan to
extend our opportunistic scheduler for streaming data proc-
essing. Stream data is often processed in batches or slide win-
dows, e.g., in the Spark Streaming platform. We will develop
new method to estimate task lengths using historical data
given the batch size orwindow size is known.

ACKNOWLEDGMENTS

This work was partially supported by National Science
Foundation Career Award CNS-1452751, National Science
Foundation grant CNS-1552525 and AFOSR grant FA9550-
14-1-0160.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing
on large clusters,”Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[2] T. White, Hadoop: The definitive guide. Newton, MA, USA: O’Reilly
Media, Inc., 2012.

[3] Hadoop Users, 2014. [Online]. Available: https://wiki.apache.
org/hadoop/PoweredBy

[4] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Sto-
ica, “Spark: Cluster computing with working sets,” in Proc. 2nd
USENIX Conf. Hot Topics Cloud Comput., 2010, p. 10.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient distributed
datasets: A fault-tolerant abstraction for in-memory cluster
computing,” in Proc. 9th USENIX Conf. Netw. Syst. Des. Implemen-
tation, 2012, p. 2.

[6] N. Marz, “A storm is coming: More details and plans for release,”
2011, https://blog.twitter.com/engineering/en_us/a/2011/a-
storm-is-coming-more-details-and-plans-for-release.html.

[7] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth, et al., “Apache
hadoop yarn: Yet another resource negotiator,” in Proc. 4th Annu.
Symp. Cloud Comput., 2013, Art. no. 5.

[8] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-
grained resource sharing in the data center,” in Proc. 8th USENIX
Conf. Netw. Syst. Des. Implementation, vol. 11, 2011, p. 22.

[9] C. Delimitrou and C. Kozyrakis, “Quasar: Resource-efficient and
qos-aware cluster management,” ACM SIGPLAN Notices, vol. 49,
no. 4, pp. 127–144, 2014.

708 IEEE TRANSACTIONS ON CLOUD COMPUTING, VOL. 9, NO. 2, APRIL-JUNE 2021

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

https://wiki.apache.org/hadoop/PoweredBy
https://wiki.apache.org/hadoop/PoweredBy

[10] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, andM. A. Kozuch,
“Heterogeneity and dynamicity of clouds at scale: Google trace
analysis,” in Proc. 3rd ACMSymp. Cloud Comput., 2012, Art. no. 7.

[11] Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu, “Pathsim: Meta path-
based top-k similarity search in heterogeneous information
networks,” in Proc. VLDB Endowment 4, 2011, no. 11, pp. 992–1003.

[12] A. Verma, Ludmila Cherkasova, and R. H. Campbell, “Aria: Auto-
matic resource inference and allocation for mapreduce environ-
ments,” in Proc. 8th ACM Int. Conf. Autonomic Comput., 2011,
pp. 235–244.

[13] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguad�e, M. Steinder,
and I. Whalley, “Performance-driven task co-scheduling for map-
reduce environments,” in Proc. Netw. Operations Manage. Symp.,
2010, pp. 373–380.

[14] S. J. Russell and P. Norvig, “Artificial intelligence: A modern
approach,” Malaysia, Pearson Education Limited, 2016.

[15] Cloudlab. [Online]. Available: http://cloudlab.us/
[16] Y. Yao, J. Wang, B. Sheng, C. C. Tan, andN.Mi, “Self-adjusting slot

configurations for homogeneous and heterogeneous hadoop
clusters,” IEEE Trans. Cloud Comput., vol. 5, no. 2, pp. 344–357, 2017.

[17] J. Wang, Y. Yao, Y. Mao, B. Sheng, and N. Mi, “Fresh: Fair and effi-
cient slot configuration and scheduling for hadoop clusters,” in
Proc. IEEE 7th Int. Conf. Cloud Comput., 2014, pp. 761–768.

[18] Z. Yang, J. Bhimani, Y. Yao, C.-H. Lin, J. Wang, N. Mi, and
B. Sheng, “AutoAdmin: Admission Control in YARN Clusters
Based on Dynamic Resource Reservation,” Scalable Comput.: Prac-
tice Experience, Special Issue Adv. Emerging Wireless Commun. Netw.,
vol. 19, pp. 53–67, 2018.

[19] Y. Yao, J. Wang, B. Sheng, J. Lin, and N. Mi, “Haste: Hadoop yarn
scheduling based on task-dependency and resource-demand,” in
Proc. IEEE 7th Int. Conf. Cloud Comput., 2014, pp. 184–191.

[20] J. Tan, A. Chin, Z. Z. Hu, Y. Hu, S. Meng, X. Meng, and L. Zhang,
“Dynmr: Dynamic mapreduce with reducetask interleaving and
maptask backfilling,” in Proc. 9th Eur. Conf. Comput. Syst., 2014,
Art. no. 2.

[21] R. Mennour, M. Batouche, and O. Hannache, “Mr-sps: Scalable
parallel scheduler for yarn/mapreduce platform,” in IEEE Int.
Conf. Serv. Operations Logistics Informat, 2015, pp. 199–204.

[22] Z. Yang, D. Jia, S. Ioannidis, N. Mi, and B. Sheng, “Intermediate
data caching optimization for multi-stage and parallel big data
frameworks,” in Proc. IEEE Int. Conf. Cloud Comput., 2018.

[23] Z. Yang, Y. Wang, J. Bhimani, C. C. Tan, and N. Mi, “EAD: Elastic-
ity aware deduplication manager for datacenters with multi-tier
storage systems,” in Proc. Cluster Comput., 2018, pp. 1–19.

[24] J. Bhimani, Z. Yang, N. Mi, J. Yang, Q. Xu, M. Awasthi, R. Pandur-
angan, and V. Balakrishnan, “Docker container scheduler for I/O
intensive applications running on NVMe SSDs,” in Proc. IEEE
Trans. Multi-Scale Comput. Syst., 2018, p. 1.

[25] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, “Mapreduce scheduling for
deadline-constrained jobs in heterogeneous cloud computing sys-
tems,” IEEE Trans. Cloud Comput., vol. 6, no. 1, pp. 127–140,
Jan.-Mar. 2018

[26] T. Matsuno, B. C. Chatterjee, E. Oki, M. Veeraraghavan, S. Oka-
moto, and N. Yamanaka, “Task allocation scheme based on
computational and network resources for heterogeneous hadoop
clusters,” in Proc. IEEE 17th Int. Conf. High Perform. Switching Rout-
ing, 2016, pp. 200–205.

[27] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune,
and J. Wilkes, “Large-scale cluster management at google with
borg,” in Proc. 10th Eur. Conf. Comput. Syst., 2015, Art. no. 18.

[28] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu,
and L. Zhou, “Apollo: scalable and coordinated scheduling for
cloud-scale computing,” in Proc. 11th USENIX Conf. Operating
Syst. Des. Implementation, 2014, pp. 285–300.

Zhengyu Yang received the BEng degree in
communication engineering from Tongji Univer-
sity, in China, the MS degree in telecommunica-
tion from the Hong Kong University of Science
and Technology, in 2011, and the PhD degree
from the Department of Electrical and Computer
Engineering, Northeastern University, Boston,
Massachusetts. His current research area is
mainly on caching algorithm, cloud computing,
deduplication, and performance simulations.

Yi Yao received the BS and MS degrees in com-
puter science from the Southeast University,
China, in 2007 and 2010, respectively, and the
PhD degree from the Department of Electrical
and Computer Engineering, Northeastern Univer-
sity, Boston, Massachusetts. He is software engi-
neering with VMWare Inc. His research interests
include resource management, scheduling, and
cloud computing.

Han Gao received the BE degree from Nankai
University, China, and the MS degree from Penn
State University, majoring in electrical engineer-
ing. He is working toward the MS degree from
Northeastern University, majoring in Computer
Engineering. His research interests include
resource management, scheduling policy, perfor-
mance evaluation, system modeling, simulation
and cloud computing.

Jiayin Wang received the bachelor’s degree in
electrical engineering from Xidian University,
China, in 2005, and the PhD degree from the
University of Massachusetts Boston, in 2017. He is
currently an assistant professor with Computer
Science Department, Montclair State University.
Her research interests include cloud computing
andwireless networks.

Ningfang Mi received the BS degree in computer
science from Nanjing University, China, in 2000,
the MS degree in computer science from the Uni-
versity of Texas at Dallas, Texas, in 2004, and
the PhD degree in computer science from the
College of William and Mary, Virginia, in 2009.
She is an associate professor with the Depart-
ment of Electrical and Computer Engineering,
Northeastern University, Boston. Her current
research interests are capacity planning, MapRe-
duce/Hadoop scheduling, cloud computing, and
resource management.

Bo Sheng received the BS degree from Nanjing
University, China, in 2000, the PhD degree from
the College of William and Mary, in 2010 (under
the supervision of Prof. Li), both in computer
science. He is an associate professor with Com-
puter Science Department, University of Massa-
chusetts Boston. His research interests include
mobile computing, big data, cloud computing,
cyber security, and wireless networks.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

YANG ET AL.: NEW YARN NON-EXCLUSIVE RESOURCE MANAGEMENT SCHEME THROUGH OPPORTUNISTIC IDLE RESOURCE... 709

Authorized licensed use limited to: University of Massachusetts Boston. Downloaded on December 11,2024 at 21:18:41 UTC from IEEE Xplore. Restrictions apply.

http://cloudlab.us/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

