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Optimize Storage Placement
in Sensor Networks

Bo Sheng, Member, IEEE, Qun Li, Member, IEEE, and Weizhen Mao

Abstract—Data storage has become an important issue in sensor networks as a large amount of collected data need to be archived
for future information retrieval. Storage nodes are introduced in this paper to store the data collected from the sensors in their
proximities. The storage nodes alleviate the heavy load of transmitting all data to a central place for archiving and reduce the
communication cost induced by the network query. The objective of this paper is to address the storage node placement problem
aiming to minimize the total energy cost for gathering data to the storage nodes and replying queries. We examine deterministic
placement of storage nodes and present optimal algorithms based on dynamic programming. Further, we give stochastic analysis for
random deployment and conduct simulation evaluation for both deterministic and random placements of storage nodes.

Index Terms—Wireless sensor networks, data storage, data query.

1 INTRODUCTION

SENSOR networks deployed for pervasive computing
applications, e.g., sensing environmental conditions
and monitoring people’s behaviors, generate a large
amount of data continuously over a long period of time.
This large volume of data has to be stored somewhere for
future retrieval and data analysis. One of the biggest
challenges in these applications is how to store and search
the collected data.

The collected data can either be stored in the network
sensors or transmitted to the sink. Several problems arise
when data are stored in sensors. First, a sensor is equipped
with only limited memory or storage space, which prohibits
the storage of a large amount of data accumulated for
months or years. Second, since sensors are battery operated,
the stored data will be lost after the sensors are depleted of
power. Third, searching for the data of interest in a widely
scattered network field is a hard problem. The communica-
tion generated in a network-wide search will be prohibitive.
Alternatively, data can be transmitted back to the sink and
stored there for future retrieval. This scheme is ideal since
data are stored in a central place for permanent access.
However, the sensor network’s per node communication
capability (defined as the number of packets a sensor can
transmit to the sink per time unit) is very limited [1], [2]. A
large amount of data cannot be transmitted from the sensor
network to the sink efficiently. Furthermore, the data
communication from the sensors to the sink may take long
routes consuming much energy and depleting of the sensor
battery power quickly. In particular, the sensors around the
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sink are generally highly used and exhausted easily, thus,
the network may be partitioned rapidly.

It is possible that, with marginal increase in cost, some
special nodes with much larger permanent storage (e.g.,
flash memory) and more battery power can be deployed in
sensor networks. These nodes back up the data for nearby
sensors and reply to the queries. The data accumulated on
each storage node can be transported periodically to a data
warehouse by robots or traversing vehicles using physical
mobility as Data Mule [3]. Since the storage nodes only
collect data from the sensors in their proximity and the data
are transmitted through physical transportation instead of
hop by hop relay of other sensor nodes, the problem of
limited storage, communication capacity, and battery
power is ameliorated.

Placing storage nodes is related to the sensor network
applications. We believe that query is the most important
application for sensor networks since, in essence, sensor
networks are about providing information of the environ-
ment to the end users. A user query may take various forms,
e.g.,, “"how many nodes detect vehicle traversing events?”
and “what is the average temperature of the sensing field?”
In this scenario, each sensor, in addition to sensing the
nearby environment, is also involved in routing data for two
network services: the raw data transmission to storage
nodes and the transmission for query diffusion and query
reply. Two extremes, as mentioned before, would be
transmitting all the data to the sink or storing them on each
sensor node locally. On one hand, data solely stored in the
sink is beneficial to the query reply incurring no transmis-
sion cost, but the data accumulation to the sink is very costly.
On the other hand, storing data locally incurs zero cost for
data accumulation, whereas the query cost becomes large
because a query has to be diffused to the whole network and
each sensor has to respond to the query by transmitting data
to the sink. The storage nodes not only provide permanent
storage as described previously but also serve as a buffer
between the sink and the sensor nodes. The positioning of
storage nodes, however, is extremely important in this
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communication model. A bad placement strategy may waste
the storage resources and have an adverse effect on the
performance. Therefore, a good algorithm for placing
storage nodes is needed to strike a balance between these
two extremes characterizing a trade-off between data
accumulation and data query.

This paper considers the storage node placement
problem in a sensor network. This problem can be very
complex with respect to various optimization metrics, such
as bandwidth minimization on each link and lifetime of the
network. However, the bandwidth problem is alleviated
because the storage nodes collect the data generated within
their proximities and avoid the heavy load on each link
incurred by the long-distance data communication. Lifetime
of a network depends on the routing scheme and the
network structure. Specifically, it is mainly affected by the
most loaded nodes, which are likely the nodes close to the
sink. The storage placement does not reduce the loads on
those nodes since all the responses have to be sent through
the nodes around the sink. Therefore, even though lifetime
is an important metric, it is not a good metric to guide the
storage placement design. Instead, we consider an approx-
imation of lifetime: energy cost. We believe that energy cost
is more crucial as it is the most important performance
metric in sensor network design. Therefore, we aim to
minimize the total energy cost in data accumulation and
data query by judiciously placing the storage nodes.

We first examine the problem in the fixed tree model. We
assume that the sensor network has organized into a tree
rooted at the sink. The communication routes from sensors
toward the sink are predefined by the tree. Our goal is to
select some of the nodes in the tree as storage nodes, each of
which is responsible for storing the raw data of its
descendants that are not covered by other storage nodes.
In many applications, for example, a sensor network along
the highway, or a drainage or oil pipeline monitoring
system, the network communication tree is fixed due to the
constraints of the sensor deployment. Our results for the
fixed tree model fit into those scenarios well. We also
consider the dynamic tree model, where the (optimal)
communication tree is constructed after the storage nodes
are deployed. Specifically, each sensor selects a storage
node in its proximity for its data storage with the goal to
minimize the energy cost of the resulting communication
tree. The sketch of our solution and preliminary results
have been published in [4].

The remainder of the paper is organized as follows: In
Section 2, we review the related work. In Section 3, we
define several problems for storage node placement in the
aforementioned models. In Sections 4 and 5, we present
optimal algorithms for the problems defined within the
fixed tree model. In Section 6, we give theoretical analysis of
randomized deployment of storage nodes for both the fixed
tree and dynamic tree models. In Section 7, we present our
simulation results, which confirm the theoretical analysis.
Finally, in Section 8, we make the conclusion and discuss
future research.

2 REeLATED WORK

There have been a lot of prior research works on data
querying models in sensor networks. In early models [5],
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[6], query is spread to every sensor by flooding messages.
Sensors return data back to the sink in the reverse direction
of query messages. Those methods, however, do not
consider the in-network storage.

In the literature, several schemes have introduced an
intermediate tier between the sink and sensors. LEACH [7]
is a clustering-based routing protocol, where cluster heads
can fuse the data collected from its neighbors to reduce
communication cost to the sink. However, LEACH does not
address storage problem. Data-centric storage schemes [8],
[9], [10], [11], [12], as another category of the related work,
store data on different places according to different data
types. In [8], [9], and [11], the authors propose a data-centric
storage scheme based on Geographic Hash Table, where the
home site of data is obtained by applying a hash function on
the data type. Another practical improvement is proposed
in [12] by removing the requirement of point-to-point
routing. Ahn and Krishnamachari [13] analyze the scaling
behavior of data-centric query for both unstructured and
structured (e.g.,, GHT) networks and derive some key
scaling conditions. GEM [10] is another approach that
supports data-centric storage and applies graph embedding
technique to map data to sensor nodes. In general, the data-
centric storage schemes assume some understanding about
the collected data and extra cost is needed to forward data
to the corresponding keeper nodes. In our paper, we do not
assume any prior knowledge about the data: indeed in
many applications, raw data may not be easily categorized
into different types. To transmit the collected data to a
remote location is also considered expensive because the
total collected data may be in a very large quantity.

To facilitate data query, Ganesan et al. [14] propose a
multiresolution data storage system, DIMENSIONS, where
data are stored in a degrading lossy model, i.e., fresh data
are stored completely while long-term data are stored
lossily. In comparison, our scheme is more general without
any assumption about the data correlation. PRESTO [15] is a
recent research work on storage architecture for sensor
networks. A proxy tier is introduced between sensor nodes
and user terminals and proxy nodes can cache previous
query responses. Compared to the storage nodes in this
paper, proxy nodes in PRESTO have no resource constraints
in terms of power, computation, storage, and communica-
tion. It is a more general storage architecture that does not
take the characteristics of data generation or query into
consideration. In the Cougar project [16], [17], a data
dissemination tree is built with data sources as leaves. View
nodes introduced in Cougar have similar functionalities as
storage nodes in this paper. Our scheme focuses more on
how to optimize the placement of storage nodes, while
Cougar mainly focuses on how to implement data query
with more details in a sensor network.

In addition, recent research work has shown the feasibility
of storage nodes. Mathur et al. [18] investigate hardware
supports to attach large-capacity flash memory to sensors.
Their measurement study shows that access to large local
storage is practical for sensors. Furthermore, storage nodes
are also supported by recent research on software system.
Zeinalipour-Yazti et al. propose MicroHash [19], an indexing
structure to manage external flash memory of sensors in
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Fig. 1. Data access model with storage nodes.

order to efficiently look up the stored data. Mathur et al. [20]
design Capsule system as an intermediate layer between
flash memory and sensor applications.

In [21] and [22], the authors introduce an approach to
analyzing communication networks based on stochastic
geometry. They consider models built on Poisson processes
and obtain formulas to express the average cost in function
of the intensity parameters of Poisson processes. Baek et al.
extend this work specifically to sensor networks in [23]. Our
paper also analyzes random placement of storage nodes in
Section 6. We will use similar means with [21], [22], and [23]
to derive analytical formulas for the performance.

3 PROBLEM FORMULATION

In this paper, we consider an application in which sensor
networks provide real-time data services to users. A sensor
network is given with one special sensor identified as the
sink (or base station) and many normal sensors, each of
which generates (or collects) data from its environment.
Users specify the data they need by submitting queries to
the sink and they are usually interested in the latest
readings generated by the sensors." To reply to queries,
one typical solution is to let the sink have all the data. Then,
any query can be satisfied directly by the sink. This requires
each sensor to send its readings back to the sink
immediately every time it generates new data. Generally,
transferring all raw data could be very costly and is not
always necessary. Alternatively, we allow sensors to hold
their data and to be aware of the queries, then raw data can
be processed to contain only the readings that users are
interested in and the reduced-size reply, instead of the
whole raw readings, can be transferred back to the sink.
This scheme is illustrated in Fig. 1, where the black nodes,
called storage nodes, are allowed to hold data. The sink
diffuses queries to the storage nodes by broadcasting to the
sensor network and these storage sensors reply to the
queries by sending the processed data back. Compared to
the previous solution, this approach reduces the raw data
transfer cost (as indicated by the thick arrows in the figures)
because some raw data transmissions are replaced by query
reply (as indicated by the thin arrows). On the other hand,
this scheme incurs an extra query diffusion cost (as
indicated by the dashed arrows). In this paper, we are

1. Our algorithms also apply to the queries to the historic data. For the
ease of presentation, we assume that all queries correspond to the latest
generated data.
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interested in strategically designing a data access model to
minimize energy cost associated with raw data transfers,
query diffusion, and query replies.

We first formally define two types of sensors (or nodes).
1) Storage nodes: This type of nodes have much larger
storage capacity than regular sensors. In the data access
model, they store all the data received from other nodes or
generated by themselves. They do not send out anything
until queries arrive. Based on the query description, they
obtain the results needed from the raw data they are
holding and then return the results back to the sink. Note
that except enriched storage capacity, other resources on
storage nodes are still constrained as regular sensors. The
sink itself is considered as a storage node. 2) Forwarding
nodes: This type of nodes are regular sensors and they
always forward the data received from other nodes or
generated by themselves along a path toward the sink. The
outgoing data are kept intact and the forwarding operation
continues until the data reach a storage node. The
forwarding operation is independent of queries and there
is no data processing at forwarding nodes.

Therefore, our goal is to design a centralized algorithm
that can derive the best locations of the storage nodes to guide
the deployment of such a hybrid sensor network. We make
the following assumptions about the characteristics of data
generation, query diffusion, and query replies: First, for data
generation, we assume that each node generates r; readings
per time unit and the data size of each reading is s,. Second,
for query diffusion, we assume that r, queries of the same
type are submitted from users per time unit and the size of the
query messages is s,. Third, for query reply, we assume that
the size of data needed to reply a query is a fraction « of that of
the raw data. Specifically, we define a data reduction
function f for query reply. For input z, which is the size of
raw data generated by a set of nodes, function f(z) = ax for
a € (0,1] returns the size of the processed data, which is
needed to reply the query. We do not restrict the types of
queries we impose on the sensor network in this paper, but
we assume that we can obtain an empirical value for «
through examining the historic queries. The parameter o
characterizes many queries satisfied by a certain fraction of
all the sensing data, e.g., a range query may be “return all the
nodes that sense a temperature higher than 100 degree” and «
can be estimated based on the data distribution information.

In this paper, the communication among all » nodes is
based on a tree topology rooted at the sink. The tree is formed
in the initial phase as follows: The sink first broadcasts a
message with a hop counter. The nodes receiving the message
will set the message sender as the parent node, increase the
hop counter by 1, and broadcast it. If a node receives multiple
messages, it will select the one with the minimum hop
counter to broadcast and set the sender of the message as its
parent. Data are transferred along the edges in this commu-
nication tree. To transmit one data unit, the energy cost of the
sender and receiver is e, and e,., respectively, and e, is also
relevant to the distance between the sender and receiver. To
simplify the problem, we set the length of each tree edge to
one unit, which means that sensor nodes have a fixed
transmission range and the energy cost of transferring data is
only proportional to the data size. Our algorithms can be
easily extended to nonuniform transmission ranges as long as
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Fig. 2. Deploy storage nodes in the fixed tree model (storage nodes are black). (a) Step 1: Regular sensors are deployed in a field. (b) Step 2: A
communication tree is constructed to relay data. (c) Step 3: Some regular sensors are upgraded to or replaced by storage nodes.

topology information is available. In our energy model, for
simplicity of presentation, the receiving energy cost is
assigned to the sender without changing the total energy
cost. When sensor ¢ sends one data unit to j, the energy cost of
jis 0, and the energy consumed by i is

{

where ¢; is the number of i’s children. In the rest of this
paper, we normalize the energy cost by (e + e,.) for easy
presentation. Thus, transferring one data unit from ¢ to its
parent consumes one energy unit, and to broadcast one data
unit to its children, ¢ will consume b; energy units, where

b' _ eytere G
P epten
Tree structure has been widely used in sensor networks.

Although the communication tree may be broken due to link
failure, this paper considers a common practice that only
stable links are chosen to build the tree so that errors in
transmission due to poor link quality can be reduced and the
tree topology can be robust for a long time. Since the tree
topology changes will be rare incurring small communica-
tion costs compared to the query and data collection cost, we
will not consider the cost for tree topology information
update in this paper. If packet loss happens, sensors may
retransmit the packet till it gets through. We assume that the
probability of retransmission is the same for all links. Thus,
the energy cost for communication on each link is still
proportional to the data size even though the overhead for a
unit packet is larger than that of a perfect wireless link.

The tree structure is independent of the underlying low-
layer communication protocol: like myriad routing proto-
cols, tree structure is one of the routing schemes. Our
algorithm only assumes that the energy cost is proportional
to the transmitted data size, which can be realized in many
communication protocols such as the duty cycle mechan-
ism. Moreover, we assume that the applications considered
in this paper can tolerate the delay caused by the low-layer
communication, such as retransmission and duty cycle
mechanism. We would also like to mention that the lower
layer implementation, such as the duty cycle mechanism, is
compatible with the functionality of the tree structure-based
communication. Tree structure is constructed in the initi-
alization phase in which duty cycle has not been started.
Therefore, duty cycle does not affect the tree construction
while the tree structure has to be considered for selecting
the parameters for duty cycle.

if j is ¢'s parent;
if j is one of 4’s children,

Etr + €re
ey + €re * G

Here, we present basic analysis of energy cost. Let ¢ be a
node in the communication tree and 7; be the subtree
rooted at i. We use |T;| to denote the number of nodes in 7;.
We define e(i) to be the energy cost incurred at ¢ per time
unit, which includes the cost for raw data transfer from ¢ to
its parent if ¢ is a forwarding node, the cost for query
diffusion if ¢ has storage nodes as its descendants, and the
cost for query reply if i is a storage node or has a storage
descendant. To define e(i) mathematically, we need to
consider several possible cases.

Case A. i is a forwarding node and there are no storage
nodes in 7;. All raw data generated by the nodes in 7; have
to be forwarded to the parent of ¢ and there is no query
diffusion cost. So e(i) = |T;|rqSq-

Case B. 7 is a storage node and there are no other storage
nodes in 7;. The latest readings of all raw data generated by
the nodes in T; are processed at node ¢ and the reply size is
be «|T;|sqs. Node i sends the reply to its parent when queries
arrive. So e(i) = rya|Ti|sq.

Case C. i is a storage node and there is at least one other
storage node in 7;. In addition to the cost for query reply as
defined in Case B, i also incurs a cost for query diffusion
that is implemented by broadcasting to its children. So
(i) = rqa|T;|sq + biTgsq-

Case D. i is a forwarding node and there is at least one
storage node in 7;. This is the case where all three types of
cost (for raw data transfer, query diffusion, and query
reply) are present. Among the |T;| — 1 descendants of 4, let
d; be the number of forwarding descendants without any
storage nodes on their paths to i (the raw data generated at
these d; nodes and at 7 itself will be forwarded from ¢ to its
parent without reduction) and dy be the number of storage
descendant’s or forwarding descendants with at least one
storage node on their paths to i (the last readings of the raw
data generated at these d; nodes would have been
processed and reduced before reaching ). Obviously,
di +dy = ‘TH — 1. So,

e(i) = (di + 1)rgsq + birysq + readysg.

The communication tree can be formed before or after
storage node deployment. Accordingly, we will consider two
models in the rest of this paper. In the fixed tree model, as
illustrated in Fig. 2, we first deploy regular sensors and
construct a communication tree as usual. Based on the
topology information, we select some of the regular sensors
to be storage nodes. We can attach large flash memory to
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Fig. 3. Deploy storage nodes in the dynamic tree model (storage nodes are
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black). (a) Step 1: Regular sensors and storage nodes are deployed in a

field. (b) Step 2: Each storage node (including the sink) broadcasts its location information. (c) Step 3: A communication tree is constructed based on

the locations of storage nodes.

these selected sensors or replace them by more powerful
storage nodes at the same locations. The other model, the
dynamic tree model, is illustrated in Fig. 3. In this model,
storage nodes are deployed before the communication tree is
formed and their location information is broadcast to nearby
regular sensors. After that, all sensors organize themselves
into a communication tree according to the locations of the
storage nodes. In both models, after tree construction and
storage node deployment, each storage node needs to send a
notification toward the sink. In this way, every sensor is
aware of the existence of storage nodes among its descen-
dants, and when a query arrives, it is able to determine
whether to continue the diffusion or not.

Within the fixed tree model, we will consider two
problems of storage node placement. Given an undirected
tree T' with nodes labeled as 1,2, ...,n, the length of each
edgeis 1. Let e(¢) be the energy cost of node ¢ in one time unit
as defined above. The objective is to place storage sensors
(and hence, forwarding sensors) on nodes in 7" such that the
total energy cost > .., e(i) is minimized. In the case when
there is no limit on the number of storage nodes that can be
used to minimize the energy cost, the problem is denoted by
UNLIMITED. In the case when there are a limited number of
storage nodes, say, k, to use, the problem is denoted by
LIMITED. For the dynamic tree model, the storage node
placement problem becomes how to place k given storage
nodes to form a communication tree with the minimum total
energy cost. This problem is NP-hard since it is a general
case of the minimum k-median problem. We have proposed
a 10-approximation algorithm for the dynamic tree model in
our previous work [24].

The above problems defined with the fixed tree and
dynamic tree models aim to find the optimal locations for
storage nodes in a deterministic way. In reality, however,
the storage nodes may not be deployed in a precise way.
Instead, their deployment may be random with a certain
density A. This paper also evaluates the performance of
random deployment of storage nodes in fixed and dynamic
trees. Finally, Table 1 lists the notations, which will be used
in the rest of the paper.

4 UNLIMITED NUMBER OF STORAGE NODES

We first present a linear-time algorithm for the problem
UNLIMITED, where an unlimited number of storage nodes
are available to use to minimize the energy cost of a
communication tree. Recall that (i) is the energy cost at

node i. Let T; be the subtree rooted at i. Then, E(i) is the
energy cost of nodes in 7;, defined to be E(i) = ), ;. e(i).
Our algorithm relies on the following lemma:

Lemma 1. Given a node i and its subtree T;, if ary > rq, then i
must be a forwarding node to minimize E(i). Otherwise, i
must be a storage node to minimize E(3).

Proof. We compare the energy cost of two trees, which are
identical in every aspect except that the first tree’s rootis a
forwarding node and the second tree’s root is a storage
node. Let E; and E; be the energy cost of these two trees,
respectively. Comparing the energy cost of individual
nodes, oneby one, in the two trees, we observe thatany two
nonroot nodes in the same position of the trees must have
the same energy cost. The only difference is the energy cost
of the roots. Let e¢; and e, be the energy cost of the roots in
the two trees, respectively. Therefore, £y — Ey = e; — e3.
To prove the lemma, it suffices to prove that

o e <0 ifary >y
>0 if ar, < rq.

We consider two cases. First, if both roots have no
storage descendants, then according to the four-case
definition of energy cost given in the previous section
(Cases A and B, specifically), we have

e) — ey = |Tj|rasa — rqo|T;|sq

<0 ifar,>ry
= [Tsalra—arg)d — 7
>0 if ar, <rg.

TABLE 1
Summary of Notations

rq / sq: rate of data generation / size of each data

rq / Sq: rate of user queries / size of each query message
o: data reduction rate (query reply size / raw data size)
n: total number of sensors

k: total number of storage nodes (for LIMITED problem)
T;: the subtree rooted at node ¢

d;: the depth of node 7

¢;: the number of node i’s children

e(i): energy cost of node ¢

E(i): energy cost of all the nodes in T

A / As: density of regular sensors / storage nodes

etr / ere: energy cost for transmitting / receiving a unit data
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Second, if both roots have at least one storage descen-
dant, then according to the four-case definition of energy
cost given in the previous section (Cases D and C,
specifically), we have

e1 — ey = ((dy + 1)rqsq + birgs, + rqadasq)
— (rqaTi|sa + birgs,)

<0

>0

= (di +1)sa(rq — arq){ %f Oy 2 7

if ary < rq.
In the first tree with a forwarding root, recall that d; is
the number of forwarding descendants of the root
without any storage nodes on their paths to the root
and that d is the number of storage descendants plus the
number of forwarding descendants with at least one
storage node on their paths to the root. Also recall that
d1+d2=|Ti|—1. O

From the above lemma, we can conclude that if ar, > rq,
then every node (except for the root/sink, which is always a
storage node) in the sensor network must be a forwarding
node to minimize the energy cost. However, if ar, < ry,
things are a little tricky. Although the root of the tree, say, 4,
must be a storage node, it may not be true that every node in
the sensor network must be a storage node to minimize the
energy cost. One would think that in order for the tree to
incur a minimum energy cost, all of its subtrees should incur
a minimum energy cost. However, since ar, < rq, these
optimal subtrees all have storage nodes as their roots. This
means that the energy cost of root i will have to include the
cost for query diffusion b;r,s, since it has storage children,
ie., e(i) = rqa|T;|sq + birys,. The cost for query diffusion,
however, can be eliminated if all subtrees of i have only
forwarding nodes, i.e., e(i) = r4a|T;|sq. (See Cases C and B in
the four-case definition of e(¢) in the previous section.) Thus,
the minimum energy cost of the tree rooted at i should be
derived from the better of these two scenarios.

For a tree T} rooted at 4, let C; be the set of children of «.
Let E*(z) be the minimum (optimal) energy cost of T;. If C;
is empty, i.e., ¢ is a leaf, then ¢ must be a storage node to
achieve its minimum energy cost. So E*(i) = ryasq. If C; is
not empty, then for any j € Cj, let Ef(j) be the energy cost
of T; when all nodes in T are forwarding nodes. So

E*(i) = Inin{rqoz|Tl-|sd + birgsy + Z E*(5),

jeC,
ra|Tilsa+ ) Ef(j)}

JeC;i

Algorithm 1 given in pseudocode finds the optimal
placement of storage nodes in two cases: 1) ar, > rq and
2) ary < rq, where the first case is trivial and the second case
is solved by dynamic programming that works from the
bottom to the top of the tree. Assume that n nodes in the
tree T are labeled using the postorder.” A table E*[1..n] is
used to hold the minimum energy cost of all subtrees rooted
at node i = 1,...,n. At the end of the computation, E*[n]

2. The postorder used in this paper is slightly different from the textbook
definition of postorder in that our postorder requires all leaves to be listed
first.
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will hold the minimum energy cost of 7' (which is rooted at
n according to the postorder labeling). We also maintain a
second table E;[1..n|, which records the energy cost of all
subtrees when all nodes in each subtree are forwarding
nodes. In the algorithm, lines 5-9 compute the E* and E;
entries for all leaves and lines 10-19 compute the E* and Ey
entries for the remaining nodes following our postorder.

Algorithm 1. Place Unlimited Storage Nodes
make the root a storage node
if ar, > ry then
make all nonroot nodes forwarding nodes and return
end if
for all leaves ¢ do
make 7 a storage node
E*[i] = rqasq
Ef M = TdSd
end for
10:  for all remaining nodes i, in postorder, do
11:  make ¢ a storage node
12: costl = ryalTilsq + birgsg + 3 jec, B[]
13: cost2 = rya| Tilsg + 3 iec, Erli]
14: E*[i] = min{cost1, cost2}
150 E¢li] = |Tirasa + > e, Erli]
16: if costl > cost2 then

O PN D N

17: change each descendant of ¢ that is a storage
node to a forwarding node

18:  end if

19: end for

There are only O(n) entries to compute in tables E* and
Ey, and to compute each entry that corresponds to a node,
only its children will have to be considered. Furthermore,
each node starts as a storage node. Once it is changed to a
forwarding node by the algorithm, it will never be changed
back. Therefore, the time complexity of Algorithm 1 is O(n),
where n is the number of nodes.

Summarizing the discussion above, we have the follow-
ing theorem:

Theorem 1. If ar, > ry, then the optimal tree with the minimum
energy cost contains only forwarding nodes (except for the
root). If ar, < 14, then the optimal tree can be constructed by a
dynamic programming algorithm in O(n) time.

We also observe that every node starts as a storage node
and that once it is changed to a forwarding node, all its
descendants are changed to forwarding nodes as well.
Thus, it is impossible for a forwarding node to have a
storage descendant. Likewise, it is impossible for a storage
node to have a forwarding ancestor. We then have the
following corollary:

Corollary 1. In the optimal tree, if i is a forwarding node, all its
descendants are forwarding nodes. If i is a storage node, all its
ancestors are storage nodes.

In summary, this UNLIMITED problem refers to the
scenario that the deployment budget is sufficient to
upgrade every sensor to be a storage node. However,
simply making all sensors storage nodes may not be the
best strategy. The appropriate deployment still depends on
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the characteristics of query and data generation. Intuitively,
if there are a large volume of queries for a certain set of data
and the reduction function yields a large «, it would be
better to transfer these data to the sink. On the other hand, if
queries are infrequent and the reply size is much less than
the raw data, it would be more efficient to hold the raw data
locally. According to Theorem 1 and Corollary 1, the
optimal deployment of storage nodes has a special prop-
erty. For any path from a leave to the root, there is a clear
boundary that distinguishes forwarding nodes from storage
nodes. The nodes below the boundary layer to leaves are
forwarding nodes and the nodes above the boundary
toward the sink are storage nodes.

5 LivmiteED NUMBER OF STORAGE NODES

In the problem UNLIMITED discussed in the previous
section, we assume that we have enough storage nodes for
the need to minimize the energy cost of the network. In
reality, however, storage nodes may come with a hardware
cost. Considering a limited budget for deploying a sensor
network, there might be only a small portion of sensors as
storage nodes. This is why we have also defined the problem
LIMITED, which is similar to UNLIMITED except that we
have only k storage nodes to deploy. Since the root (sink) is
always a storage node, we assume that £ > 1 and that k£ — 1
is the maximum number of storage nodes that may appear
as descendants of the root. Furthermore, from the discussion
in the previous section, if ar, > r4, the optimal tree has no
storage nodes at all except the root. In this case, we just do
not deploy any of the k — 1 storage nodes and we get an
optimal tree. Our discussion in this section on LIMITED is
for the case of ar; < ry. Since the number of storage nodes is
limited, where to place them becomes a crucial problem. A
bad placement strategy may hardly improve the perfor-
mance. Basically, there is a trade-off between two trends. On
the one hand, if storage nodes are close to the sink, i.e., at a
high level in the tree structure, they can process more raw
data, thus reduce the reply size from storage nodes to the
sink. However, the sensor network spends much energy in
transferring the raw data from low-level forwarding nodes
to the storage nodes. On the other hand, if the storage nodes
are far away from the sink, the raw data from their
descendants can be processed earlier along the path toward
the sink. However, storage nodes may cover only a few
regular sensors, which leads to much raw data transferred to
the sink without being processed. Besides this trade-off, the
benefits from a storage node also depend on the locations of
other storage nodes. Therefore, in this section, we propose
the optimal placement strategy in order to maximize the
benefits from deploying k storage nodes.

5.1 Arbitrary Trees

Assume that a communication tree 1" is given with up to
k storage nodes already optimally deployed. By definition,
the energy cost of T'is ), ., e(i). However, we are going to
use a different and unique method to calculate this cost,
which works from the bottom of the tree toward the root.
Starting from the leaf nodes and following the postorder
until the root is eventually reached, for each node i, we
compute the energy cost already incurred within the
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Fig. 4. Computing the contribution to the energy cost of all ancestors.
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subtree T; rooted at i, which is E(i) by our notation, plus
the energy cost contributed by the nodes in 7; to their
ancestors, which includes both raw data transmission cost
and query reply cost according to the four-case definition of
the energy cost of an individual node. Specifically, if i is a
forwarding node, it contributes a raw data transmission
cost of rqsy to each of its forwarding ancestors that lie
between i and i’s closest storage ancestor (due to Cases A
and D) and a query reply cost of r,asg to each of the other
ancestors (due to Cases B and D). If i is a storage node,
however, it contributes a query reply cost of r,as, to each of
its ancestors (due to Cases C and D). Fig. 4 depicts the two
scenarios. The top path from node i to the root (sink) is
when i is a forwarding node and the bottom path from i to
the root is when i is a storage node. Above each node
(except i) is the contribution from i to the energy cost
incurred at the node.

Let I be the number of forwarding nodes between ¢ and
its closest storage ancestor, not including i. Let m be the
upper bound on the number of storage nodes in 7;. Then,
we use E;(m,!) for the energy cost that includes E(i) and
the amount contributed by the nodes in T; to the energy cost
of their ancestors. Notethat 0 < m < kand 0<!<n-2.In
the case that ¢ is a storage node or i’s parent is a storage
node, [ becomes 0. Furthermore, if m = 0, no storage node is
used in T;, and if m > 1, at least one but no more than
m storage nodes are used in 7;. Therefore, E,(k,0) is the
minimum energy cost of 7" with up to k storage nodes to
deploy, assuming that n is the label for the root.

When traversing the nodes in postorder in the tree
starting from the leaves, let i be the current node being
traversed. Let d; be the depth of i in the tree, which is the
number of edges on the path from i to the root n. We can
define E;(m,l) recursively. For notational simplicity, we
first define Qy(m) and Q;(m) as follows:

Qi = {5, o s @il = Qi 1)

If ¢ is a leaf node, E;(m,!) includes the energy cost of ¢
and the precalculated amount contributed by s to all of its d;
ancestors. Specifically, if ¢ is a forwarding node, its own
energy cost is 7454 and its contribution to the energy cost of
its ancestors is lrgsq + (d; — l)ryasq. If @ is a storage node, its
own energy cost is r,asq and its contribution to the energy
cost of its ancestors is d;r,asq. Therefore,

I+ 1)rgsq + (di — Dryasy
(di + Dryasq

if m = 0;
if m > 1.

Ei(m,1) = {

If i is a forwarding nonleaf node with a child set of
C;, the upper bound m must be divided among all of
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its children. Let P(m) be the set of all permutations
p = (mf]j € Ci), where 3, m” =m and m{ denotes the
upper bound on the number of storage nodes for subtree Tj
in permutation p. Then, E;(m,!) is defined to be the sum of
the amount from all of its subtrees,

min

{ZE ml, 1+ 1 }
VpeP(m)

the energy cost of i, r4sq + Qg(m), and the precalculated
amount of energy cost contributed by i to its ancestors,
lrqsq + (di — l)rqasq. So,

E;(m,l) = min

{ZE mh, 1 +1) }
VpeP(m)

+ (L Drasa + (d = Drgasa + Qp(m).

If i is a storage nonleaf and nonroot node, the upper
bound m — 1 must be divided among all of its children. Let
P(m —1) be the set of all permutations p=(milj€ ),
where 3. m =m —1 and m/ denotes the upper bound
on the number of storage nodes for subtree 7; in
permutation p. Then, E;(m,!) is defined to be the sum of
the amount from all of its subtrees,

i E;(m”,0 3,
mH{Z i }

the energy cost of i, r,asq + Q) (m), and the precalculated
amount of energy cost contributed by i to its ancestors,
dirqosq. So,

. — i (mP
E;(m,1) Vp€%t21>{jzz E; (m] ,0) }

<C;
+ (di + 1)rqasqg + Qi (m).

Algorithm 2 given here maintains a two-dimensional
(k+1) x (n—1) table, E;[m,l], at each node i, where 0 <
m < kand 0 <[ <n —2. Assume that a postorder traversal
is done beforehand and that the depth of each node is
computed beforehand. Both the postorder and the depths
can be obtained in O(n) time. In the algorithm, lines 1-6
compute the E; tables for all leaves i, lines 7-12 compute the
E; tables for the remaining nonroot nodes ¢, and lines 13
and 14 compute the entry E, [k, 0] for the root n. After all the
tables are constructed, the minimum energy cost of the tree
with up to k storage nodes can be found in the entry
E,[k,0]. Note that instead of constructing a table for the
storage root n, we compute only the needed entry for n.

Algorithm 2. Place Limited Storage Nodes

1. for all leaves i do

2 form =0 to k do

3 for=0ton—2do

4: if m = 0 then

5: Eilm,l] = (1 + 1)rgsq + (d; — D)ryosq

6: if m > 1 then E;[m,l] = (d; + 1)ryasq

7:  for all remaining nonroot nodes %, in postorder, do
8 for m =0 to k do

9 for/=0ton—2do
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10: minl = mlnvp€p<m X jec, Eilm?, 1+ 11}
+ (I+ 1)rasq + (d; — l)rqozsd + Qp(m)
11: min2 = minyyep(m-1){>_cc, £j [m?,0]}
+ (d; + D)ryasy + Qi (m)
12: E;[m,l] = min{minl, min2}
13: E,[k,0] = minypep—1 {Z]e(‘ [m 0}

+ rqasqg + Qi (m)
14: return E, [k, 0]

Assume that every node in the tree has at most ¢ children.
To partition an upper bound m into up to ¢ upper bounds
with the sum equal to m, there are at most ("'¢")

(et < (Ffe') permutations. The algorithm constructs

O(n) tables and each table consists of O(kn) entries. To
compute each entry, the time is

k+c—1
O<( c—1

Thus, the time complexity of the algorithm is
O(kn?(max{k,c})""). We summarize the discussion above
in the following theorem:

)c> =O0((k+c—1)""¢/(c—1))
= O((max{k,e})“ ™).

Theorem 2. Given a communication tree with n nodes and at
most ¢ children for each parent, let k be the maximum
number of storage nodes that may be deployed in the tree.
Then, the optimal tree with the minimum energy cost can be
constructed by a dynamic programming algorithm in
O(kn*(max{k,c})“™") time.

5.2 Regular Trees

Now we consider a special case of LIMITED, where the
given network is a regular tree with exactly ¢ children for
each nonleaf node and all leaves at the same level. For such
a c-ary regular tree, we can modify Algorithm 2 to achieve a
faster time complexity by making use of the regularity of
the tree structure.

First, any subtree in a regular tree is also a regular tree
and nodes at the same level have the subtrees with the same
topology. This suggests that instead of keeping a table for
each node as in Algorithm 2, we may keep just one table for
each level. We name the levels from bottom to top, with all
leaves at level 0, all parents of the leaves at level 1, and
finally, the root at level |log, n]. For each level h, we define a
two-dimensional table E,[m,l] for 0 <m <k and
0 <1< |log,n] — 1, which returns the energy cost incurred
within the subtree rooted at level h plus the contribution
from the nodes in the subtree to their ancestors. As used
previously, m is still the maximum number of storage nodes
to use in the subtree and [ is the number of forwarding
nodes between the root of the subtree and the storage
ancestor closest to the root of the subtree.

We first define ()y(m) and Q;(m) as follows:

0 if m = 0;
Qo(m) = mrqsq if m > 1. @m)=Qo(m

ey + €re

—1).

Let H = |log,n]. Algorithm 3 first computes the table
Eo[m, 1] for all leaves at level 0, for 0 <m < kand 0 <<
H — 1 in lines 2-5. Then it works its way up, level by level,
until level H — 1 in lines 6-11. The root, which is at level H,
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is treated in lines 12 and 13, differently from the other
nodes since it must be a storage node. By using one table for
each level, our algorithm will construct |log,n] tables. This
will result in savings in both space and time, compared
with our algorithm for arbitrary trees, which needs to
construct n tables. The modified Algorithm 3 for regular
trees has a time complexity of O(k(logn)*(max{k,c})" ).

Algorithm 3. c-ary Regular Tree
1: H=|log.n]
2: form =0 to k do
3 for/=0to H—1do
4: if m =0 then Ey[m,l] = (I + 1)rysq + (H — Dryasy
5: if m > 1 then Ey[m,l] = (H + 1)r,asy
6: forh=1to H-1do
7 form =0 to k do
8 for(=0to H—1do
9 minl = minyye pm) {D -1 En[m}, 1+ 1]}
+ (I+ Drgsq + (H — h — Dryasq + Qo(m)

10: min2 = minva}:(,,,L_l){Z;:l E, [m?7 0}
+ (H — h+ Drqasq + Q1(m)
11: Ey[m, 1] = min{minl, min2}

12: Eylk, 0] = minyyepe_y){>-5=) Bu1[m”, 0]}
+ ryasq + Q1(m)
13: return Eylk, 0]

The result of the algorithm can be summarized in the
following theorem:

Theorem 3. Given a c-ary reqular tree with n nodes, let k be the
maximum number of storage nodes that may be deployed.
Then, the optimal tree with the minimum energy cost can
be constructed by a dynamic programming algorithm in
O(k(logn)*(max{k, c})"") time.

6 STOCHASTIC ANALYSIS

The algorithms in the previous sections aim to find the
optimal locations for storage nodes. In practice, however,
sensors including the storage nodes may not be deployed in
a deterministic way. Instead, random deployment of
sensors is commonly seen in applications. In this section,
we analyze the performance of random deployment of
storage nodes in both fixed tree and dynamic tree models.

6.1 Fixed Tree Model

Assume that the forwarding nodes and storage nodes are
randomly distributed to the field with density A and A,
respectively. For simplicity, we consider a disk network field,
where the sink is placed at the center and R is the radius. In
the fixed tree model, the network builds a communication
tree in which each node finds the shortest path to the sink by
following the tree edges. Each forwarding node sends its data
to the first ancestor storage node on the path to the sink. As
our simulation and other previous research show, the radius
(r;) of the area covered by the nodes that are ¢ hops or less
from the sink is proportional to i. Let this ratio be ¢’ =%,
Thus, we can estimate the number of nodes whose distances
to the sink are between (¢t — 1)¢ and tc/, i.e., the nodes with
depth t. Let num(t) represent the total number of the nodes
whose depth values are ¢,

num(t) = Ar(t2d? — (t — 1)*¢?) = (2t — 1)
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For a node with depth ¢, let s(t) be the expected hop distance
to its closest storage ancestor. The cost caused by this node is
1484 - 8(t) + rqasq - (t — s(t)). The probability that an indivi-
dual node is a storage node is p = AT Therefore,

s(t)=p-0+p(l—p)-14+pl—p) -2+
+pl—p) - (t=1)+(1—p) -t

~(5-1)a-a-.

p

The total energy cost in this model can be expressed as

E= ZJ: num(t)(rqsqs(t) + rqasq(t — s(t))) + Ey,

where E; is the cost of query diffusion. The value of ¢ is
related to the communication range and node density. We
can obtain the value from simulation.

Query messages are diffused from the sink to every
storage node. For each storage node, it incurs an extra query
diffusion cost along the path to its closest storage ancestor. If
we assume that there is no overlap among the paths
connecting each storage node and its closest storage ancestor,
the total query diffusion cost E; can be formulated as

R

7
c

E, = Znum’(t)rqsqs(t), (1)
=1
where num/(t) = A\;m(2t — 1)¢? is the number of storage
nodes whose depth values are ¢ and recall that s(t) is the
expected distance to the closest storage ancestor.

6.2 Dynamic Tree Model

The fixed tree model assumes that the communication tree
does not change according to the placement of the storage
nodes. In the dynamic tree model, after the storage nodes
have been positioned, each sensor node chooses the best
storage node for storage with respect to the minimal
communication cost for data forwarding and query diffu-
sion and reply. The storage node placement in this model is
more complicated than that in the fixed tree model because
we need to consider the interplay between the storage node
placement and the selection of the storage node for each
sensor. These two steps affect each other dynamically.

In the optimal solution, a storage node should send query
reply to the sink by following the shortest path because the
data from a storage node cannot be further reduced
according to the definition of data reduction function. A
forwarding node has to choose a storage node for data
storage to minimize the total communication cost for its data
including raw data transfer to the storage node and query
reply from the storage node to the sink. Therefore, the closest
storage node may not be the best choice if it is further away
from the sink yielding more cost on query reply. Assume that
the sink is located at the origin. Let «; represent the location of
sensor ¢ and fd(z;) indicate the location of the forwarding
destination (storage node) assigned to sensor 4. If 7 is a storage
node, then fd(;) = #;. The energy cost of sending raw data
from ; to fd(Z;) is rqsq|Z; — fd(Z;)|. The query reply cost for
the data from forwarding node i is roasq|fd(;)|. In total,
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the cost generated by a single node ¢ in a time unit is
rq84|T; — fd(T;)] + reasq| fd(2;)]. To find the optimal solution,
we need to minimize the cost for each sensor.

The total energy cost in this model is

E= Z(?'d&zl@ — (@) + ryasal fA(@)]) + By (2)

where E, is the cost of query diffusion. We find that E, in
this dynamic tree model is the same as that in the fixed tree
model. Because in both models, each storage node is
connected to the sink by the shortest path. Therefore, we
can also use (1) to estimate E,. In the following of this
section, we will analyze the rest part of (2), which is
denoted by E'.

First, let us consider a scenario where a sensor at
location # forwards its raw data to a storage node at
location y. We define a function F(Z, %) as the energy cost
caused by this sensor, F(Z, ) = r4s4|Z — §| + rqasq|y|. There
are requirements for this scenario to be valid. Essentially,
for the sensor at Z, no other storage node could yield less
cost than the one at . Next, we will derive this condition.
We define an area G(#,U) = {§J|F(¥,§) < U}, that is, if a
sensor at Z selects any storage node in that area, the energy
cost for the data of that sensor would be no more than U.
Thus, G(Z, F(Z,9)) N S = ¢ is the requirement for the above
scenario. Considering the Poisson deployment of sensors,
the minimum reply cost can be expressed as

E:A[]P@e&F@jﬂﬂ%iF@jﬁmS:¢mmm

where S is the set of all storage nodes including the sink.
P(yj € S) is the probability that there is a storage node at
location ¢,

. [1 if ¢/ is the origin;
P(jes) = { M., otherwise.

P(G(Z,F(Z,4)) NS = ¢) represents the probability of
G(Z,F(Z,3)) NS = ¢. As we described before, this condi-
tion means that there is no other storage node in the area
G(Z, F(Z,%)). According to the Poisson process of deploying
storage nodes with the density A,

P(G(& F(Z.5)) NS = ¢)
_ {e*SG@F(W if F(Z,5) < F(Z,0);

0, otherwise.

Unlike other nodes, the sink is deterministically fixed in the
network. So if area G covers the sink, there is no need to
compute the probability. The forwarding node will defi-
nitely send data directly to the sink.

However, |G| in the formula above, called the Cartesian
Oval, cannot be expressed in a closed form. To approximate
the energy cost, we make each forwarding node simply
choose the closest storage node for data storage. The
network field is then divided into Voronoi cells induced
by storage nodes. The energy cost of this topology is very
close to the optimal case, especially when A, < A.

Assume that there is a forwarding node ¢ at location Z,
the probability that i sends data through a storage node at
location ¢ becomes
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Fig. 5. A forwarding node at location Z sends data via a storage node at 3.

0 if |7 — g > |Z];
P& — ) = el if ¢/ is the origin;

— .
Ae M= otherwise.

Thus,
E:A//ﬂﬁ@ﬂfe@@m
=) / F(Z,0)e ™ dg (3)

" A/ / F(&, j)he > dyda.
l—g1<l7]

In the first term, F(Z,0) = r454|Z]. Therefore,

)\/F(f, 0)e M gy = )\rdsuz/ |Z]e 1 gy
W
= 27r/\rdsd/ pPe N dp.
Jo
For the second term in (3), Fig. 5 shows the variables after
coordination conversions, where p = |7 — 4| and p' = |Z|.

F(Z,7) canbe expressed by rysap + r,asa\/p%+p2 —2 cos 0p/ p.
Thus, the second term becomes

A / / F(@, e T dyda
[Z—3j|<|Z]

R .
:47r2)\)\srdsd/0 /0 e 02l dpdy!

R r2m pp )
+ 2mAN T 0Sq / / / e NP
o Jo Jo

or' \/p’2 + p? — 2cos8p'p dpdfdy'.

Combining (4) and (5), the total energy cost except query
diffusion is

()

R
E = 27r)\rdsd,/ pZef)“*’T”Zd,o
0

R ‘
+ 4T AT 454 / / e 52 dpdp!
o Jo

R pr2r pp ,
+ 2mAN T 0Sq / / / e TP
o Jo Jo

pp/\/p/2 + p?2 — 2cosBp'p dpdddp’.

We can further approximate E' by examining its two
components separately. Let £, be the cost of transferring
raw data between forwarding nodes and their closest
storage nodes. Let E,; be the cost to relay reply from
storage nodes to the sink. For a forwarding node i, the
expected distance to the closest storage node is ﬁ Thus,
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1
2V

Where ArR? is the total number of forwarding nodes and
TdSd 5 \/A— is the energy cost of transferring raw data from an
individual forwarding node to its closest storage node. In
addition, E = rya84 > ,cq(Di + 1)L;, where D; is the total
number of descendants and L; is the distance to the sink.
Since each forwarding node chooses the closest storage
node for data storage, the number of forwarding nodes that
each storage node is responsible for is approximately the
same. If we replace L; by the mean value L/, then
By =rqasql' >, co(D; + 1), where >, o(D; + 1) represents
the number of nodes that send data via storage nodes to the
sink. Let N’ be the number of forwarding nodes that send
data directly to the sink, >, ¢(D; + 1) = ArR* — N'. N’ can
be derived as

2T
N =\ / “Aeal” g = / / e pdpd

—27r)\/ pe AT”dp*—(l e_ATR)
0 A

S

Efs = )\ﬂ’RQTde (6)

And L' can be simply approximated as

b Xs [ 2mr - rdr _2,
A R? 3
Therefore,

By = ryosg (2 R(MR2 - %( - e—*ﬂ'Rz))). (7)

S

Combining (6) and (7),

= MR*rys,

1
2V

2 2
+ ey <§ R(/\’]TR2 - /\i (1 —eNmF )) > .

7 PERFORMANCE EVALUATION

Our evaluation is based on simulation. In this section, we will
present the performance results of the proposed algorithms.

7.1 Simulation Settings
In our simulation, we consider a network of sensors deployed
on a disk of radius 5 with the sink placed at the center. One
thousand sensor nodes (n = 1,000) are deployed to the field
randomly following two-dimensional spatial Poisson pro-
cess. Node transmission range is set to 0.65. After all nodes
are deployed, a routing tree rooted at the sink is constructed
by flooding a message from the sink to all the nodes in the
network. As we mentioned in Section 3, the message carries
the number of hops it travels so that each node chooses
amonyg its neighbors the node that has the minimum number
of hops to be its parent. This tree topology is needed in the
simulation of the fixed tree model. This step, however, can be
skipped for the dynamic tree model.

In the rest of this section, we will present and compare
the following algorithms:
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e FT-DD: It represents the fixed tree model with
deterministic deployment. In FT-DD, the storage
nodes are deployed by following the dynamic
programming algorithm according to the known
tree topology.

e FT-RD: It represents the fixed tree model with
random deployment. In FT-RD, we randomly select
a certain number of nodes in the network to be
storage nodes.

e DT-RD: It represents the dynamic tree model with
random deployment. In this algorithm, the storage
nodes are randomly deployed. After that, each
forwarding node selects the best storage node to
deliver data and each storage node replies to query
by following the shortest path to the sink.

e ST-RD: It represents semidynamic tree model with
random deployment, which is the enhanced version
of FT-RD with a local adjustment. When a sensor ¢ is
upgraded to storage node in a tree structure, its
siblings” children will try to set i as their parents if i
is within their communication range.

e Greedy: It represents a greedy algorithm where the
most heavily loaded sensors will be upgraded to
storage nodes. Usually, those sensors close to the
sink will become storage nodes in this algorithm.

This list does not include the existing in-network storage
approaches such as data-centric storage because the problem
settings are different for a comparison. Approximately, the
performance of data-centric storage is close to the random
deployment in dynamic tree model in this paper since the
locations of storage sites are determined by hash values.

In addition, we use relative energy cost as performance
metrics. We measure the cost when no storage node except
the sink is deployed as the baseline. Let the energy cost in this
no storage scenario be E;. And let the energy cost after the
storage nodes are deployed be E. The relative energy cost is
defined as = E , represented as a percentage. In the rest of this
section, we use “energy cost” for “relative energy cost.”

Due to the randomness of our simulation environment,
results from the same parameter setting might vary a lot.
Therefore, for a certain set of parameters, we conduct 100
independent trials and the average energy cost is used in
the following analysis and comparison. Unless otherwise
stated, we set the following parameters in our simulations:
T4 ="Tq¢ =587 =5, =1 and a =0.5. We evaluate the energy
cost by varying the number of storage nodes k and the data
reduction rate . Note that the energy cost is also related to
rq, 84, Tq, and s,. However, for comparison purpose,
changing r,, s4, 74, ¢ Will be equivalent to changing «. To
simplify the description, we fix ry, s4,74, s¢ and only vary o
to examine different characteristics of data and queries.

7.2 Random Deployment

Fig. 6 shows the energy cost of random deployment in the
fixed tree model. We compare our theoretical estimation
with simulation results. As we can see from the figure, the
theoretical estimation and the simulation match well. We
have examined the simulation carefully and found that
many storage nodes are placed at the leaf nodes or have very
few descendants. Therefore, the data reduction for those
descendants is negligible and less energy is saved compared
to the case that each node sends all the data to the sink.
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In Fig. 7, we show the energy cost with respect to
different data reduction rates o. We fix the number of
storage nodes (k = 10) and change the data reduction rate o
from 0.1 to 0.9. In this fixed tree model, decreasing data
reduction rate cannot improve the performance too much.
Even when « is set to 0.1, we still have more than 96 percent
energy cost with 10 storage nodes. The reason is that data
accumulation to the storage nodes from the forwarding
nodes consumes most of the energy with respect to the
query diffusion and reply. Moreover, when « is 0.9, the
energy cost is even worse than the original cost because the
incurred query diffusion cost becomes larger than the
benefits obtained.

The energy cost of random deployment in the dynamic
tree model is shown in Fig. 8. In this model, the location of
each storage node is broadcast to forwarding nodes so that
they can choose the proper storage nodes to deliver data for
the energy concern. In this way, we take full advantage of
every storage node and maximize their contributions to the
whole network. As shown in Fig. 8, random deployment
performs much better in this dynamic tree model. The
energy cost decreases very fast with increasing number of
storage nodes, e.g., with 10 storage nodes (1 percent of total
nodes), we can save energy by approximately 20 percent.
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Fig. 9 illustrates the impact of data reduction rate to the
energy cost in the dynamic tree model. This time, «
becomes an important parameter because every storage
node is in charge of many forwarding nodes in the dynamic
tree model. A small decrease of a will reduce energy cost
greatly. We also observe that our theoretical estimation
matches well with the simulation results. Although our
stochastic analysis uses some expected values and approx-
imations, the maximum difference between the two curves
is less than 5 percent.

As shown above, with random deployment, the dynamic
tree model has a significant performance improvement over
the fixed tree model. However, the locations of storage nodes
need to be broadcast to all other nodes and the new tree is
completely different from the originally constructed tree one.
We consider a semidynamic tree model in which local
adjustments are applied to the originally constructed tree.
For each storage node i, all the forwarding nodes within the
transmission range of ¢ that have a depth no less than i’s
depth select i as parent. As a result, each storage node gains
more descendants and accepts more raw data storage. Fig. 10
compares the energy cost of random deployment in three
models (fixed tree, dynamic tree, and semidynamic tree), as
well as deterministic deployment in the fixed tree model. As
shown in Fig. 10, DT-RD achieves the best performance,
while FT-RD has the worst performance. Local adjustment in
ST-RD improves the performance of the fixed tree model. In
FT-RD, each storage node has no control about how many
descendants it can have. Many storage nodes are deployed
with few descendants, which explains why FT-RD delivers
the worst performance. ST-RD allows each storage node to
have some restrained flexibility in choosing its descendants,
and has a better performance than FT-RD. DT-RD has more
flexibility in choosing descendants, and we see a much
improved performance.



SHENG ET AL.: OPTIMIZE STORAGE PLACEMENT IN SENSOR NETWORKS

95

©
o

ford
=]

Energy Cost(%)
focd
o

——FT-DD
——FT-RD
——Greedy

~
a

=
o

5 10 15 20 25
Number of Storage Nodes

Fig. 11. Comparison of FT-DD, FT-RD, and Greedy: Energy cost with
varying number of storage nodes (k).

110

00 o oeo3

g
2 90
o
3
3 80
&
——FT-DD
i« ~~FT-RD
60 —=—Greedy
0 0.2 0.4 0.6 0.8 1

Reduction Rate

Fig. 12. Comparison of FT-DD, FT-RD, and Greedy: The impact of data
reduction rate («).

TABLE 2
Depth Distribution (D: Depth, #: Number of Sensors)

[ 2 [3 [ 4[5 [ 6 7 [ 89 [10]1]
| 108 | 128 | 176 | 189 | 164 | 65 | 6 |

[D] 1
[ #1032 |48 | 74

7.3 Deterministic Deployment

Figs. 11 and 12 illustrate the performance of deterministic
deployment in the fixed tree model. In the simulation, the
locations of the storage nodes are obtained by Algorithm 2.
Compared to the random deployment (FT-RD) and greedy
algorithm, deterministic deployment significantly improves
the performance by precisely computing the optimal
positions to put the storage nodes.

In Fig. 11, we fix the reduction rate o = 0.5, and vary the
number of storage nodes from 2 to 25. With a few storage
nodes, the energy cost is sharply reduced in Fig. 11. When &
becomes larger, the slope gradually becomes flatter. As
shown in the figure, we can save about 20 percent energy
cost with 10 storage nodes, and 30 percent with 25 storage
nodes. In addition, Fig. 12 shows the energy cost with
varying reduction rate, when the number of storage nodes
is fixed as 10. As we can see, the energy cost is nearly linear
to the reduction rate a.

Intuitively, the performance in the fixed tree model
depends on which level of the tree the storage nodes are
deployed at. When storage nodes are close the leaves, which
often happens in FT-RD, the benefit of data reduction is
limited. On the other hand, when storage nodes are deployed
close to the sink as in the greedy algorithm, a large amount of
raw data have to traverse a long path to reach the storage
nodes still yielding high energy cost. The locations derived
from our algorithm usually reside in the middle levels. Here
is an example of the result. Table 2 shows the depth
distribution in a particular tree structure. The depth of the
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sink is 0. When we deploy 10 storage nodes in such a tree, the
derived depths of storage nodes are 3,4, 4,4,4,5,5,6,6,and 6.

7.4 Network Life

Finally, load distribution and network lifetime are shown in
Figs. 13 and 14. We show the workloads of the most heavily
loaded 50 nodes in Fig. 13. In Fig. 14, we define lifetime as the
time that 2 percent nodes are depleted of energy. In our
setting, it means that 20 sensors are out of operation.
According to our simulation, this scenario will usually cause
disconnection in the sensor network. As we can see in Fig. 13,
FT-RD almost has no improvement on load balancing and
lifetime. In contrast, FT-DD lengthens the lifetime a lot with a
small number of storage nodes, although the objective of our
algorithm is to minimize the total energy cost. For example,
with 15 storage nodes, the lifetime is increased by more than
60 percent. DT-RD does not perform well with only a few
storage nodes because the sensors connecting storage nodes
and the sink carry a lot of workloads for both raw data
transmission and reply collection. The greedy algorithm is
superior to DT-RD by specifically reducing the energy cost of
the most heavily loaded nodes.

8 CONCLUSION

This paper considers the storage node placement problem in
a sensor network. Introducing storage nodes into the sensor
network alleviates the communication burden of sending all
the raw data to a central place for data archiving and
facilitates the data collection by transporting data from a
limited number of storage nodes. In this paper, we examine
how to place storage nodes to save energy for data collection
and data query. We consider two models: fixed tree model
and dynamic tree model. In the first model, we give exact
solution on how to place storage nodes to minimize total
energy cost. Using stochastic analysis, we also give the
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performance estimation for both models under the assump-
tion that the storage nodes are deployed randomly.
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