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Learning-Based Dynamic Memory Allocation
Schemes for Apache Spark Data Processing

Danlin Jia , Li Wang, Natalia Valencia , Janki Bhimani, Bo Sheng, and Ningfang Mi

Abstract—Apache Spark is an in-memory analytic framework
that has been adopted in the industry and research fields. Two mem-
ory managers, Static and Unified, are available in Spark to allocate
memory for caching Resilient Distributed Datasets (RDDs) and
executing tasks. However, we find that the static memory manager
(SMM) lacks flexibility, while the unified memory manager (UMM)
puts heavy pressure on the garbage collection of the JVM on which
Spark resides. To address these issues, we design a learning-based
bidirectional usage-bounded memory allocation scheme to support
dynamic memory allocation with the consideration of both memory
demands and latency introduced by garbage collection. We first
develop an auto-tuning memory manager (ATuMm) that adopts
an intuitive feedback-based learning solution. However, ATuMm
is a slow learner that can only alter the states of Java Virtual
Memory (JVM) Heap in a limited range. That is, ATuMm decides
to increase or decrease the boundary between the execution and
storage memory pools by a fixed portion of JVM Heap size. To
overcome this shortcoming, we further develop a new reinforce-
ment learning-based memory manager (Q-ATuMm) that uses a
Q-learning intelligent agent to dynamically learn and tune the
partition of JVM Heap. We implement our new memory managers
in Spark 2.4.0 and evaluate them by conducting experiments in a
real Spark cluster. Our experimental results show that our memory
manager can reduce the total garbage collection time and thus
further improve Spark applications’ performance (i.e., reduced
latency) compared to the existing Spark memory management
solutions. By integrating our machine learning-driven memory
manager into Spark, we can further obtain around 1.3x times
reduction in the latency.

Index Terms—JVM memory management, distributed data
processing, machine learning, Apache Spark, Q-learning.

I. INTRODUCTION

THE unprecedented proliferation of data has triggered a sig-
nificant development of scalable analytics stacks in recent

years. Developers and researchers strive to boost data-processing
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speed in hardware and software. However, processing a massive
volume of data has entirely relied on the performance of com-
puting facilities and the efforts of users and can only achieve a
suboptimal performance [1]. Thus, distributed frameworks (e.g.,
Hadoop [2]) that share computational resources on a cluster have
been proposed to handle the overwhelming data. However, it
has been noticed that in Apache Hadoop, many I/O requests are
generated for accessing the intermediate data, To address this
issue, in-memory analytic frameworks (e.g., Apache Spark [3])
have been developed to improve data processing performance.

Apache Spark [3], one of the most successful in-memory ana-
lytic frameworks, has been going through a boom in the past few
years. Specifically, Apache Spark implements an abstraction of
a data structure called Resilient Distributed Datasets (RDD) [4],
which can be manipulated in parallel on different executors.
Each RDD is created from an input dataset or another RDD and
is immutable. Based on these two features, Spark builds a lineage
of an application to track each computation stage and recover
from faults in a tolerant way. Furthermore, Spark stores interme-
diate data (i.e., RDDs) in RAM, which reduces communication
overhead between Spark executors, especially for some iterative
and interactive machine learning applications. In this way, Spark
avoids the overhead of I/O operations and improves overall
performance. Therefore, one of the most crucial factors in Spark
is the management of memory resources. An effective memory
management scheme can shrink an application’s latency (i.e.,
the total execution length) and improve performance dramati-
cally. Unfortunately, Apache Spark hides the default scheme in
memory management from users, who have few opportunities
to monitor and configure the memory space.

In this work, we first investigate two existing Spark memory
managers: Static memory manager (SMM) and Unified memory
manager (UMM). Specifically, SMM applies predefined config-
urations to allocate fixed memory partitions for Spark applica-
tions, which heavily relies on the user’s efforts and knowledge
of the application’s characteristics for memory optimization. On
the other hand, UMM can dynamically allocate memory based
on the run-time memory demands. However, UMM introduces
heavy Garbage Collection (GC) as it tends to overprovision
memory for runtime objects. We further run representative data
processing benchmarks to collect the latency of applications
under these two memory managers. We find that the Spark
performance is significantly affected by the memory partition,
which may lead to either long Java garbage collection (GC) or
long delay in intermediate data access. Based on the analysis
of the defects of the existing memory managers, we design a
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learning-based bidirectional usage-bounded memory manage-
ment scheme that monitors the run-time execution performance
and dynamically re-allocates memory space to Spark execution
and RDD storage. We first propose a basic version of our new
autotuning memory manager, named ATuMm, which leverages
an intuitive feedback-control solution to improve Spark perfor-
mance by dynamically adjusting memory pools with a fixed
adjustment step.

To obtain an optimal learning speed, the users of ATuMm
need to tune the adjustment step manually. However, it is not
trivia to configure this adjustment step. Significantly when the
memory demands of an application vary frequently, an inap-
propriate adjustment step might limit the benefit of ATuMm.
To address this issue, we further propose a Q-learning-based
Spark memory manager, called Q-ATuMm, which aims to
develop an intelligent agent to help make decisions of the
adjustment step automatically. The goal of Q-ATuMm is to
utilize a machine learning algorithm (e.g., Q-learning [5])
to adjust memory partitions in Spark dynamically and effi-
ciently. We remark that Q-learning offers several advantages
compared to other machine learning algorithms, especially in
scenarios involving sequential decision-making and dynamic
environments.

The main contributions of this work are as follows.
� Understanding of two existing memory managers in Spark:

We study the infrastructure of two Apache Spark memory
managers to understand how these two managers allocate
memory space to the storage and execution pools. We fur-
ther conduct real experiments to analyze the performance
of these two managers.

� Design and implementation of an auto-tuning memory
manager: We propose a new Spark memory manager,
named ATuMm, that dynamically tunes the size of storage
and execution memory pools based on the performance
of current and previous tasks. We implement and evaluate
ATuMm in Spark 2.4.0 and show that our new memory
manager significantly improves the Spark performance.

� Optimization of memory management by developing an
intelligent agent: We develop an intelligent agent by using
the Q-Learning algorithm and integrate the agent in Spark
as a new memory manager, named Q-ATuMm. We show
that Q-ATuMm can further improve the performance via
our new machine learning agent for both iterative data
processing applications and ad-hoc database queries.

� Analysis of memory usage and GC of Spark memory man-
agers: We investigate the execution memory usage and
garbage collection of all four Spark memory managers (i.e.,
SMM, UMM, ATuMm, and Q-ATuMm). We discover that
both ATuMm and Q-ATuMm decrease garbage collection
time by preventing overloaded execution memory. Also, we
observe that Q-ATuMm has lower latency than ATuMm.

In the remainder of this paper, we will discuss the issues
of two existing memory managers and related work which
motivates our design of a new memory management scheme in
Section II. In Section III and Section IV, we present the detailed
algorithm and the evaluation of our two new memory managers.
Conclusion is presented in Section V.

Fig. 1. Memory partition of spark memory managers.

Fig. 2. Latency of application under SMM and UMM. SMM increases storage
fraction from 10% to 90%.

II. MOTIVATION AND RELATED WORK

In this section, we study the performance of Spark applica-
tions managed by two existing Spark memory managers (i.e.,
SMM and UMM). In both memory managers, as shown in Fig. 1,
a portion of Java heap (i.e., memory in the dashed rectangle) is
dedicated for processing Spark applications (called Accessible
Memory), while the rest of memory is reserved for Java class
references and metadata usage (called User Memory). Acces-
sible memory is further divided into two partitions, Storage
Memory and Execution Memory. The boundary between the
storage memory and execution memory is fixed (i.e., static)
in SMM, but flexible in UMM. Storage memory is used for
caching RDDs, while execution memory is used for runtime task
processing. If storage memory is already fully utilized when a
new RDD needs to be cached, some old RDDs will be evicted
according to the LRU (Least Recently Used) algorithm. On the
other hand, if execution memory is full, all intermediate objects
generated at runtime will be serialized and spilled into the disk
to release memory space for subsequent task processing.

A. SMM: Static Memory Partition Analysis

To understand how memory partition can affect Spark per-
formance, we conduct a set of experiments in a Spark cluster
consisting of four homogeneous workers (see the setup in Sec-
tion IV-B), with PageRank [6] as a representative benchmark.
We set the boundary, which we also refer to as storage fraction
(i.e., the ratio of storage memory to accessible memory), from
10% to 90% of accessible memory space under SMM. Since the
total accessible memory dedicated to Spark applications remains
constant, execution memory is decreased when storage memory
is increased.

Fig. 2 first illustrates the experiment results for SMM with
different storage fractions. We can observe that the Spark perfor-
mance varies with different memory partitions. Intuitively, if the
storage memory is too small to cache RDDs that will be reused in
the following computations, the RDD processing time cannot be
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Fig. 3. GC time comparison. SMM increases storage fraction from 10% to
90%.

saved. On the other hand, if we assign too much space to storage
memory, then the confined execution memory pool may trigger
a high overhead of I/O communications. However, neither one
of these two effects dominates the other, and the resulting joint
performance depends on the characteristics of the workload. As
shown in Fig. 2, the latency is not a monotonic function of the
storage memory size. Therefore, we conclude that SSM yields
varying performance with different storage fractions and cannot
automatically achieve optimal performance.

B. Static VS. Dynamic: Latency Comparison

SMM cannot fit all kinds of workloads well because of
its lack of flexibility. Compared with SMM, UMM allocates
memory resources dynamically according to resource demands.
Furthermore, UMM gives a higher priority to execution memory
than to storage memory. Execution memory can force the storage
memory pool to shrink if storage memory exceeds 50% of total
accessible memory, even if it is fully utilized. Based on this
mechanism, UMM guarantees sufficient memory for executing
run-time tasks, which avoids the content of execution memory
from being spilled into the disk to the greatest extent.

We find that UMM still cannot consistently achieve the best
performance, although it strives to adjust the storage fraction
based on resource demands dynamically. For example, the last
bar in Fig. 2 further shows the latency of UMM. We can see
that UMM does help improve the performance by obtaining
lower latency than SMM with some storage fractions (e.g., 10%
and 50%). Whereas UMM cannot beat SSM with a storage
fraction of 20% and 70%∼90%, and thus cannot achieve optimal
performance.

C. UMM Limitation: GC Impact

To explore the cause of UMM’s ineffectiveness, we conduct a
set of experiments to investigate the impact of garbage collection
(GC) on Spark application latency. We plot the GC times of
SMM with different storage fractions and that of UMM in Fig. 3.
We observe that SMM has a much lower GC time when storage
fraction is set to 20%, 30%, and ≥ 70%. In contrast, the GC
time under UMM is as high as 120 seconds, about six times the
lowest GC time obtained by SMM with a storage fraction of
90%. By combining the results in Figs. 3 and 2, we note that the
GC time has considerable impacts on Spark performance and
UMM’s performance degradation results from such a long GC
time.

We discover that long GCs occur under UMM because UMM
expands the execution memory pool aggressively, resulting in
a large amount of intermediate data in execution memory. The
Java garbage collector then needs to maintain these in-memory
intermediate data and thus increases the overall GC time. Such
high GC time finally introduces extra latency to a Spark appli-
cation’s execution. Besides, there exist no explicit methods to
eliminate these long GCs by configuring UMM by users. This
observation motivates us to consider both GC time and execution
time for dynamically adjusting memory partition. The impact
of GC on Spark’s performance is also investigated in existing
works, which will be discussed in Section II-E.

D. Need for Learning-Based Solutions

The basic version of our new memory manager (ATuMm) is
designed based on an intuitive feedback-control solution, which
uses the current task’s execution as the feedback to decide the
increase or decrease in the boundary between the execution and
storage memory pools with a fixed adjustment step. To obtain
an optimal learning speed, the user must manually configure
the adjustment step, which requires pre-knowledge about the
workload and the system characteristics. Even with an optimal
adjustment step, our ATuMm may not consistently achieve
the best performance. One reason is the fixed adjustment step
that cannot work well for applications with varying memory
demands. Another reason is that ATuMm makes the tuning
decisions heavily depending on the execution status of the
current task. Motivated by the above limitations, we need to
design a more comprehensive learning solution that can have an
intelligent agent to “smartly” calculate rewards for dynamically
tuning the adjustment step and thus optimizing the learning
speed. We select Q-learning algorithm as our intelligent memory
management agent for the following reasons. First, Q-learning is
model-free, meaning it doesn’t require a complete understanding
of the underlying system dynamics. This makes it suitable
for situations where the environment is complex, uncertain,
or difficult to model accurately. Second, Q-learning employs
temporal difference learning, allowing it to learn from each
individual interaction with the environment. This characteristic
makes it well-suited for online learning and environments where
data arrives sequentially. Third, compared to other powerful but
complicated ML/DL models, i.e., convolutional neural networks
and transformers, Q-learning is light to integrate with existing
systems and offers low learning overhead.

E. Gap in the Existing Works

We summarize existing works in Table I. MEMTUNE
presents an algorithm that adjusts memory allocation based
on the characterizations of tasks (i.e., storage-sensitive or
execution-sensitive). This work considers the impact of JVM on
Spark performance to decide how to balance memory allocation
for obtaining a good performance. But, this work only focuses
on analyzing the sensitivity of tasks and takes different actions,
such as reserving more memory for storage requirements if tasks
are storage-sensitive. Another work DSMM, dynamically sets
the storage fraction by simply comparing the size of the data set
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TABLE I
COMPARISON OF EXISTING SPARK MEMORY OPTIMIZATION WORKS

Fig. 4. New memory allocation scheme architecture.

with its memory usage. Compared to our work, these two works
fail to track the memory requirement diversity at run-time, which
still relies on preknowledge of the application’s characteristics.

SMBSP applies Artificial Neural Network (ANN) to config-
ure Spark’s parameters automatically, including computation,
cache, and storage configurations. MLAT is another work that
utilizes machine learning to auto-config Spark’s parameters.
This work learns proper configurations for different Spark
clusters as well. However, these two works optimize Spark’s
performance at a coarser level and lack consideration of runtime
workload characteristic adjustment compared to our work. We
also note that our work contributes to optimizing Spark’s caching
logic and can be adapted easily to [9] and [10].

PokéMem and MCS consider the impact of GC on Spark’s
performance and strive to optimize memory management via
controlling GC. PokéMem focuses on reducing memory pres-
sure by estimating the data size of objects created by third-party
libraries. However, the estimation model is data structure- and
library-dependent. MCS is close to our work which defines
constraints to limit the priority of execution memory. However,
it lacks dynamic adjustment of these constraints.

III. NEW LEARNING-BASED MEMORY MANAGER DESIGN

In this section, we present our new learning-based memory
allocation scheme, which aims to improve the overall latency
for Spark applications by considering both resource demands
and garbage collection impact in dynamic memory resource
allocation. Fig. 4 shows the overview of our design and illustrates
the overall block diagram of Spark modules on an “Executor”.
A Spark cluster often consists of multiple “Executors”. Each
“Executor” hosts a set of running tasks and manages their storage
and execution memory pools independently. In addition, there
are two managers in Spark that are responsible for the memory

requests sent from the “Executor” module. Specifically, the
“Block Manager” manages the storage memory requirements,
and the “Task Memory Manager” manages the execution mem-
ory requirements.

In our memory allocation scheme, we develop two new main
modules, called Auto Tuning Algorithm (i.e., ATuMm or Q-
ATuMm), and Memory Management Algorithm, and integrate
them with the existing Spark modules, as shown in Fig. 4. The
“Executor” periodically calls the “Auto Tuning Algorithm” to
adjust the storage fraction and set the limit (or the maximum
allowed) of execution memory. The ”Memory Management
Algorithm” further responds to the memory requirements sent by
the “Block Manager” and “Task Memory Manager” modules by
considering both free storage/execution memory space and the
decision made by the “Auto Tuning Algorithm”. Upon complet-
ing each task, the “Auto Tuning Algorithm” receives the runtime
logs of the completed task and the previously completed tasks
from the “Executor” module. Based on these logs, the algorithm
adjusts (1) the boundary between the storage and execution
memory pools and (2) the maximum allowed memory space to
the execution pool. The adjustment decisions are then passed to
the “Executor” for the next task execution. The above adjusting
process repeatedly occurs until the last task at the “Executor”
completes. Meanwhile, the “Memory Requirement Algorithm”
bases on the memory requirements from the “Executor” to allo-
cate the memory space for the RDD cache (i.e., storage memory)
and task execution (i.e., execution memory). The storage fraction
is then accordingly updated by this algorithm based on runtime
memory demands.

A. Memory Requirement Algorithm

The Memory Management Algorithm is designed to allocate
memory space for RDD caching and task execution. In partic-
ular, this algorithm receives the online memory requirements
from the “Block Manager” and the “Task Memory Manager”
modules. Specifically, our scheme maintains two parameters:
“StorageFraction” and “heapStorageMemory”. While the for-
mer decides the maximum available memory of the storage
memory pool, the latter limits the maximum available mem-
ory of the execution memory pool. According to the current
storage partition and “heapStorageMemor”, this algorithm al-
locates available memory to the two manager modules (i.e.,
“Block Manager” and “Task Memory Manager”) to meet their
requirements.

Algorithm 1 describes the main procedures of this memory
management mechanism.
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Algorithm 1: Memory Requirement Algorithm.

Fig. 5. Execution requirement conditions.

– Procedure requireExecutionMemory() takes “reqExe” as the
input, which is the execution memory size required by “Task
Memory Manager”, and returns the actual allocated execution
memory. Specifically, execution memory requirements can be
one of the three scenarios shown in Fig. 5. In the figure, we plot
the Spark memory pool on an “Executor”, where a solid line
represents the potential boundary between execution memory
and storage memory. A dashed line represents the value of
“heapStorageMemory”, indicating the least reserved space for
storage memory. Besides, we also mark the used execution
and storage memory space. In the first scenario, the required
execution memory is less than the free execution memory, see
Fig. 5(a). Then, the procedure allocates all needed memory to
“Task Memory Manager”.

The second scenario is shown in Fig. 5(b), where the re-
quired execution memory exceeds the free execution memory
but not beyond the limit of “heapStorageMemory”. Procedure
requireExecutionMemory() still allocates all needed memory to
“Task Memory Manager” and meanwhile expands the execution
memory pool by moving down the boundary bar (see the solid

Fig. 6. Storage requirement conditions.

line in the bottom plot of Fig. 5(b)). Finally, suppose the required
execution memory exceeds the boundary of “heapStorageMem-
ory”. In that case, the procedure only allocates the memory up
to “heapStorageMemory” (see the dashed line in the bottom
plot of Fig. 5(c)) and also moves down the boundary bar to
“heapStorageMemory”. Our algorithm prevents memory over-
allocation for task execution by limiting the memory that can be
allocated to execution memory. For example, in both scenarios
(b) and (c), the execution memory pool occupies part of storage
memory after allocating memory to the execution memory pool.
However, in scenario (c), we use “heapStroageMemory” to avoid
the execution memory pool invading the storage memory pool.
In this way, GC time can be reduced as discussed in Section II.

– Procedure requireStorageMemory() receives the required
storage memory size (“reqSto”) from the “Block Manager” mod-
ule for allocating actual memory to cache RRDs. Similarly, we
have three possible conditions of storage memory requirements,
depicted in Fig. 6. If the required storage memory is less than
free storage memory as shown in Fig. 6(a) and (b), then all
required memory will be allocated to “Block Manager” (no
matter beyond “heapStorageMemory” or not). In contrast, if the
required storage memory is more than the free storage memory
(see Fig. 6(c)), then only the memory space up to the boundary
bar will be allocated to “Block Manager,” and meanwhile, RDD
eviction will be triggered to release some memory for caching
new RDDs. In both scenarios 2 and 3, we further update the
variable “heapStorageMemory” to be equal to the actual storage
memory pool size.

It is noticeable that “Memory Management Algorithm” does
change the storage fraction under some scenarios, such as the
ones shown in Fig. 5(b) and (c). Thus, the storage fraction is
jointly determined by both “Memory Management Algorithm”
and “Auto Tuning Algorithm”.

B. Auto Tuning Algorithm

Here, we first present the basic version of our auto-tuning
algorithm, named ATuMm, which uses a feedback-control way
to dynamically adjust the boundary of two memory pools with
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Algorithm 2: ATuMm.

a fixed adjustment step. Then, we propose a Q-learning-based
algorithm, named Q-ATuMm, which uses an intelligent agent
to optimize the learning speed by automatically tuning the
adjustment step.

1) Basic Version. ATuMm: When a task on the “Executor”
completes, the “Auto Tuning Algorithm” takes the GC time, the
execution time of the completed task, and the current storage
fraction as inputs and then compares the performance of the
completed task (in terms of the ratio of GC time to execution
time) with that of the previous tasks to make the adjustment
decision. In particular, the “Auto Tuning Algorithm” returns two
variables: (1) a new storage fraction (“curStorageFraction”) for
the potential memory partition, and (2) a new “heapStorage-
Memory” variable to indicate the least memory reserved for
storage memory. Using these two variables, ATuMm can adjust
the memory partition with a limit on the maximum memory that
can be allocated to execution memory. Algorithm 2 shows the
pseudo-code of the “Auto Tuning Algorithm”.

Both setUp() and setDown() repartition the accessible mem-
ory to the storage and execution pools based on the decision
made by barChange(). We also remark that the variable “heap-
StorageMemory” is new in our design, which plays a critical
role in avoiding long GC time resulting from over-allocated
execution memory. Later, we present how this variable is used
in the “Memory Requirement Algorithm” to control the actual
memory space for RRD caching and task execution.

– Procedure barChange() receives GC time and execution
time of the current task from the “Executor” module. We con-
sider the ratio of GC time to execution time as a measurement of

Spark performance. A low ratio indicates a “good performance”,
vise verse. Then, barChange() makes an adjustment decision
from one of three possible actions (i.e., keep still, increase
storage fraction, and decrease storage fraction). In particular, we
use two variables, “preRatio” and “preUpOrDown” to record the
ratio of GC time to the execution time of previous tasks and the
last adjustment decision, respectively. We compare “curRatio”
with “preRatio” to calculate the reward of the last adjustment. If
the current task yields a better performance (i.e., “curRatio” is
lower than “preRatio”), the boundary-moving decision that we
previously made (i.e., “preUpOrDown”) gets a reward. Thus, we
decide to keep moving the boundary further in the same direction
as the last task. Otherwise, we move the boundary in a direction
that is opposite to that of the last adjustment. Besides these two
actions, if the Spark performance converges (i.e., the current
ratio is equal to the previous ratio), the boundary keeps still.
After taking the new action, the storage fraction changes, and
two variables (i.e., “preRatio” “preUpOrDown”) are updated for
the next decision.

– Procedures setUp() and setDown() control how to expand
or shrink the storage and execution memory pools base on the
decision made in barChange(). As mentioned in Section II,
Spark memory is divided into two pools, i.e., storage memory
and execution memory. We thus consider there exists a parti-
tion “bar” between storage and execution memory in Spark.
Setting the bar up means enlarging the storage memory pool
and shrinking the execution memory pool, while setting the bar
down means decreasing the storage memory pool and expanding
the execution memory pool. In ATuMm, users can configure the
percentage of accessible memory (indicated as “step”) that will
be increased or decreased in each adjustment.

It is challenging to move the partition bar if both storage
and execution memory pools are fully utilized. A mechanism
is required to determine which objects should be evicted. LRU
(Least Recently Used), an existing RDD caching algorithm, is
applied by the Spark block manager for storage memory. We
adopt this caching algorithm to manage the RDD evictions from
storage memory. For execution memory, barChange() is called
only when a task has finished its computation and released all
its occupied memory resources. Thus, there is no need to evict
objects from the execution memory pool. This is also one reason
we choose to adjust the memory boundary after each task’s
completion.

Procedure setUp() takes “preStorageFraction” and the pre-
defined parameter “step” (e.g., 5%) as inputs to determine a
new storage fraction (“curStorageFraction”) to repartition the
memory and a bound (“heapStorageMemory”) to reserve the
least storage memory space. In detail, setUp() increases the
storage fraction by “step” (see lines 12 and 13 in Algorithm 2)
if the new storage memory pool size is less than the overall
available memory space. Meanwhile, setUp() updates “heap-
StorageMemory” only if 80% of the storage memory is used
(see lines 14, and 15 in Algorithm 2). The difference between
the storage memory pool size and “heapStorageMemory” will
be the potential memory space allocated to execution memory.

Procedure setDown() has the same inputs and outputs
as setUp() to shrink the storage memory pool. In details,
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Fig. 7. Reinforcement Learning (Q-Learning) Algorithm in Q-ATuMm. We
define 1) agent represents the memory manager, 2) environment is Spark runtime,
3) state represents “StorageFraction” and “heapStorageMemory” that limit the
allocation of storage and execution memory, 4) action is changing state, and 5)
reward is calculated from latency and GC time.

setDown() decreases the storage fraction by “step” (see line 20 in
Algorithm 2). However, it needs to consider RDD evictions to
release the reduced storage memory additionally (see lines 21
and 22 in Algorithm 2). For example, if the current storage
memory pool is 5 GB with 4.5 GB used, and the potential
storage memory becomes 4 GB, then the memory space (‘mem-
oryEvict”) that needs to be released is 0.5 GB. setDown() then
needs to trigger the caching algorithm to evict cached RDDs
to shrink the storage memory pool. Finally, setDown() updates
(or decreases) “heapStorageMemory”by “step” of accessible
memory. If “heapStorageMemory” is more than the new storage
memory, then setDown() sets ‘heapStorageMemory” to be equal
to the new storage memory (see line 25 in Algorithm 2).

2) Q-Learning Based Version: Q-ATuMm: As discussed in
Section II-D, ATuMm suffers from the inflexibility of the adjust-
ment step. In order to optimize the adjustment speed, we further
refine our auto tuning algorithm by using reinforcement learning
techniques to automatically set the adjustment step for changing
the memory boundaries. On the other hand, Spark applications
process data in batches, possessing consistent memory and com-
putation characteristics, which can be learned by reinforcement
learning efficiently. Q-learning is a specific algorithm within the
broader field of reinforcement learning, which receives feedback
from the objective and makes decisions to optimize the rewards.
As shown in Fig. 7, an agent interacts with an environment by
taking actions, then the environment returns a reward of the
action to the agent and updates the state of the environment. By
exploiting different actions across all possible states, the agent
can produce an optimal policy to manipulate the states of the
environment.

Q-learning maintains a Q-table, where the columns and rows
represent states and actions. The values (i.e., value function) in
the Q-table represent the expectation of benefits of applying an
action, given a state. The agent updates the value function based
on an equation (particularly Bellman equation [13]). Specifi-
cally, Q-learning maintains an exploration-exploitation balance,
ensuring that the agent explores new actions and state-action
pairs while exploiting learned information to make optimal
decisions. Theoretically, an epsilon-greedy exploration strategy,
as used in the Bellman equation, guarantees that all state-action
pairs are visited infinitely often, which is crucial for conver-
gence. Another important factor in Q-learning is the convergence
rate. The convergence rate of Q-learning depends on factors

Algorithm 3: Q-ATuMm

such as the learning rate schedule and the characteristics of the
environment. In practice, while Q-learning converges asymptoti-
cally, convergence speed can vary, and certain modifications, like
learning rate annealing, can influence the convergence rate. We
evaluate the impact of learning rate and other hyper-parameters
in Section IV-C4.

In Q-ATuMm, when the “Executor” finishes a task, the agent
(i.e., memory manager) calculates the reward of the last action
based on the execution time and GC time of the current task.
Then Q-ATuMm updates the policy and makes a decision about
which is the next state. Specifically, InitializeAgent() initializes
all parameters before running applications. QLearningAgent()
uses the garbage collection time and execution time of the
completed task to calculate the reward of the current action and
calls UpdateQTable() to update values of the current state and
action in Q-table. QLearningAgent() then decides the action to
execute the following task by either exploring a new action or
exploiting a known action. We note that Q-ATuMm creates a
two-dimension discrete action space, where each element in
the action space represents a pair of “StorageFraction” and
“heapStorage-Memory”, as introduced in Section III-A. We
define “StorageFraction” and “heapStorage-Memory” as ratios
of the overall heap size, ranging from 1% to 99%. The status
space is the same as the action space. Algorithm 3 describes the
details of Q-ATuMm. Q-ATuMm trains the model on-the-fly.

– Procedure initializeAgent() initializes the state space, the
action space and the Q-table. We denote α as the learning rate,
representing the length of the step to update the value function.
ε is the exploration ratio, which indicates how much the agent
prefers to explore unknown actions. We denote γ as a discount
factor reflecting how much the future rewards contribute to the
current update.

– Procedure QLearningAgent() receives the garbage collec-
tion and execution time of the task, with the state of current
“stateIndex” and “stateAction”, which locate the value function
in the Q-table to update. Because our goal is to minimize garbage
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TABLE II
TESTBED CONFIGURATION

collection and reduce the overall latency, QLearningAgent() de-
fines the reward as the ratio of the execution time (GC time plus
others) to the GC time plus a constant number (i.e., δ = 0.01)
to avoid zero denominators (see line 8 in Algorithm 3). Update-
QTable() is then called to update the value function in the Q-
table. QLearningAgent() uses a parameter ε to decide to explore
a random action or to exploit the action with the largest benefit
(see lines 11-14 in Algorithm 3). A larger ε means the agent
prefers to explore unknown actions. Finally, QLearningAgent()
returns the action to the “Executor” to execute the following
tasks.

– Procedure updateQTable() takes the reward as an input
to calculate the new value in Q-table based on the Bellman
equation [13]. First, UpdateQTable() locates the value in Q-table
and then computes the “stateValue” to estimate the reward of the
next state. It is worth pointing out that the parameter γ is used to
decide how important future decisions are. A larger γ indicates
the agent relies more on the future reward than the current one.
Finally, UpdateQTable() updates the “Q value” with the current
reward and the estimated future reward. The parameter α is used
as the learning rate to control how fast the agent learns from
the rewards. There is a trade-off between learning speed and
accuracy. A larger learning rate can allow the agent to learn and
move faster to the optimal solution, but meanwhile, has a higher
possibility of causing the agent to be trapped in a locally optimal
point.

IV. EVALUATION

In this section, we discuss the implementation and the evalua-
tion of ATuMm and Q-ATuMm in a real Spark cluster. We aim to
investigate the performance in terms of latency, memory usage,
and garbage collection at run-time. We use default UMM and
SMM mode as our baseline, which is discussed in Section II.

A. Testbed

We conduct our experiments in a Spark cluster with one driver
and four workers that are homogeneous to each other. The cluster
is deployed on the Dell PowerEdge T310 and hypervised by
VMware Workstation 12.5.0. Each node in the Spark cluster is
assigned 1 CPU, 1 GB memory, and 50 GB disk space. Table II
summarizes the details of our testbed configuration.

We implement ATuMm and Q-ATuMm as new portable mem-
ory manager modules, besides SMM and UMM, in Apache

Spark 2.4.0, which contain functions interacting with other
Spark modules. It is noticeable that our new memory man-
ager can also be integrated into Spark from the version of
1.6.0 to 2.4.0. The source code is available on GitHub.1 The
LOC is 2,428 in total. Specifically, we develop functions ac-
quireStorageMemory() and acquireExecutionMemory() to allo-
cate storage and execution memory to “Block Manager” and
“Task Memory Manager”, respectively. We also integrate a
profile collector in the “Executor” module to collect task logs.
Specifically, ATuMm applies function barChange() to receive
these task logs and calls functions increaseStorageFraction() or
decreaseStorageFraction() to adjust memory partition. Mean-
while, Q-ATuMm uses function updateQTable() to maintain
the Q-Table for the agent to perform reinforcement learning.
Furthermore, we integrate a memory usage analyzer in ATuMm
and Q-ATuMm to collect the run-time memory usage informa-
tion. Users can replace the existing Spark memory manager to
ATuMm or Q-ATuMm by simply setting a configurable param-
eter before submitting a Spark application.

B. ATuMm Evaluation

We set the accessible memory and the initial storage fraction
of ATuMm as the same as those of UMM (i.e., accessible
memory is 60% of JVM heap, and storage memory is initial-
ized as 50% of accessible memory). The step to increase or
decrease storage fraction in each adjustment is configured as
5% of accessible memory by default. Furthermore, the win-
dow size representing the number of previous tasks is set as
20% of activated tasks by default. Users can pre-configure
these parameters in ATuMm before launching any Spark
applications.

1) Latency Analysis: We evaluate and compare the perfor-
mance of Spark applications under three memory managers
(SMM, UMM, and ATuMm) by conducting experiments with
different applications. We choose PageRank and K-means as
benchmarks because these two applications are two ubiquitous
techniques, which are widely applied in machine learning and
data mining applications [6], [14]. Considering the duration of
experiments, we report results for a workload of 1 GB input data
for applications.

Fig. 8(a) and (b) illustrate the latency of PageRank and K-
means under different memory managers. We set various storage
fraction under SMM manually, and compare the latency of SMM
with that of UMM and ATuMm. In Fig. 8(a), we observe that the
performance of UMM beats SMM with some storage fractions
(e.g., 40% to 60%). However, when SMM sets the storage
fraction to 80%, it reaches the best performance, which achieves
27% shorter latency compared to UMM. More importantly, the
latency of our ATuMm is close to the lowest among all, and our
ATuMm beats UMM as well. Moreover, as shown in Fig. 8(b),
our ATuMm can achieve the best performance (i.e., the lowest
latency), compared with both UMM and SMM. We conclude that
ATuMm outperforms the other two existing memory managers
with the same computation resources allocated.

1https://github.com/DanlinJia/spark _ core_ATMM
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Fig. 8. Execution time of applications under SMM, UMM and ATuMm.

Fig. 9. Memory usage analysis of SMM, UMM and ATuMm.

2) Sensitivity Analysis: We also conduct a set of experiments
to investigate the sensitivity of input data size, where we compare
the performance of PageRank under three memory managers in
the default mode with different input data sizes, such as 1 GB,
2 GB, 3 GB and 7 GB. As shown in Fig. 8(c), ATuMm achieves
the best performance when the input data sizes are 1 GB, 2 GB,
and 3 GB. Compared to UMM, ATuMm improves the latency by
25%. We interpret this improvement by observing that ATuMm
leverages the GC time to repeatedly adjust the boundary between
storage and execution memory, which prevents the Spark appli-
cations from a long GC duration as UMM introduced. When in-
put data grows up to 7 GB, the overwhelming workload takes full
usage of execution memory to process input data. Both UMM
and ATuMm expand the execution memory pool aggressively to
satisfy the massive execution memory requirements. As a result,
UMM and ATuMm obtain similar performance (e.g., 78 minutes
for 7 GB input data), which is better than that of SMM.

3) Memory Usage and Garbage Collection Analysis: We
further look closely at the execution details of three Spark
memory managers by plotting their memory usages in Fig. 9,
where PageRank is running with 3 GB input data. Fig. 9(a)∼(c)
present the storage memory usage across time under the three
memory managers, while Fig. 9(d)∼(f) depict the correspond-
ing execution memory usage. In each plot, the dashed line is
the maximum memory size accessible for the corresponding

memory (such as storage or execution), and the solid line is
the actual usage of the memory pool.

From Fig. 9(a)∼(c), we observe that the storage memory
utilization is similar for all three memory managers, which
increases up to the maximum allowed storage pool size as
time goes by. This is because RDDs are cached periodically in
PageRank. Whereas, the storage memory pool sizes are different
under three memory managers at different times. That is, both
UMM and ATuMm dynamically change the storage memory
pool sizes instead of the fixed one as SMM does. As shown in
Fig. 9(a), the static storage memory pool starts to evict RDDs
when the utilization of the storage memory pool is full. However,
in Fig. 9(b), UMM drops the size of its storage memory pool to
almost zero and then increase its storage pool when RDDs are
cached. The storage memory pool changes more dynamically
under ATuMm, as shown in Fig. 9(c). ATuMm first drops the
storage fraction gradually as the execution memory pool ex-
pands, and then increases it as RDDs are cached. It is noticeable
that ATuMm not only increases the storage memory pool based
on storage memory requirements to cache RDDs, but also adjusts
the pool size more rapidly than UMM to limit the execution
memory pool size.

We further show our analysis of the execution memory usage
under three memory managers in Fig. 9(d)∼(f). SMM fixes the
execution memory pool size regardless of workload diversity,
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Fig. 10. GC analysis of SMM, UMM and ATuMm.

while UMM and ATuMm alter the execution memory pool size
based on demands. Fig. 9(e) shows that the execution mem-
ory pool of UMM expands aggressively and occupies almost
all accessible memory when the first execution requirement
comes. Contrarily, in Fig. 9(f), ATuMm increases gradually
across time until it satisfies all execution requirements. This
is because UMM expands the execution memory pool only
based on execution memory requirements, while ATuMm fur-
ther considers the impact of GC on Spark performance to con-
trol the expansion of the execution memory pool. In addition,
as the execution memory usage drops, UMM still gives the
execution memory pool as much memory space as possible
(i.e., all memory except that for caching RDDs). Conversely,
ATuMm decreases the execution memory pool size more rapidly
to limit the memory allocated to the execution memory pool. By
this way, ATuMm can effectively prevent Spark applications
from long GC durations introduced by overloaded execution
memory. We can observe that the execution memory pool size
converges to around 200 MB, which guarantees enough mem-
ory for task execution and further offers a relatively low GC
time.

We next present our observation regarding GC time. To show
our observations, we use the PageRank application with 3 GB
input data as representative and compare GC time using three
memory managers. Fig. 10 shows the duration of garbage col-
lection during the runtime of the application, where each spike
represents an occurrence of a full GC (i.e., JVM stops all tasks
and scans the whole heap to remove unreferred objects) that
majorly contributes to GC time [15]. Fig. 10(a) shows that the
maximum full GC time of SMM is around 40 seconds. While,
under UMM, a full GC can take more than 70 seconds, see
Fig. 10(b). More importantly, we can observe that the full GCs
under ATuMm are all below 30 seconds in Fig. 10(c), which
is smaller than both SMM and UMM. Besides, We observe
that fewer spikes occurred under ATuMm than under UMM
and SMM, which means that the frequency of full GCs under
ATuMm is also lower than SMM and UMM. We also record the
total GC time of SMM, UMM, and ATuMm, which is 14˜min,
20˜min and 8.4˜min, respectively. Since we use 4 executors in
the experiment, the GC time of each executor should be divided
by 4, which is considered as the contribution of GC to the overall
execution time. Thus, we can conclude that ATuMm is able to
significantly reduce the maximum and the total time of GCs
when compared to SMM and UMM and thus accelerates the
execution of Spark applications with minimum makespan (i.e.,
total execution length).

Fig. 11. Latency of PageRank under SMM, UMM, ATuMm, and Q-ATuMm.

C. Q-ATuMm Evaluation

We further implement and evaluate our Q-learning based
version Q-ATuMm. We construct experiments on different
categories of workloads (i.e., data-intensive applications and
business queries) to evaluate the performance of Q-ATuMm,
compared with that of SMM, UMM, and ATuMm. We tune
the three hyper-parameters (i.e., learning rate, exploration
ratio, and discount factor as shown in Section III-B2) in
Q-ATuMm to achieve the best performance. The discus-
sion on these hyper-parameters will be shown later in this
section.

1) PageRank Analysis: We first construct the same experi-
ments with PageRank on Q-ATuMm as shown in Section IV-B1.
In order to trigger intensive data loading and processing, we
increase the input data size to 5 GB. We observed that the
application has fewer iterations to execute when the input size is
small. Therefore, the Q-learning algorithm has fewer samples to
learn. The performance of Q-ATuMm is worse with small data
size. We also fix the number of iterations in PageRank as 20 in
all experiments.

Fig. 11 illustrates the latency of PageRank under the four
different memory managers. We manually set SMM storage
fractions from 0.1 to 0.9 to observe the optimal latency experi-
mentally. We observe that the best performance under SMM is
achieved when the storage fraction is 50% and 90%, while UMM
cannot reach that, which is consistent with our observations
in Section IV-B1. On the other hand, we observe that both
ATuMm and Q-ATuMm outperform UMM. More importantly,
Q-ATuMm further reduces the latency by 28% compared to
ATuMm.
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TABLE III
QUERY CLASSIFICATION

Fig. 12. Latency of TPC-H queries. Queries within the blue dashed box are
CPU intensive. Queries within the red solid box are I/O intensive.

2) Workload Intensity Analysis: Q-ATuMm is further eval-
uated on a decision support benchmark named TPC-H [16] in
the context of Apache Spark. TPC-H consists of twenty-two
business-oriented queries and concurrent data modifications.
TPC-H evaluates the performance of decision support systems
by executing ad-hoc queries on a generated synthetic data set.
In our experiment, we select representative queries running on a
10 GB data set. Work [17] investigates characteristics of TPC-H
queries and classifies them based on resource intensity. We select
two types of queries in TPC-H to evaluate Q-ATuMm, as shown
in Table III. CPU Intensive quires contain operations like order
and select, while I/O intensive quires either need to load large
data set into memory or perform operations on multiple data
sets, e.g., join. It is worth noticing that some quires can be both
CPU and I/O intensive (e.g., Q1, Q3, and Q21).

We compare the performance of selected queries under Q-
ATuMm with that under ATuMm and UMM. The first six queries
in Fig. 12 illustrates the latency of CPU intensive queries with
different memory manages. We observe that the latency of Q1,
Q6, Q12, and Q13 does not have a visible variance among
three memory managers, while Q-ATuMm outperforms the other
two in Q3 and Q21. Our experimental results indicate that
CPU-intensive queries hardly benefit from both ATuMm and Q-
ATuMm, as their performance heavily relies on CPU resources.
The last five queries in Fig. 12 are I/O intensive queries that need
to load data into memory and trigger more RDD caching, which
can significantly benefit from our new design. Thus, we observe
a decent latency reduction above 20% in Q-ATuMm, compared
with that in UMM. For Q1, we find that although Q1 needs to
join two tables, each table is small. Therefore, even though Q1
is also classified as an I/O extensive query, its execution time is
not reduced significantly by Q-ATuMm.

3) Memory Usage and Garbage Collection Analysis: To
closely analyze the performance improvement under Q-
ATuMm, we further collect the aggregated GC time of all
executors under ATuMm, Q-ATuMm, UMM, and SMM with
0.9 storage fraction and show both total execution time (i.e.,
latency) and GC time for PageRank in Table IV. We first notice
that GC time plays a dominant role in the total execution time.

TABLE IV
EXECUTION TIME AND GC TIME COMPARISON

Fig. 13. Storage memory usage among all four memory managers.

By gradually reducing the storage fraction when the execution
memory pool expands, our memory managers (i.e., ATuMm and
Q-ATuMm) can significantly reduce the GC time by 17% and
32%, compared to UMM. Q-ATuMm further reduces the GC
time (close to the optimal one as shown in the row of SMM 0.9 in
Table IV) by using the Q-learning reinforcement technique to
set the adjustment step for changing the memory boundaries
automatically.

We further show storage memory usage among all four mem-
ory managers in Fig. 13. First, SMM has a fixed storage pool
size (e.g., 0.9 storage fraction), and its storage memory usage
increases up to the maximum allowed storage pool size as time
goes by, which is caused by caching RDDs in each iteration. On
the other hand, UMM, ATuMm, and Q-ATuMm dynamically
change the storage memory pool size as time progresses based
on the run-time memory resource demands. For example, as
shown in Fig. 13, all of them start to increase the storage pool
size at around 1000 seconds when RDDs start being cached.

However, we can observe that UMM immediately decreases
the storage memory pool size to around zero to give more space
to the execution memory pool, which unfortunately can cause
a long GC time, as we discussed in Section II-C. To address
this issue, ATuMm decreases the storage memory pool size
gradually until it converges with the storage memory used size.
It is visible that ATuMm gradually adjusts storage memory
size based on the caching of RDDs, but it is less aggressive
than UMM. For Q-ATuMm, we observe that the randomness
that comes from exploration causes the spikes as the storage
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Fig. 14. Execution memory usage among all four memory managers.

memory pool size is dynamically adjusted. We also notice that
the memory storage pool size decreases to below 50 almost
from the starting point and stays there for about 900 seconds
before the demand for storage memory increases because of
RDD caching. In conclusion, we see that Q-ATuMm converges
faster than ATuMm but less aggressive than UMM.

We also show execution memory usage among all four mem-
ory managers in Fig. 14. SMM’s execution memory pool size
remains fixed even though the actual execution memory usage
is always lower than the allocated one, which indicates that
SMM cannot fully utilize the execution memory, and meanwhile,
it avoids triggering larger GC time. Based on the workload
demands, UMM, ATuMm, and Q-ATuMm dynamically alter
the execution memory pool size, which again proves to be more
beneficial for execution memory utilization. ATuMm gradually
increases execution storage as time passes, which helps reduce
the long GC time. Q-ATuMm’s execution memory pool size, on
the other hand, is adjusted considerably to execution memory
usage and converges at around 150 seconds, which is faster than
ATuMm. The observation shows that our design of Q-ATuMm
can converge fast to the run-time execution memory demands,
but not as aggressive as that in UMM, which shortens GC time
and saves execution time.

4) Hyper-Parameter Tuning: We finally discuss the impacts
of three hyper-parameters, i.e., learning rate (α), exploration
ratio (ε), and discount factor (γ), on Q-ATuMm’s performance.
We conduct a set of sensitivity analysis tests by setting different
values of these hyper-parameters to run PageRank applications.
Instead of extensively exploring all possible combinations, we
selectively fix any two hyper-parameters and change the third
one. Table V summarizes the top 5 combinations that obtain the
best latency.

We find that three out of five appropriate values for the learn-
ing rateα are 0.3. Although a higher learning rate may guarantee
Q-ATuMm converges quickly, it is possible to be trapped in

TABLE V
LATENCY OF TOP 5 HYPER-PARAMETER COMBINATIONS

a locally optimal solution. A small learning rate ensures that
Q-ATuMm can achieve the optimal global solution, even with a
slower speed. We also set the exploration ratio ε to 0.1 because
a lower exploration ratio can allow more exploitation than ex-
ploring different states and identify the best values for achieving
the optimal performance. As Q-ATuMm has a relatively simple
state space, we expect Q-ATuMm to learn on the known states
instead of exploring around randomly. Finally, considering that
the discount factor determines the importance of future rewards,
and PageRank is an iterative application with periodic patterns
across time, we find that a significant discount factor (i.e., 0.9)
can speed up the convergency.

We also tune the three hyper-parameters of Q-ATuMm to
investigate their impacts on the performance of TPC-H appli-
cations. Similarly, we extensively change the values from 0.1 to
0.9 for each hyper-parameter and receive the following obser-
vations. First, we find that the discount factor is not sensitive for
both CPU intensive and I/O intensive queries because most of the
queries are completed within a short period before the discount
factor takes effect. Second, the exploration ratio is less sensitive
for CPU-intensive queries than for I/O intensive queries because
CPU-intensive queries hardly benefit from Q-ATuMm. Finally,
more than one combination of the three hyper-parameters can
lead to the same best performance, which indicates that TPC-H
quires are not sensitive to hyper-parameters of Q-ATuMm as
they are not iterative applications.

V. CONCLUSION

Apache Spark speeds up large-scale data processing by lever-
aging in-memory computation. However, the existing Spark
memory manager (UMM) incurs long garbage collections,
which degrades Spark performance significantly. In this work,
we first present a new Spark memory manager (ATuMm) that
leverages the feedback of GC time and memory demands
to partition the memory pool dynamically. We further adopt
a reinforcement learning algorithm to develop an intelligent
agent (Q-ATuMm) to manage memory partition for complicated
workloads. We implement ATuMm and Q-ATuMm in Spark
2.4.0 and construct experiments in a real Spark cluster. We
find that ATuMm obtains around 25% improvement of Spark
performance, compared with existing memory managers in the
best case. By applying learning-based memory management,
Q-ATuMm can further improve Spark’s performance to 34%. We
contribute the latency improvement to successfully reducing the
GC time for both ATuMm and Q-ATuMm. In the future, we plan
to evaluate our design on a larger volume of applications with dif-
ferent types of resource intensity. By constructing experiments
extensively, we are able to find a hyper-parameter combination
that provides optimal performance for general data-processing
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applications. We also plan to integrate other ML algorithms, e,g.,
LSTM, to compare cost and performance with Q-learning.
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