
Verifiable Privacy-Preserving Sensor
Network Storage for Range Query

Bo Sheng, Member, IEEE, and Qun Li, Member, IEEE

Abstract—We consider a hybrid two-tiered sensor network consisting of regular sensors and special sensors with large storage

capacity, called storage nodes. In this structure, regular sensors “push” their raw data to nearby storage nodes and the sink diffuses

queries only to storage nodes and “pull” the reply from them. We investigate security and privacy threats when the sensor network is

deployed in an untrusted or hostile environment. The major concern is that storage nodes might easily become the target for the

adversary to compromise due to their important role. A compromised storage node may leak the data stored there to the adversary

breaching the data privacy. Also, it may send wrong information as the reply to a query breaking the data integrity. This paper focuses

on range query, a fundamental operation in a sensor network. The solution framework includes a privacy-preserving storage scheme

which utilizes a bucketing technique to mix the data in a certain range, and a verifiable query protocol which employs encoding numbers

to enable the sink to validate the reply. We further study the performance of event detection, an application implemented by range

query. Our simulation results illustrate that our schemes are efficient for communication and effective for privacy and security protection.

Index Terms—Privacy preserving, range query, sensor networks, verifiable reply.

Ç

1 INTRODUCTION

THIS paper addresses the security and privacy concerns
for range query, a generic and fundamental operation, in

a hybrid two-tiered sensor network. A two-tiered sensor
network consists of regular sensors and some special
storage nodes, which are equipped with much larger storage
than regular sensors. In this structure, regular sensors
periodically forward the raw data to a nearby storage node
and user queries are diffused to storage nodes by the sink.
As an intermediate tier, storage nodes are responsible for
hosting raw data and replying queries. For example, when
deploying a sensor network in a building to monitor the
environmental conditions, we may place a few storage
nodes at each floor. In a habitat monitoring application,
we may divide the wild filed into several regions and
deploy one or a few storage node in each region. The
inclusion of storage nodes is owing to two considerations.
First, transferring the collected data to the base station
consumes a great deal of energy and creates communica-
tion bottleneck in regions close to the base station [1].
Second, it is less attractive to equip each sensor with a large
storage and store its data locally because querying
the network is tantamount to searching all the sensors in
the network, which also consumes much energy [1]. In
addition, even though the storage becomes quite inexpen-
sive, large storage in numerous sensors would still be a
hurdle for realistic deployment. Indeed, the integration of
storage nodes in the tiered architecture for sensor networks

is made possible by the new storage-enriched hardware [3],
[4], [5] and considered to be very practical [2]. With this
two-tiered network architecture, we investigate range
query operation, which asks the sensor network to return
the data in a range specified by ½a; b�. Range query is very
generic in sensor networks and supports various applica-
tions such as event detection.

When deployed in a hostile environment, a storage node
will become the first choice for an adversary to compromise
because storage nodes hold a lot of data. Two threats arise
when storage nodes are compromised. First, the compro-
mised nodes may disclose the stored data to the adversary. A
typical solution is to let sensors encrypt the raw data before
sending them to the storage nodes so that no information is
disclosed to storage nodes. However, the challenge is that
storage nodes are required to process data for a range query
request. Thus, storage nodes have to gain information about
the data values, which is in conflict with privacy protection.
Second, the compromised storage nodes may manipulate
the collected data and send wrong information as the reply.
It could cause serious consequences if applications accept
the wrong information. This attack, however, is very hard
to prevent because the compromised storage node may be
fully controlled by the adversary.

In this paper, we propose solutions to solving these two
problems. For the first threat, our scheme strikes a balance
between data confidentiality and query efficiency. The
challenge is to determine the appropriate amount of
information we should disclose to the storage nodes so that
we can incur minimum overhead to preserve the data
privacy. For the second threat, we propose a passive solution
to enable the sink to detect the false reply manipulated by
the compromised storage nodes. It is also a challenging
problem because the compromised storage nodes have
various means to generate a false reply. For example, they
may drop the data from some sensors and reply to the sink
with partial information. Without the assistance from some

1312 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

. B. Sheng is with the Department of Computer Science, University of
Massachusetts, 100 Morrissey Boulevard, Boston, MA 02125.
E-mail: shengbo@cs.umb.edu.

. Q. Li is with the Department of Computer Science, McGlothlin-Street Hall,
College of William and Mary, Williamsburg, VA 23187-8795.
E-mail: liqun@cs.wm.edu.

Manuscript received 29 May 2008; revised 22 Mar. 2010; accepted 6 Oct.
2010; published online 16 Dec. 2010.
For information on obtaining reprints of this article, please send e-mail to:
tmc@computer.org, and reference IEEECS Log Number TMC-2008-05-0208.
Digital Object Identifier no. 10.1109/TMC.2010.236.

1536-1233/11/$26.00 � 2011 IEEE Published by the IEEE CS, CASS, ComSoc, IES, & SPS

trusted sensors, it is difficult for the sink to detect the false
reply by itself.

We summarize our contributions as follows:

1. This paper is the first to consider the privacy-
preserving range query in sensor networks. Our work
explores the privacy concerns in sensor networks in
a very general setting and provides meaningful and
interesting results for data reply verification.

2. We propose a privacy-preserving storage scheme, in
which only coarse information is disclosed to storage
nodes while data can still be processed upon the
range query request.

3. We introduce an encoding number scheme, which
allows the sink to verify the reply of a range query
with a small extra overhead.

4. We improve our privacy-preserving scheme in event
detection application, a special case of range queries.

5. Finally, we evaluate our solutions using comprehen-
sive simulation on synthetic and real data sets, and our
results show that the proposed schemes efficiently
achieve the privacy and security requirements.

The rest of this paper is organized as follows: Section 2
gives a review of the related work. Section 3 describes the
system model and the attack model. Section 4 presents our
privacy-preserving storage scheme and verifiable query
protocol. Section 5 discusses how to choose the optimal
parameters in our proposed schemes. Section 6 is a specific
case study on event detection applications. We evaluate the
performance of our approach in Section 7 and conclude in
Section 8.

2 RELATED WORK

Data storage models of sensor networks have been widely
discussed in prior research. Early work on this topic
considers the extreme cases, archiving all data on the sink
[6] or each sensor locally [7]. In [1] and [8], new data storage
system is designed by introducing an intermediate tier
between the sink and sensors, that can cache data, process
query, and provide a more efficient access to the data
collected by sensor networks. This paper considers the same
system model, where some storage nodes are deployed as
the intermediate tier and responsible for data archival and
query response. In fact, this kind of special nodes have been
manufactured, e.g., StarGate [5] and RISE [3]. In [4], Mathur
et al. also attached external flash memory to sensor nodes
and give a comprehensive evaluation of the performance. In
addition, MicroHash [9] is a file system specifically
designed for sensor nodes with large storage size. In our
previous work [10] and [11], we proposed an optimal
deployment strategy of storage nodes in order to maximize
performance improvement.

Data privacy and security have attracted lots of work in
database system [12], [13], [14], [15], [16], [17], [18]. The
database server might not be trusted in “Database as a
Service” model [12] or outsourced database [15]. In [12], the
authors considered privacy problems in a model, where the
service provider might not be trusted and thus the data
owner encrypts the data before sending them out. The
authors proposed a data partition/bucketization scheme to

allow the service provider to process queries on the
encrypted data. The privacy issues of outsourced database
are also discussed in [15]. Hore et al. investigated data
bucketing scheme and analyzed the trade-off between
performance and privacy. In Section 4.1, we adopt the same
privacy metrics in [15] and [16]. In prior work, data
providers are assumed to be just curious about sensitive
data. This paper additionally considers malicious behaviors
of compromised sensors. Preserving privacy and detecting
malicious behaviors are the two integral goals in this paper.
Furthermore, we aim to achieve communication efficiency
in sensor networks, which is different from the objective in
[15] and [16].

Another related research is privacy protection of the
documents stored on untrusted sites [19], [20], [21]. Song et al.
[19] described several schemes for keyword searching on
encrypted data for privacy issues. Chang and Mitzenmacher
[20] considered the same problem and proposed a solution by
using a dictionary and interactive protocol. In addition, Golle
et al. designed protocols particularly for conjunctive key-
word search in [21]. The work in this line considers a setting
where the data provider is the same as the data requester.
This paper considers a different application of range query
assuming the sink requests the data provided by sensors.

Prior research about privacy issue in sensor networks
([22], [23], [24], [25], [26]) has focused on the privacy of the
location of the source sensor, not the data information.
Recently, Shao et al. [27] and Ren et al. [28] applied
cryptographic mechanism to provide security and privacy
protection for data centric sensor networks and pervasive
computing environment, respectively. However, they did
not consider data processing in their protocols.

In sensor networks, secure aggregation [29], [30], [31],
[32], [33] is similar to our query reply verification. Hu and
Evans [29] proposed a protocol to prevent intermediate
aggregators transmitting false information by using MAC
messages as a signature. Their scheme, however, does not
work for the case where multiple nodes are compromised. In
SIA [30], Przydatek et al. proposed an aggregate-commit-prove
scheme to verify the aggregation result. Sampling theory is
applied in the protocol, which enables the sink to estimate
the probability that the result is within a tolerant error range.
Chan et al. [32] extended this work to a hierarchical
aggregation model with multihop communication. SDAP
[31] is another solution to secure aggregation in a multihop
sensor network. However, all these approaches are not
designed for privacy-sensitive data. In addition, the goal of
[29] is to find malicious aggregators and the schemes in [30],
[31], and [32] are designed only for aggregation queries. Our
verification scheme in this paper, however, tries to detect the
incorrect data from suspect data sources.

3 MODELS

3.1 System Model

We consider a sensor network consisting of storage nodes
and regular sensors. The basic query/response model is
illustrated in Fig. 1. We assume that every regular sensor
generates environmental data in a fixed rate and periodically
submits the collected data to the closest storage node. For

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1313

example, sensors monitor temperature every 10 seconds and
submit the data to storage nodes every 1 minute. Thus, each
submission contains six temperature readings. We define an
epoch, as the interval time between two consecutive submis-
sions (1 minute in the above example). Assume all sensors are
synchronized so that they have agreement on the beginning
and end of an epoch. After every epoch, the collected data are
sent to the nearby storage nodes by sensors and archived
there for future queries. The data messages from sensor si
contain the following information:

si ! Storage Node : i; t; fdata1; data2; . . .g;

where i is the sensor ID and t is the current epoch
counter. Data query from a user is directed by the sink
only to the storage nodes. In this paper, we consider range
queries in the following format ft; ½a; b�g, where t is the
time slot (epoch) the user is interested in and ½a; b� is the
specified data value range. The sink expects to obtain all
the data generated in epoch t whose values are between a
and b. Some applications may require more information
about the data, e.g., the location of the data. Extra
information can be easily incorporated with data values
and does not affect the range query discussed here. For
easy exposition, this paper only considers one-dimensional
data. Our approach can be easily extended to the query
with multiple data attributes.

3.2 Adversary Model and Security Goals

We assume that the adversary can launch the following two
attacks. First, the adversary wants to obtain the sensitive
data information from the sensor network, which violates
data confidentiality. Leaking valuable data is a critical threat
in many applications. The second attack is to breach data
integrity. For a user’s query, the adversary tries to reply with
wrong information and convince the user to accept it. We
consider that both storage nodes and regular sensors might
be compromised in a hostile environment. We suppose that
a compromised node is fully controlled by the adversary.
The adversary may utilize any compromised resource to
launch attacks. In the rest of this section, we discuss the
impacts of the compromised storage nodes and regular
sensors, and propose our corresponding security goals.

3.2.1 Compromised Storage Nodes

Our major focus is on the compromised storage nodes. Since
storage nodes host a lot of data collected from other regular
sensors, compromising storage nodes can cause great
damage to the system. First, once compromising a storage
node, the adversary easily obtains all the data hosted on the

storage node. Second, the compromised storage nodes can
help the adversary break the data integrity, because storage
nodes are responsible for answering queries from the sink.
After receiving a query, the compromised storage nodes may
return arbitrary data as the reply. Therefore, our goal in this
paper is to provide data confidentiality and data integrity.
We aim to protect data confidentiality by designing a storage
scheme, such that little information is exposed to storage
nodes while fulfilling data queries. Data integrity attack,
however, is hard to prevent, because the compromised
storage controlled by the adversary may behave arbitrarily.
Our countermeasure is an approach to enabling the sink to
detect and reject the false reply so that applications will not be
affected by misleading data.

3.2.2 Compromised Regular Sensors

Regular sensors are the data source in this system. If a regular
sensor is compromised, the readings of the sensor will be
exposed and the sensor may send forged data to storage
nodes. Unfortunately, it is hard to prevent the data privacy
attack and data integrity attack in this scenario. However, the
data from an individual sensor are minor in the whole
network. Unless the adversary compromises a lot of regular
sensors, this kind of attack has a very limited impact.

Compromised regular sensors, however, may be helpful
for the adversary who has also compromised some storage
nodes. The adversary may use the information from the
compromised regular sensors to disclose other large
amount of sensitive data, which are sent by other sensors
or the compromised sensors in the past epochs. In addition,
these information may help the adversary generate a false
reply to fool the sink. Therefore, when we design a
protection scheme, we ought to minimize the dependency
among different sensors and epochs.

4 STORAGE SCHEME AND QUERY PROTOCOL

In this section, we propose our schemes to address the
privacy and security issues discussed in the previous
section. Our solution includes two components. The first
is a privacy-preserving storage scheme for storage nodes to
protect data confidentiality and the second is a query
protocol that yields a verifiable reply for the sink to protect
the data integrity. We describe the details in the rest of this
section. The following Table 1 lists some notations we will
use in the rest of this paper.

1314 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

Fig. 1. Two-tiered system model (with two storage nodes).

TABLE 1
Notations

4.1 Privacy-Preserving Storage

We first discuss the protection of data privacy, i.e., prevent-
ing the raw data from being disclosed to storage nodes. For
this purpose, storing plaintext data on storage nodes is not
desirable. Instead, each sensor must encrypt the data before
sending them to the storage node. We assume that every
sensor shares a secret key with the sink for a certain epoch,
which makes up a one-way key chain. Let ki;t represent the
secret key of sensor si at epoch t, ki;t ¼ Hðki;t�1Þ. After an
epoch, a new key is generated by the hash function and the
old key is erased from the sensor. The initial key ki;0 can be
preloaded before deployment. Secure protocols for key
establishment such as MIB [34] can further protect the initial
phase. Considering a long-term application, the overhead of
this initial phase is negligible. In addition, the epoch counter t
keeps increasing and will be reset to 0 periodically by
applications. In the new cycle, the initial key will be the hash
value of the last key in the previous cycle. In our design,
compromising a regular sensor si as well as the nearby
storage node does not lead to the disclosure of the data from
si generated before the compromise. Each sensor possesses a
distinct key chain so that compromising one sensor does not
affect the security of another sensor’s data. After the sink
receives the query reply from storage nodes, the shared key
between the sink and the corresponding sensor assists to
decrypt the received data.

Simple encryption, however, does not work well in this
application model. Leaking no information to the storage
nodes provides good privacy, but does not help with
replying to a range query: the storage nodes have to send all
the stored data back to the sink for a query request, which
consumes too much energy. Our solution is to expose some
information to the storage nodes while the required data
privacy is still maintained. We adopt the bucketing scheme
in [12], and associate a tag with each encrypted data. In this
approach, the value domain is assumed to be discrete and
divided into multiple buckets. There is no overlap or gap
between consecutive buckets, i.e., every value is covered by
exactly one bucket, and each bucket is assigned with a tag.
Assume sensors and the sink have agreed on the same
bucket partition in the initialization phase. When sending
data to the storage nodes, sensors attach the corresponding
tag to every encrypted data based on which bucket the data
falls into. The data values with the same tag can be
encrypted as a block. For example, a sensor si may send the
following to the storage node:

si ! Storage Node: i; t;fTag1; fdata1; data2gki;tg;
fTag2; fdata3gki;tg; . . . ;

where data1 and data2 are both associated with Tag1.
When the sink receives a user query ft; ½a; b�g, it first

translates the value range into a list of tags which are
associated with the smallest set of buckets that cover the
range ½a; b�. Therefore, the query sent to storage nodes is
composed of this list of eligible tags, instead of a and b, for
example: ft; fTag1;Tag2gg. Storage nodes will look up all
the encrypted data generated in epoch t and return those
with matching tags. In the above example, storage nodes
send all data with Tag1 and Tag2. We will discuss how to
define each bucket in the next section.

4.2 Verifiable Reply

As we mentioned earlier, malicious storage nodes may send
back arbitrary data as the query reply. In this section, we
discuss the counter schemes to detect the false reply of a
range query. Particularly, there are four possibilities for a
storage node to cheat on a range query reply. First, a storage
node can forge a nonexistent data value for the query reply.
However, it has no key to generate a valid encrypted data.
Second, the compromised storage node may send an
arbitrary data as an encrypted data, so that after decryption,
the sink may obtain some data values in the valid range.
This can be easily detected by appending a HMAC after
data values in the encrypted block. Third, a storage node
may reply with a valid encrypted data that is out of the
query range. The sink can also easily detect the cheating by
decrypting the data and comparing with the query range.
Fourth, a storage node may return partial portion of the
requested data, which constructs an incomplete reply. This
paper focuses on detecting the incomplete reply.

Assume there are m tags, labeled as T1; T2; . . . ; Tm. Recall
that when a sensor si sends data at the end of an epoch, all
the data with the same tag are encrypted in bulk. If a
storage node wants to drop the data with tag Tj, it has to
drop the entire data block and claims that no data with tag
Tj have been received from sensor si in the specified epoch.
We assume that the sink is aware of the association between
sensors and storage nodes.

To detect the incomplete reply, we propose an encoding
number scheme. Our basic idea is to require a sensor to send
the storage node an encoding number for a tag if the sensor
has no data associated with the tag. This encoding number
is a weak form of HMAC and it is generated by the hash
function on the secret key ki;t with truncation. Different
from the standard HMAC, our encoding numbers have
short lengths in order to reduce the communication cost.
For the adversary, however, it is more likely to correctly
guess the encoding numbers. We will analyze the security
protection later. In our protocol, the encoding number will
be requested by the sink, when the storage node claims that
a sensor has no data with the tag. The sink is able to verify
the received secrets. In this way, if a compromised storage
node drops some data, it has to guess the encoding number
to pass the verification at the sink.

The details of our design are as follows: For each tag Tj,
every sensor si is able to generate a Dj-bit encoding number
based on the hash function H. Here Dj is a system
parameter and we will discuss how to set this value in
the next section. Let numði; j; tÞ represent si’s encoding
number for tag Tj after epoch t. The encoding number is
defined as numði; j; tÞ ¼ Hðjkki;tÞ mod 2Dj , where k means
concatenating operation. After sending all the data gathered
during the past epoch to the storage node, each sensor also
generates and sends the encoding numbers for those tags
with no data associated with the storage node. For example,
assume si generates some data with tag T1, but no data with
T2 during epoch t. It will send the following message to the
storage node:

si ! Storage Node : i; t; I ¼ f10 . . .g;
fT1; fdata1; data2; . . . ; HMACgki;tg; fT2; numði; 2; tÞg; . . .

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1315

where I is a bitmap indicator showing whether there is data
for each requested tag.

To respond to a range query, in addition to finding all data
matching the query range, a storage node generates a digest
to show that it knows all the received encoding numbers for
the tags within the query range. In fact, the storage node can
send all received encoding numbers as a digest. However, to
reduce the message size, our scheme uses a hashed value of
the encoding numbers instead. First, for each encoding
number in epoch tðnumði; j; tÞÞ, the storage node generates a
hash value cði; j; tÞ ¼ Hðikjktknumði; j; tÞÞ. Then, the storage
node concatenates these hash values cði; j; tÞ in the order of
ði; jÞ pairs. This ordering is to enable the sink to reconstruct
the digest later. Finally, the digest is obtained by applying the
hash function H on the concatenation of cði; j; tÞ,
Digest ¼ Hðkcði; j; tÞÞ. This digest is included in the return
message to the sink.

For example, assume there are five sensors fs1; s2; s3;
s4; s5g and four tags fT1; T2; T3; T4g. Table 2 details the data
received by storage nodes at epoch t. Consider a query for
fT1; T2; T3g, the digest is constructed as follows: We first
generate

cð1; 3; tÞ ¼ Hð1k3ktk001Þ; cð3; 1; tÞ ¼ Hð3k1ktk101Þ;
cð3; 3; tÞ ¼ Hð3k3ktk011Þ; cð4; 2; tÞ ¼ Hð4k2ktk110Þ;
cð4; 3; tÞ ¼ Hð4k3ktk010Þ; cð5; 2; tÞ ¼ Hð5k2ktk100Þ:

Then, we apply H to obtain the digest

Digest ¼ Hð cð1; 3; tÞk cð3; 1; tÞk cð3; 3; tÞk cð4; 2; tÞk
cð4; 3; tÞk cð5; 2; tÞÞ:

After calculating the digest, the storage node returns the
following message to the sink:

Digest; fT1; fXgk1;t
; fXgk2;t

; fXgk4;t
; fXgk5;t

g;
fT2; fXgk1;t

; fXgk2;t
; fXgk3;t

g; fT3; fXgk2;t
; fXgk5;t

g:

After receiving the reply, the sink can reconstruct the
encoding numbers and the digest based on the received
data. The sink compares it to the received digest and the
validity of the reply is verified if they match.

4.3 Security Analysis

In this section, we discuss some potential security issues if
storage nodes are compromised and how our protocols deal
with them. It is possible that some regular sensors are also
compromised by the same adversary.

Violate data confidentiality. Once a storage node is
compromised, all the data stored there are disclosed to the
adversary. In our scheme, however, these data are

encrypted by symmetric keys. The adversary cannot obtain
the data values unless they can break the symmetric key
cryptosystem. In a feasible attack, the adversary can guess
the data value according to the tag associated with the
encrypted data. After compromising the storage node,
the adversary is aware of the bucket partition, i.e., the
value range each tag represents. Intuitively, for a tag
representing a shorter value range, the adversary’s guess is
more likely to be closer to the actual value. Whether or not
this attack can breach the privacy depends on the bucket
partition and the application-specified requirements for
privacy. In the next section, we will present how to quantify
the privacy requirements and how to define the buckets to
satisfy these requirements.

Obtain each sensor’s secret key. In our scheme, the
adversary cannot obtain the secret key ki;t of sensor si at
epoch t by compromising storage nodes. The available
information to the adversary is the encoding numbers for
those tags the sensor has generated no data with. In our
scheme, these encoding numbers are generated by a
cryptographic hash function on the secret ki;t. Based on
the preimage resistance, it is computationally infeasible to
invert the hash function, thus the adversary cannot derive
the secret key from the encoding numbers.

Forge the digest. In order to launch an incomplete reply
attack, the compromised storage node has to drop some
data and generate a digest to pass the verification at the sink
side. In our scheme, however, the adversary does not have
enough information (all necessary encoding numbers) to
surely generate a valid digest for the incomplete reply. The
second preimage resistance and collision resistance imply
that the adversary can only forge the digest by guessing. In
our scheme, we set the digest to be sufficiently long (e.g.,
10 bits), so that a direct guess of the valid digest is very
unlikely to be correct (e.g., with probability of 1

210). Another
alternative for the adversary to forge the digest is to forge
the missing encoding numbers and apply function H to
generate a digest which is discussed in the next paragraph.

Forge the encoding numbers. The compromised storage
node may forge some encoding numbers it has not received
to generate a valid digest for an incomplete reply attack. In
our scheme, each encoding number numði; j; tÞ is generated
by a cryptographic hash function and unique per sensor/
tag/epoch. According the second preimage resistance and
collision resistance, calculating numði; j; tÞ ¼ Hðjkki;tÞ re-
quires j and ki;t. As we have mentioned earlier, the
adversary cannot obtain the secret ki;t because of the
preimage resistance. Therefore, the encoding numbers can
only be forge by blindly guessing. We will discuss the
possibility of successfully guessing the encoding numbers
in the next section.

Malicious regular sensors. It is possible that some
regular sensors become faulty, dysfunctional, or even
malicious after being compromised. The encoding numbers
from those sensors may be incorrect or missing at storage
nodes. In this case, storage nodes simply report to the sink
about those abnormal sensors when replying to a query. The
reply may not pass the verification at the sink’s side and
appears the same as the false reply from a compromised
storage node. Since the main objective of this paper is to

1316 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

TABLE 2
Each Row Represents the Data Sent by One Sensor

“X” denotes there are data with the tag from the sensor, otherwise, a
three-bit encoding number is received.

detect malicious behavior, informing the sink of the faulty
sensors is sufficient for further actions.

5 FINDING THE OPTIMAL PARAMETERS

In the previous section, we introduced a bucketing scheme
to protect data privacy and encoding numbers to verify a
reply. How to divide the value range into buckets and
determine the length for encoding number is still a problem.
In the rest of this section, we formulate the problem of
setting parameters as an optimization problem with three
system performance metrics, and discuss how to solve the
problem in this setting.

Assume a storage node is in charge of n sensors and each
sensor generates s readings per epoch. Every data value is
considered discrete at some precision level. We assume that
every sensor’s data follow the same distribution F ðxÞ (the
probability that a certain sensed value is x), which can be
obtained from theoretical models or empirical data. In
addition, the query characteristics, range specification, and
query frequency, need to be accounted as well to set the
optimal parameters. We consider a complete range query
set represented as fQig,

Qi ¼ fðti; ½ai; bi�Þg; ai 2 ½vmin; vmax�; bi 2 ½ai; vmax�;

where vmin and vmax are the minimum and maximum
values of the collected data, ti is any past epoch, and there
does not exist another Qj, such that ai ¼ aj and bi ¼ bj. Let L
be the value range, L ¼ vmax � vmin þ 1. There are LðLþ1Þ

2
possible ranges in this set. For the purpose of a generalized
analysis, we assume that the sink receives a query for each
possible range once during c epochs.

5.1 System Performance Metrics

In this section, we introduce three performance metrics,
which are crucial to the design of our scheme. Privacy and
security metrics describe the robustness to data confidenti-
ality and data integrity attacks. Communication cost is the
metric for energy efficiency. We define these metrics
mathematically as follows:

5.1.1 Privacy Constraints

While bucketing scheme enables storage nodes to search
data with tags, it may potentially lead to privacy breach. For
example, let us consider an extreme case in which every
distinct value has a unique tag. If a sensor is compromised,
the value-tag mapping is exposed to the adversary who can
further derive all data values stored on the compromised
storage node, even if they are encrypted. Therefore, a good
bucketing scheme should leak little information from the
value-tag mapping.

First of all, we need a way to quantify the level of privacy
for a bucket scheme. In this paper, we use variance and
entropy to measure the privacy protection of a bucket as
proposed in [15]. Essentially, we protect data against two
types of privacy attacks. First, storage nodes may guess the
actual value of stored data from the associated tag. Variance
of value distribution of the data with a certain tag
represents the protection level of this attack, i.e., the
hardness to guess the data. Second, when query messages
arrive, storage nodes may try to derive the exact value
range (i.e., lower/upper bounds) from the list of tags in the
query message. Entropy is chosen to measure this query

privacy. Larger variance and entropy indicate better
protection of privacy. Our design does not restrict to these
two measurements introduced in [15]. Some applications
may have different definitions of the privacy measurements
and it is easy to modify our scheme accordingly.

For a given tag Ti defined by range ½li; hi�; li � hi, the
variance and entropy can be calculated as follows: Let �Ei

be the expected value within this range and PTi be the
probability that a value belongs to this range,

�Ei ¼
Xhi
x¼li

F ðxÞ � x; PTi ¼
Xhi
x¼li

F ðxÞ: ð1Þ

The definitions of variance and entropy are

variance ¼
Xhi
x¼li

F ðxÞðx� �EiÞ2; ð2Þ

entropy ¼ �
Xhi
x¼li

F ðxÞ
PTi

log
F ðxÞ
PTi

: ð3Þ

Applications may specify the requirements for these two
metrics, indicated by V ARp and ENp, respectively. In a
valid bucketing plan, for any bucket, the variance and
entropy must be greater than VARp and ENp, respectively.
Thus, Ti is valid if its variance > VARp and entropy > ENp.
Note it is possible that some applications’ requirements are
too strict to be satisfied by any bucketing plan. In that case,
sensors will transfer the encrypted data without tags to
protect the privacy and there is no data processing at the
storage nodes.

5.1.2 Security Constraints

The encoding number scheme proposed earlier is not
perfectly secure. There is still a certain probability that the
adversary can forge encoding numbers correctly to pass the
verification, especially when the length of the encoding
number is short (e.g., 1 bit). We define the security level of a
set of encoding numbers as follows:

Definition 1. �-valid/false reply. We say a reply is �-valid if
the dropped data are less than � portion of the total expected
data. A reply, which is not �-valid, is called a false reply.

Definition 2. ð�; �Þ-secure encoding numbers. We say that a
set of encoding numbers are ð�; �Þ-secure, if the confidence of
accepting an �-valid reply, i.e., the probability of detecting
false reply, is greater than �.

The first parameter � defines data integrity, which is the
fraction of data loss we can tolerate over the amount of data
that should be returned for a range query. Data reply
confidence �, is the probability that we can detect a false
reply. Given user specified � and �, our resulting encoding
numbers must be ð�; �Þ-secure.

5.1.3 Communication Cost

With security protection, extra communication cost is
incurred in data collection and query reply. The objective
in this problem is to minimize the communication cost
during c epochs, which includes the cost of transferring
data from sensors to storage nodes and from storage nodes

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1317

to the sink. In this section, we analyze the costs and give an
expression of the objective function.

First, the bucketing scheme incurs a problem of false
positive [15]. Some useless data are sent back together with the
desired data. We define false positive as the total amount of the
useless data received by the sink. Consider a tag Ti defined
by the range of ½li; hi�. For a range query ½a; b�, Ti yields no
false positive if there is no overlap between ½a; b� and ½li; hi�,
i.e., b < li or a > hi. However, if li � b < hi, the data in the
range of ½bþ 1; hi�, which size is n � s �

Phi
x¼bþ1 F ðxÞ, are also

returned. Considering the complete query set, for a certain b,
a belongs to ½vmin; b�, which yields b� vmin þ 1 queries. Thus,
the false positive in ½li; hi� due to the data out of a query’s
upper bound (between b and hi, ðb; hi�) is

Xhi�1

b¼li
ðb� vmin þ 1Þ � n � s �

Xhi
x¼bþ1

F ðxÞ:

Similarly, if li < a � hi, the data in ½li; a� 1� become false
positive. In addition, we assume the cost of transferring
data is proportional to the data size and the distance
between the sender and receiver. Therefore, considering the
complete query set, the total cost for transferring the false
positive incurred by Ti, denoted by CFi, is

CFi ¼ dss � n � s
Xhi�1

j¼li
ðj� vmin þ 1

 ! Xhi
x¼jþ1

F ðxÞ

þ
Xhi
j¼liþ1

ðvmax � jþ 1Þ
Xj�1

x¼li
F ðxÞÞ;

ð4Þ

where dss is the distance between the storage node and sink.
Similar to privacy protection, encoding number scheme

incurs extra costs too. First, when storage nodes reply to a
query, a digest is attached to the message. The sensors
relaying the message will consume more costs. This cost,
however, is constant in this scheme. We do not have to
consider it when determining buckets plan and encoding
numbers. Second, when sensors send data to storage nodes,
they need to send the encoding numbers for the tags with
no data associated as well. The cost of transferring encoding
numbers depends on bucket partition, the length of each
encoding number, the number of sensors in the proximity,
and the distance between sensors and their closest storage
nodes. For a tag Ti, the probability that one sensor has no
data with Ti is ð1� PTiÞs. Thus, the expected number of the
sensors with no data with Ti in an epoch is n � ð1� PTiÞs.
This is the number of sensors that have to send the
encoding number for Ti to storage nodes. Therefore, for
each epoch, the expected communication cost for transfer-
ring the encoding numbers for Ti is Di � n � ð1� PTiÞs � davg,
where davg is the average distance between sensors and the
storage node and recall Di is the length of the encoding
number for Ti. Let CEi be the cost of transferring the
encoding numbers of Ti during c epochs,

CEi ¼ c �Di � n � ð1� PTiÞs � davg: ð5Þ

The secure protocols we proposed may also incur extra
cost for computation such as hash operations. However,
this extra cost for computation is negligible compared to the
communication cost.

5.2 Problem Formulation

Considering all the metrics discussed above, our problem is
formally defined as follows:

Input: F; V ARp;ENp; �; �

Output: Bucket partition ðTiÞ & encoding numbers ðDiÞ
Objective: min

X
i

ðCFi þ CEiÞ

s:t: 8Ti; variance > VARp and entropy > ENp;

fDig is ð�; �Þ-secure:

ð6Þ

That is, given the sensed data distribution F ðxÞ, privacy
parameters VARp and ENp, and security parameters � and
�, we aim to find the optimal bucket partition (Ti) and
encoding numbers (Di), such that the communication cost
(
P

iðCFi þ CEiÞ) is minimized while the privacy require-
ments (in terms of variance and entropy) and the security
requirement (ð�; �Þ-secure) are guaranteed.

5.3 Algorithm to Find the Optimal Parameters

As shown above, our problem boils down to determining
the optimal bucket scheme and the optimal length for each
encoding number. We call the bit length of an encoding
number encoding length in the rest of this paper. Our main
algorithm uses dynamic programming to enumerate all
bucket partition schemes. For each bucket partition, we first
check the privacy constraints and call another algorithm to
calculate the encoding lengths which can guarantee the
security constraints. Then, we can obtain the communica-
tion cost incurred by the bucket partition. After examining
all bucket partition plans, our algorithm can find the
optimal one with the minimum communication cost.

5.3.1 Main Algorithm

In this section, we describe the main algorithm to divide the
value range into buckets such that the communication cost
is minimized while the security and privacy constraints are
satisfied. We use dynamic programming to resolve the
problem in the following Algorithm 1. It basically is
composed of two phases. In the first phase (lines 1-7), we
enumerate all possible ranges ½i; j� by two loops. We first
check if each range is eligible to be valid buckets according
to the privacy constraints and store the results in a boolean
array valid½i; j�. For each valid range ½i; j�, i.e., valid½i; j� is
true, we calculate an encoding length D½i; j� by another
function EncodingLength. We will discuss the details of this
function in the next section. Basically, for a given range, it
returns the shortest encoding length that can guarantee the
security constraint. Then in line 7, we compute the
communication cost incurred by this range for transferring
false positive data (4) and encoding numbers (5). The time
complexity of this phase is OðL2 �maxfL2; sgÞ, where L is
the value range as defined earlier. In the second phase, we
define a two-dimensional matrix M, where each element
M½i; j� stores the cost of the best solution to divide range
½i; j�. We use dynamic programming to fill matrix M and
finally M½vmin; vmax� is the cost of the optimal bucket
partition. We start from the smallest ranges with width 1
and calculate M½i; j� in the ascending order of the range
width w ¼ j� i. Dividing ½i; j� can be regarded as a two-
step process: defining the first bucket and recursively

1318 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

dividing the remaining range. Let ½i; k� be the first bucket.
We enumerate all possible positions of k and M½i; j� is
obtained by the following equation:

M½i; j� ¼ minfCE½i; k� þ CF ½i; k� þM½kþ 1; j�g;

where k 2 ½i; j� and valid½i; k� ¼ true. Additionally, another
matrix P is used to record the pivot points of range
partition. By tracing back from P ½vmin; vmax�, we can obtain
the optimal bucket partition. Lines 18-19 handle the
exceptional case when there is no valid bucketing plan to
the specified requirements. The time complexity of the
second step is OðL3Þ. Therefore, the algorithm terminates
within OðL2 �maxfL2; sgÞ steps.

Algorithm 1. Optimal Solution (F; V ARp;ENp; �; �)

1: for i ¼ vmin to vmax do

2: for j ¼ i to vmax do

3: Calculate �E½i; j� and PT ½i; j� by (1)
4: Calculate variance and entropy by (2) and (3)

5: if variance > VARp and entropy > ENp then

6: valid½i; j� ¼ true, D½i; j� ¼ EncodingLengthð½i; j�Þ
7: COST ½i; j� ¼ (5)+(4)

8: for w ¼ 1 to vmax � vmin þ 1 do

9: for i ¼ vmin to vmax � w do

10: if valid½i; iþ w� then

11: M½i; iþ w� ¼ COST ½i; j�
12: for j ¼ 1 to w� 1 do

13: if valid½i; iþ j� then

14: cost ¼ COST ½i; iþ j� þM½iþ jþ 1; iþ w�
15: if cost < M½i; iþ w� then

16: M½i; iþ w� ¼ cost
17: P ½i; iþ w� ¼ j
18: if P ½vmin; vmax� ¼ 0 then

19: return ‘no valid bucketing plan’
20: else

21: return D, M and P

5.3.2 Optimal Encoding Length

In this section, we present the details of EncodingLength.
Apparently, a long bit length increases the communication
cost, and this increase is nonnegligible when many sensors
send encoding numbers over a long time. The security level,
i.e., the probability of detecting an incomplete reply, also
increases with a long bit length, which makes it more
difficult for a storage node to forge the encoding numbers.
In this subproblem, therefore, our goal is to find the optimal
set of encoding lengths, which are ð�; �Þ-secure and yields
the minimum communication cost.

To resolve this subproblem, we first analyze the
behavior of a malicious storage node, and then give an
approximated estimation of the required encoding lengths.
Essentially, malicious storage nodes intend to drop enough
data to form a false reply and forge the missing encoding

numbers to pass the verification at the sink. Let us consider
a range query with a tag list TQ ¼ fTq1

; Tq2
; . . . ; Tqkg for the

data collected in epoch t. Storage nodes are supposed to
look up all data generated during epoch t and return the
data whose tag is in TQ. We define two two-dimensional
matrices SD and N ,

where SDij represents the set of data from sensor si with
tag Tj and Nij is the size of SDij, i.e., Nij ¼ jSDijj. Thus, the
size of reply data for TQ is RNðTQÞ ¼

Pn
i¼1

P
Tj2TQ Nij.

A successful attack requires a malicious storage node to
drop at least � � RNðTQÞ data and forge the necessary
encoding numbers to get approved. Consider the malicious
storage node applies the optimal way to achieve this goal,
i.e., drop those data with the minimum probability of being
detected. Let us regard all elements of SD as individual
blocks and label those blocks which should be returned for
TQ as fb1; b2; . . . ; brg. For example, assume there are three
sensors and the tags listed in TQ are T1 and T2. Fig. 2
illustrates the data received by the storage node. In this
case, we need consider three blocks as shown in Fig. 3. For a
block bj with tag Tq, we associate an encoding length dj with
it, where dj ¼ Dq. One block is the minimum bulk of data
the storage node can drop and if bj is removed, the
probability of successfully forging the encoding number is
1

2dj
. Thus, given B ¼ fb1; b2; . . . ; brg and fd1; d2; . . . ; drg, the

storage node need find a subset B0 of B to

maximize
Y
bi2B0

1

2di
;

s:t:
X
bi2B0
jbij � � �RNðTQÞ:

The objective is equivalent to maximize

log
Y
bi2B0

1

2di
¼
X
bi2B0

log
1

2di
¼ �

X
bi2B0

di:

This problem is equivalent to the 0/1 knapsack problem,

which is known to be NP-hard. We define xi as

xi ¼
1; if bi 62 B0;
0; if bi 2 B0:

�

Thus, the objective will be

maximize �
X
bi2B0

di

 !
) maximize

X
bi 62B0

di) maximizedi � xi:

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1319

Fig. 2. “X” means the storage node received data; “O” means no data. Fig. 3. Renumber the three blocks that should be returned for TQ.

The constraint can be expressed in the following form:X
bi2B0
jbij � � �RNðTQÞ)

X
bi 62B0
jbij < ð1� �Þ �RNðTQÞ

) jbij � xi < ð1� �Þ �RNðTQÞ:

Then this problem becomes a 0/1 knapsack problem,

maximize di � xi;
s:t: jbij � xi < ð1� �Þ � RNðTQÞ; xi 2 f0; 1g;

where di is the value of item i, jbij is the weight of item i,
and ð1� �Þ � RNðTQÞ is the capacity of the bag.

To simplify the problem, we assume that the storage
node applies a greedy algorithm as the attack strategy to
select victim blocks. It first orders all blocks according to the
values of di

jbij , where jbij is the number of data in bi. In
the ascending order, the storage node drops the blocks with
the smallest values until the total dropped data are larger
than � �RNðTQÞ.

Now, we present our algorithm to determine the
optimal encoding lengths that are ð�; �Þ-secure for any
possible query. We first give an algorithm to determine the
optimal encoding lengths for a special category of queries,
called single tag query, where the tag list in the query
contains only one tag. Later, we extend it to more general
queries with multiple tags. Recall tag Ti is defined by a
range ½li; hi� and Di denotes the encoding length of this tag.
Algorithm 2 shows the detailed function of deriving a
proper value of Di.

Algorithm 2. EncodingLength (Ti ¼ ½li; hi�)
for t ¼ 1 to s do

Ei½t� ¼ n � s
t

� �
� PTti � ð1� PTiÞ

s�t

sumi ¼ n � s � PTi; drop ¼ 0; enum ¼ 0

for t ¼ s to 1 do

drop ¼ dropþEi½t� � t
enum ¼ enumþ Ei½t�
if drop > � � sumi then

enum ¼ enum� ðdrop� � � sumiÞ=t
break

return d� logð1��Þ
enum e

In the first step, we estimate the expected number of

sensors which have t number of data with Ti, where

t 2 ½1; s�, and store them in an array Ei. According to

binomial distribution, Ei½t� ¼ n � s
t

� �
� PTti � ð1� PTiÞ

s�t.

Also, we calculate the expected total number of data with

Ti as sumi ¼ n � s � PTi. Second, we emulate the behavior of

malicious storage nodes, dropping data by the greedy

strategy. Since we are considering single tag queries, the

encoding length dj of every eligible block bj is the same as

Di. Thus, the dropping order only depends on 1
jbjj , i.e., the

block with the largest size jbjjwill be dropped first. We start

with the sensors which have s data with Ti, because jbjj � s.
Totally, they contribute s � Ei½s� data, but to drop all of them,

we have to forge Ei½s� encoding numbers. We continue to

drop the data from the sensors which have s� 1 data with

Ti, and stop the procedure when the dropped data are

greater than � � sumi. During this process, variable drop

indicates the total amount of the dropped data, and variable

enum records the number of encoding numbers the

adversary has to forge. Thus, the estimated confidence of

detecting a false reply is 1� 1
2Di �enum

. To make it greater than

�, we have

1� 1

2Di�enum
> �) Di >

� logð1� �Þ
enum

:

To minimize the communication cost, we set Di to
d� logð1��Þ

enum e. The time complexity of Algorithm 2 is OðsÞ.
For multiple tag queries, we can apply the similar

analysis as above. However, this step can be skipped

because of the following lemma.

Lemma 1. If a set of encoding numbers are ð�; �Þ-secure for every

single tag query, they are also ð�; �Þ-secure for multiple tag

queries.

Proof. Assume that a vector of encoding lengths D ¼
fD1; D2; . . . ; Dmg are ð�; �Þ-secure for any single tag

query. Now let us consider a multiple tag query for a

list of tags fTt1 ; Tt2 ; . . .g. As in Algorithm 2, we can

estimate the expected total number of data for each tag,

denoted by fsumt1 ; sumt2 ; . . .g. The summary
P
sumti

will be the expected return size of this query. Then, we

will apply the greedy strategy to drop at least � �
P
sumti

data. Meanwhile, we need to count the encoding

numbers that have to be forged. Let enumti be the

number of dropped blocks of tag Tti . The confidence will

be 1�
Q

1

2
Dti
�enumti

. However, in this process, there must

exist a tag Ttj such that the dropped data of Ttj are greater

than � � sumtj . We already know that Dtj guarantee the

confidence of a single tag query for Ttj , which implies
1� 1

2
Dtj
�enumtj

> �. Back to the confidence of this multiple

tag query,

1�
Y 1

2Dti
�enumti

> 1� 1

2Dtj
�enumtj

> �:

Therefore, D can also guarantee the required confidence
for multiple tag queries. tu
Thus, for any given bucket, Algorithm 2 can find the

optimal encoding length satisfying the security constraint.

5.4 Discussions

In this section, we discuss some improvements and

extensions to our algorithm.
Bucket partition. In this paper, we adopt a simple bucket

partition policy (continuous and nonoverlapping). However,
our algorithm can be extended to consider noncontinuous
and overlapping buckets which might improve the perfor-
mance in terms of privacy and false positive. The same
algorithm framework can be kept, but we have to calculate
the false positive and the privacy metrics in a different way.

Optimal partition. Algorithm 1 obtains the optimal

bucket partition based on dynamic programming which

could take a long time when the value range is large. One
possible improvement is to use coarse value granularity

(fewer discrete values for bucket boundary) for buckets to

speed up the calculation. But it leads to a nonoptimal

solution for the false positive. Applications can consider

this alternative if the executing time is critical.

1320 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

6 RARE EVENT DETECTION

In this section, we study event detection as a special
application of range query. We consider a scenario that an
event can be detected by the sensors in the proximity. For
example, a vehicle traversing the field generates abnormal
noise and vibration, which can be measured by nearby
sensors (illustrated in Fig. 4). Users can query the data in
the range of abnormal values to detect the event and collect
the relevant information.

The previously proposed schemes are suitable for
general range query, but might be inefficient for detecting
rare events. As we mentioned earlier, our schemes incur
extra communication costs for transferring false positive
data and encoding numbers. Although we may carefully
design a bucket partition to minimize the false positive, the
cost for transmitting encoding numbers inevitably escalates
for rare events. Let us assume some tags are associated
with abnormal value ranges that represent certain rare
events. In most epochs, no such event occurs and every
sensor has to send the corresponding encoding numbers for
these tags to storage nodes. This extra cost caused by
sending encoding numbers could be extremely high when
accumulated over time in a large scale sensor network.
Therefore, in this section, we propose an efficient encoding
number scheme for rare event detection. For simplicity, we
assume that each type of event can be detected by querying
a special single tag. In reality, we may need query multiple
tags for a certain event depending on the bucket partition
parameters. In this section, however, we will not discuss
the bucket partition, but focus on the encoding number
scheme. Our solution can be easily extended to the event
covered by multiple tags.

The problem setting for event detection is slightly
different from the previous problem in two aspects. First,
we need to consider the coverage of an event, i.e., the
proximity area of the event source where sensors can detect
the event. This new parameter depends on the character-
istics of events and the sensitivity of sensors. A larger
coverage area tends to have more sensors detect the event.
Second, in event detection applications, it is unnecessary for
a storage node to send back all the received data about the
same event. Event detection applications often take advan-
tage of data redundancy in the sensed data among the

sensors that detect the event to reduce the communication
cost. The data from multiple sensors may collaboratively
detect a rare event. However, after a certain threshold (e.g.,
k), obtaining more data does not yield much new informa-
tion due to the redundancy. This threshold depends on the
characteristics of the event and the sensed data, and is
specified by the sink in the query. After receiving the query,
a storage node will look up the hosted data and bundle k of
them (from k sensors) as the reply to the sink.

We modify the previous problem for this special case of
rare event detection as follows: Assume a storage node is in
charge of a field with area S as illustrated in Fig. 4. Sensors
are randomly deployed on the field with a density � and can
be modeled as points of a Poisson process. Assume a rare
event is associated with tag T , i.e., querying the data with T
can detect the occurrence of this type of event. Let S0 be the
coverage area of an event. Here, we use a simplified model
for the rare event. When this rare event is not present, no
sensor will generate data with tag T . When an event occurs,
on average � � S0 sensors will detect it. We assume that the
application requires event data from ð1� �Þ � � � S0 sensors
if the event occurs. Note that parameter � here has a
different meaning from the tolerance parameter in the
previous sections. We still use � to keep the consistency.

The adversary model in this problem is similar. A
compromised storage node tries to drop partial or all the
event data when some events have occurred and return less
than ð1� �Þ � � � S0 (could be none) event data as a reply.
Therefore, our security goal is still to enable the sink to
detect the false reply with high probability.

In the rest of this section, we present a new encoding
number scheme for rare event detection and derive the
optimal parameters. Our scheme utilizes a sampling
technique in order to efficiently report events. Instead of
requiring all the sensors to send the encoding numbers
when no event happens, we randomly choose a small set of
v sensors as sample nodes to send the encoding numbers of
T in each epoch. We assume that every sensor is aware of
all sensor IDs in the field. In epoch t, each sensor calculates
a pseudorandom function Rðt; iÞ for every sensor si. The
top v sensors with the largest values of Rðt; iÞ are selected
as sample nodes. If no event is detected in an epoch, each
sample node will send out an encoding number to the
storage node while a nonsample node will not. To reply a
query for T , storage nodes are supposed to return the event
data with tag T from ð1� �Þ � � � S0 sensors. If there is no
such data, i.e., no such event occurs, the storage node will
send a digest generated by the encoding numbers received
from sample nodes. After receiving the digest, the sink can
apply the same pseudorandom function to derive the set of
sample nodes and generate all the encoding numbers to
verify the received digest. If the sink receives less than ð1�
�Þ � � � S0 event data or an invalid digest, it will discard the
reply and consider the sending storage node as a malicious
storage node for further investigation. Again, remember we
assume a simplified event model in which no sensor will
generate data with tag T when there is no rare event.

To verify a reply when an event happens, we consider
two attacks the adversary may launch. First, the adversary
may send partial event data (< ð1� �Þ � � � S0) back.
According to our policy for the sink, this reply will
definitely be discarded. Second, the compromised storage

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1321

Fig. 4. Example of event detection with range query: The sensors close to
the passing vehicle measure abnormally high noise or vibration ([90, 110]
in this example), while the normal readings are much lower ([10-15]).
Assume users know the prior information that the noise generated by
a sedan is usually between 80 and 120. Thus, users can obtain the
information about the event by querying the data in range [80-120].

node may pretend that it has not received any data about
the event. In our scheme, the compromised storage node
then has to send a digest back. If no sample sensor detects
the event, this attack is certainly successful because the
compromised storage node has obtained all necessary
encoding numbers from sample nodes to generate a valid
digest. However, if the storage node receives event data
from some sample nodes (i.e., does not receive the
encoding numbers from these sample nodes), it has to
forge the encoding numbers to generate the digest for this
attack to pass the verification at the sink side. In the next,
we focus on the second attack and discuss how to
determine the number of sample nodes v and the encoding
length D for tag T such that the sink has a high probability
(> �) to detect it.

Since we randomly pick v sensors as the sample nodes,

the density of sample sensors is �s ¼ v
S . Let pðxÞ be the

probability that exactly x sample sensors detect the event,

which means there are x sample sensors in the area S0. Thus,

according to Poisson process, we have pðxÞ ¼ ð�s�S
0Þx�e��s �S0

x! . In

this case, to drop all the data, the adversary has to guess x

encoding numbers with a success probability of 1
2x�D . There-

fore, the probability we can detect the event by selecting v

samples is 1�
P

x
pðxÞ
2x�D .

On the other hand, the communication cost for transmit-
ting encoding numbers in each epoch is v �D � davg, where
davg is the average distance between a sensor and the
storage node. Thus, we can find the optimal parameters by
solving the following problem:

minimize v �D

s:t: 1�
X
x

pðxÞ
2x�D

> �:

Recall in our solution to this problem, the sink requires

ð1� �Þ � � � S0 event data or a digest from a storage node. It is

possible that the actual number of sensors around the event

source is less than the threshold ð1� �Þ � � � S0, in which case

a legitimate storage node cannot provide sufficient event

data and maybe cannot generate a valid digest either. The

sink then may regard this storage node as a malicious one

and trigger a false alarm by mistake. The probability of the

such a mistake depends on the threshold defined by �.

Assume X sensors detect an event. The sink may trigger a

false alarm if X � ð1� �Þ � � � S0, whose probability is

PrðX � ð1� �Þ � � � S0Þ ¼
Xð1��Þ���S0
X¼0

ð� � S0ÞX � e���S0

X!
:

As we will show in the evaluation, this probability can be
neglected with a reasonable parameter setting.

7 PERFORMANCE EVALUATION

In this section, we first examine Algorithm 2 to show that
the resulting encoding length is sufficient to protect query
reply. Then, we use real data sets to simulate Algorithm 1
and show the communication cost. Furthermore, we present
the data for rare event detection in the end.

7.1 Suggested Encoding Length

We first run Algorithm 2 to estimate the optimal encoding
length for a single tag query. By default, we setfn; s; �; �; PTig
to f100; 10; 0:1; 0:9; 0:1g. In the simulation, we fix four of these
parameters and varies the remaining variable. Fig. 5 shows
the results of the encoding lengths suggested by Algorithm 2.
On the one hand, higher confidence obviously requires
longer encoding numbers, as shown in Fig. 5b. On the other
hand, the encoding length is also related to the tolerant size of
the data loss. The more data loss we can tolerate, the shorter
encoding length we require. To return a false reply, the
adversary has to drop at least� �Ni data, whereNi is the total
number of data with tag Ti. We can use the expected value to
express it, Ni ¼ PTi � n � s. Thus, the encoding length will be
a nonincreasing function over � � PTi � n � s, which explains
the trend of the curves in Figs. 5a, 5c, 5d, and 5e.

Next, we examine the accuracy of this algorithm. Let k be
the suggested encoding length and confðiÞ be the confidence
achieved by using i-bit encoding numbers. We evaluate it
from two aspects. First, we show the values of confðkÞ based
on simulations to examine if k is sufficiently long to
guarantee the security requirements, i.e., if confðkÞ > �.
Second, we show the values of confðk� 1Þ if k > 1 to test
whether k is optimal. If confðkÞ > � and confðk� 1Þ � �, then
k is a perfect choice of the encoding length.

In this simulation, we randomly generate data based on
the data distribution PTi and simulate the behaviors of a
malicious storage node. We run 10,000 independent tests,
and calculate the confidence, i.e., the probability of
detecting a false reply at the sink. The simulation compares
the values of confðkÞ and confðk� 1Þ in Fig. 6, where the
dashed line without markers is the confidence requirement
�. As we can see, confðkÞ is always greater than � while
confðk� 1Þ is not in most cases, which indicates that k� 1 is
not a proper encoding length for security protection.
Therefore, we conclude that Algorithm 2 gives a good
guideline of selecting appropriate encoding lengths. The
suggested length value is sufficient for security and also
efficient in communication.

1322 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

Fig. 5. Encoding length versus different parameters (default setting is fn ¼ 100; s ¼ 10; � ¼ 0:1; � ¼ 0:9; PTi ¼ 0:1g). (a) PTi. (b) �. (c) �. (d) s. (e) n.

7.2 One-Bit Encoding Numbers

Here we are particularly interested in a special arrange-
ment, where every encoding length is set to the smallest
value 1, because it is the best case for communication cost.
Since every encoding number has the same length, when
the storage node drops data, it simply selects the largest
block. We first examine the confidence for a single tag (Ti)
query with varying PTi. Fig. 7 shows the comparison of our
estimation and simulation results. In this setting, our
estimation is very close to simulation when p � 0:08. The
result is also consistent with Fig. 5a, in which 1-bit is
suggested when p � 0:12.

Furthermore, we consider multiple tag range query in a
more practical simulation. We adopt a data set with a
normal distribution and find the optimal bucket partition
which satisfies privacy constraints and yield minimum
communication cost for false positive. The following Table 3
shows the bucket partition and the corresponding prob-
ability for each bucket. Then, we enumerate all 28 possible
range queries in the tests. For each query, we generate
random data for every sensor, apply the greedy algorithm
to drop data, and then derive a confidence of detecting the
false reply. We repeat this process and use the average
value as the result. Table 4 compares the simulation results
with our algorithm. The cell in Ti row and Tj column
represents the confidence for a query of fTi; Tiþ1; . . . ; Tjg. As
we can see, the estimation is very accurate for both single
tag and multiple tag queries, where the largest difference is
0.016. We observe that 1-bit encoding numbers work well
for popular tags or mild security requirements.

7.3 Communication Cost

In this section, we present the performance of communica-
tion cost. We begin with the introduction to the data set and

other environment settings used in our simulation. Then,
we illustrate the two extra costs incurred by our protection
scheme with varying parameters. First, during the period-
ical data report, sensors need to send encoding numbers to
storage nodes for verifying the reply. Second, when storage
nodes reply range queries, extra data (false positive)
are transferred to the sink due to the bucketing scheme.
As we will show later, both encoding number scheme and
bucket partition scheme are very efficient.

In this simulation, we use a real data set from Intel Lab
[35], which is collected from 54 sensors during a one-month
period. The details of the data set can be found at Intel Lab’s
website [35]. After filtering out the incomplete and abnormal
data, we adopt the data from 44 nodes in our simulation.
We evenly divide the 40 sensors into four groups and place
one storage node in each group, i.e., n ¼ 11 for each storage
node. We also retain their location coordinates and calculate
dss and davg for Algorithm 1. We select the temperature data
collected during 03/01/2004-03/10/2004 as the sensitive
information and we round the data points to the precision
of 0.5. In addition, we sample three different epoch lengths,
10 minutes, 20 minutes, and 30 minutes and we assume that
the whole query set is received in 24 hours. In our scheme,
privacy requirements (VARp, ENp) and security require-
ments (�, �) also need to be specified. In this simulation, we
fix security requirements (� ¼ 0:1, � ¼ 0:9), set ENp to
f1; 1:5; 2g, and vary V ARp from 0.4 to 1.2 with an interval of
0.2 to examine the performance. The following Table 5
presents the number of buckets our scheme derives for
epoch ¼ 30 minutes with different settings of the privacy
requirements.

We first show the cost of transferring encoding numbers
from sensors to storage nodes. For each sensor, let CE and
CD be the cost of sending encoding numbers and
transferring the encrypted data to the storage node,
respectively. We measure the ratio of CE

CD in our simulation,
which indicates the impact of sending encoding numbers.
Since this ratio varies for different sensors, the average
values are illustrated in Figs. 8, 9, and 10.

We observe that the less strict privacy requirement leads
to the higher cost of transferring encoding numbers.
Intuitively, the less strict privacy requirement allows

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1323

Fig. 6. Confidence versus different parameters (default setting is fn ¼ 100; s ¼ 10; � ¼ 0:1; � ¼ 0:9; PTi ¼ 0:1g). (a) PTi. (b) �. (c) �. (d) s. (e) n.

Fig. 7. Confidence of 1-bit encoding number for single tag query,
n ¼ 100; s ¼ 10; � ¼ 0:1.

TABLE 3
The Second Row is the Range Partition of Tags

and the Third Row Lists the Probability of Each Tag

smaller buckets, which provide more accurate information
and can reduce the false positive. However, smaller buckets
may increase the cost of sending encoding numbers
because they yield a large number of buckets and each
sensor probably has to send more encoding numbers in
each epoch. In our simulation setting, every storage node is
in charge of 11 sensors, which makes the false positive
dominant in the extra cost compared with the cost of
sending encoding numbers. Therefore, in order to minimize
the total extra cost, our algorithm prefers to use fine-
grained buckets in favor of reducing false positive. When
the privacy requirement becomes less strict, our bucket
partition probably will contain smaller buckets, which
further increase the cost of sending encoding numbers. We
also observe that the cost of encoding numbers decreases
when the length of epoch increases. In a longer epoch,
every sensor collects more data in each bucket following a
certain distribution. It decreases the probability for each
bucket to have no data in an epoch. Thus, increasing epoch
length can reduce the number of nondata tags for each
sensor, which require the sensor to send encoding numbers.
Therefore, by suppressing more encoding numbers, a
longer epoch incurs less communication cost.

As a summary, we find that the encoding number scheme
does not incur too much extra cost. Even for 10-minute
epoch, the extra cost(CE) is less than 25 percent of CD in
most cases. The performance mainly benefits from short

encoding numbers derived in our protocol. In all the tested
case, the encoding length is no more than 4 bits. If we use the
standard HMAC, e.g., 160 bits HMAC-SHA1, the encoding
number cost will be significantly increased (>40 times).

The other extra cost is the false positive represented by
CF . We measure CF as the number of useless data received
by the sink and also count the total number of data received
by the sink, indicated as TN . The performance of the false
positive is illustrated by the ratio of CF

TN in Fig. 11. The false
positive increases with more strict privacy requirements
because each of the resulting buckets probably include
more data to yield the required variance and entropy. In
addition, there is barely difference for varying epoch
lengths. The reason is that in our setting (n ¼ 11), the false
positive (CF in (6)) is much larger than the cost of encoding
numbers (CE). Different epoch lengths do not change the
dominant factor CF . Thus, we obtain very similar bucket
partitions for the varying epoch lengths. Overall, bucketing
scheme is an efficient protection against privacy breach. The

1324 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

TABLE 4
Confidence Comparison of 1-Bit Encoding Numbers: The Row (Column) Index Is the Minimum (Maximum) Tag in the Query

In each cell, the first value is simulation result and the second value in the parenthesis is our estimation.

TABLE 5
Number of Buckets (Epoch ¼ 30 Minutes)

Fig. 8. Encoding numbers cost versus VARp (ENp ¼ 1).

Fig. 9. Encoding numbers cost versus VARp (ENp ¼ 1:5).

Fig. 10. Encoding numbers cost versus VARp (ENp ¼ 2).

false positive (CF) takes less than 28 percent of the total
data (TN) in all cases.

7.4 Event Detection

In this section, we test the encoding number scheme with
sampling for rare event detection proposed in Section 6. In
this setting, we randomly deploy 100 sensors in a 10� 10
network field, i.e., S ¼ 100. Assume the coverage area of an
event be S0, for convenience, we assume it is a

ffiffiffiffiffi
S0
p
�

ffiffiffiffiffi
S0
p

square area where the event source resides in the center. We
set the coverage area from 15 to 50 with an interval 5. In
addition, we set � ¼ 0:9 and consider varying � at 0.4, 0.5,
and 0.6 for defining the threshold of the desired event data.
We first determine the number of sample nodes v and the
encoding length D based on the previous analysis and the
results are shown in Table 6.

Then, we randomly select v sensors and mark them as
sample nodes. In the simulation, we randomly select a point
as the event source. The sensors in the coverage area are
supposed to detect the event. For each parameter setting, we
conduct 10,000 independent tests and present the average
result in the following figures. Our evaluation considers
three aspects. First, we consider if a legitimate storage node
can be verified with high probability. Second, we examine if
our encoding number scheme can detect a false reply with
high probability. Finally, we evaluate the efficiency of the
communication cost with our sampling scheme.

We first examine the probability that the number of
sensors in the coverage area of an event is less than the
specified threshold ð1� �Þ � � � S0. This is also the prob-
ability that the sink triggers a false alarm and regards a
legitimate storage node as a malicious storage node by
mistake. The simulation result is presented in Fig. 12. This
figure illustrates the probability that the number of sensors
in the event proximity is less than the threshold
ð1� �Þ � � � S0, in which case the storage node in charge of
the area will be regarded by the sink as a malicious storage
node by mistake. As we can see, with a reasonable
parameter setting, this probability of false alarm is very
close to 0, especially when the coverage area is large. In

addition, we illustrate the confidence of detecting a false
reply in Fig. 13 with varying coverage areas. The specified
requirement for the confidence is � ¼ 0:9. As we mentioned,
this confidence is irrelevant to the threshold defined by �.
According to Fig. 13, the confidence is obviously higher
than the requirement � ¼ 0:9 in all cases. It indicates that the
derived v and D can guarantee the security requirement.

Moreover, we find this scheme significantly reduces the
communication cost compared to the encoding number
scheme. For instance, when the event coverage is 25, we
decide to select 18 sample nodes to send the encoding
numbers (D ¼ 1) every epoch. Thus, in this sampling
scheme, 18 bits encoding numbers are sent every epoch.
Compared to normal encoding number scheme, even if we
use 1-bit length, there are 100 bits transmission per epoch.
Therefore, the sampling scheme reduces much communica-
tion cost while achieving the same desirable confidence.

8 CONCLUSION

In this paper, we consider an important problem in real
sensor network deployment: how do we preserve the data
privacy and verify the query reply for a range query? We
build our scheme in a network augmented with storage
nodes that are equipped with more storage space. To
preserve privacy, we use bucketization to obscure the view
of the storage node to the data stored on it. To prevent the
storage node from dropping data, an encoding number is
generated on each sensor if no data in a range is collected
on that sensor. The storage node has to prove the awareness
of the encoding number if it does not send the data. We
present the algorithm, analysis, and simulation results on
our schemes.

SHENG AND LI: VERIFIABLE PRIVACY-PRESERVING SENSOR NETWORK STORAGE FOR RANGE QUERY 1325

Fig. 11. False positive versus VARp (epoch ¼ 10 minutes).

TABLE 6
of Sample Nodes (v) and Encoding Length (D)

Fig. 12. Probability of false alarm in event detection.

Fig. 13. Confidence of detecting a false reply.

ACKNOWLEDGMENTS

The authors would like to thank all the reviewers for their

helpful comments. This project was supported in part by US

National Science Foundation (NSF) grants CNS-0721443,

CNS-0831904, and CAREER Award CNS-0747108.

REFERENCES

[1] S. Ratnasamy, B. Karp, S. Shenker, D. Estrin, R. Govindan, L. Yin,
and F. Yu, “Data-Centric Storage in Sensornets with GHT, a
Geographic Hash Table,” Mobile Networks and Applications, vol. 8,
no. 4, pp. 427-442, 2003.

[2] O. Gnawali, B. Greenstein, K.-Y. Jang, A. Joki, J. Paek, M. Vieira, D.
Estrin, R. Govindan, and E. Kohler, “The TENET Architecture for
Tiered Sensor Networks,” Proc. Fourth Int’l Conf. Embedded
Networked Sensor Systems, 2006.

[3] RISE project, http://www.cs.ucr.edu/~rise, 2011.
[4] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-Low

Power Data Storage for Sensor Networks,” Proc. Fifth Int’l Conf.
Information Processing in Sensor Networks, 2006.

[5] Stargate Gateway (SPB400), http://www.xbow.com, 2011.
[6] P. Bonnet, J. Gehrke, and P. Seshadri, “Towards Sensor Database

Systems,” Mobile Data Management, vol. 1987, pp. 3-14, 2001.
[7] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed

Diffusion: A Scalable and Robust Communication Paradigm for
Sensor Networks,” Proc. ACM MobiCom, 2000.

[8] P. Desnoyers, D. Ganesan, H. Li, M. Li, and P. Shenoy, “PRESTO:
A Predictive Storage Architecture for Sensor Networks,” Proc. 10th
Workshop Hot Topics in Operating Systems (HotOS ’05), June 2005.

[9] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and
W.A. Najjar, “MicroHash: An Efficient Index Structure for Flash-
Based Sensor Devices,” Proc. USENIX Conf. File and Storage
Technologies (FAST ’05), 2005.

[10] B. Sheng, Q. Li, and W. Mao, “Data Storage Placement in Sensor
Networks,” Proc. Seventh ACM Int’l Symp. Mobile Ad Hoc
Networking and Computing, 2006.

[11] B. Sheng, C.C. Tan, Q. Li, and W. Mao, “An Approximation
Algorithm for Data Storage Placement in Sensor Networks,” Proc.
Int’l Conf. Wireless Algorithms, Systems and Applications, 2007.

[12] H. Hacigumus, B.R. Iyer, C. Li, and S. Mehrotra, “Executing SQL
over Encrypted Data in the Database Service Provider Model,”
Proc. ACM SIGMOD Int’l Conf. Management of Data, 2002.

[13] R. Agrawal, A. Evfimievski, and R. Srikant, “Information Sharing
across Private Databases,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, 2003.

[14] N. Zhang and W. Zhao, “Distributed Privacy Preserving
Information Sharing,” Proc. 31st Int’l Conf. Very Large Data Bases
(VLDB ’05), pp. 889-900, 2005.

[15] B. Hore, S. Mehrotra, and G. Tsudik, “A Privacy-Preserving Index
for Range Queries,” Proc. 30th Int’l Conf. Very Large Data Bases
(VLDB ’04), 2004.

[16] D. Agrawal and C.C. Aggarwal, “On the Design and Quantifica-
tion of Privacy Preserving Data Mining Algorithms,” Proc. 20th
ACM SIGMOD-SIGACT-SIGART Symp. Principles of Database
Systems, 2001.

[17] R. Agrawal, R. Srikant, and D. Thomas, “Privacy Preserving
OLAP,” Proc. ACM SIGMOD Int’l Conf. Management of Data, 2005.

[18] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order Preserving
Encryption for Numeric Data,” Proc. ACM SIGMOD Int’l Conf.
Management of Data, pp. 563-574, 2004.

[19] D.X. Song, D. Wagner, and A. Perrig, “Practical Techniques for
Searches on Encrypted Data,” Proc. IEEE Symp. Security and
Privacy, pp. 44-55, 2000.

[20] Y.-C. Chang and M. Mitzenmacher, “Privacy Preserving Keyword
Searches on Remote Encrypted Data,” Proc. Third Applied
Cryptography and Network Security Conf., June 2005.

[21] P. Golle, J. Staddon, and B. Waters, “Secure Conjunctive Keyword
Search over Encrypted Data,” Proc. Applied Cryptography and
Network Security Conf., pp. 31-45, 2004.

[22] P. Kamat, Y. Zhang, W. Trappe, and C. Ozturk, “Enhancing
Source-Location Privacy in Sensor Network Routing,” Proc. 25th
IEEE Int’l Conf. Distributed Computing Systems, pp. 599-608, 2005.

[23] M. Gruteser, G. Schell, A. Jain, R. Han, and D. Grunwald,
“Privacy-Aware Location Sensor Networks,” Proc. Ninth Conf. Hot
Topics in Operating Systems (HotOS ’03), 2003.

[24] J. Zhou, W. Zhang, and D. Qiao, “Protecting Storage Location
Privacy in Sensor Networks,” Proc. Fourth Int’l Conf. Heterogeneous
Networking for Quality, Reliability, Security and Robustness and
Workshops (QShine ’07), 2007.

[25] Y. Wei, Z. Yu, and Y. Guan, “Location Verification Algorithms for
Wireless Sensor Networks,” Proc. 27th Int’l Conf. Distributed
Computing Systems (ICDCS ’07), 2007.

[26] Y. Zhang, W. Liu, Y. Fang, and D. Wu, “Secure Localization and
Authentication in Ultra-Wideband Sensor Networks,” IEEE
J. Selected Areas in Comm., vol. 24, no. 4, pp. 829-835, Apr. 2006.

[27] M. Shao, S. Zhu, W. Zhang, and G. Cao, “pDCS: Security and
Privacy Support for Data-Centric Sensor Networks,” Proc. IEEE
INFOCOM, 2007.

[28] K. Ren, W. Lou, K. Kim, and R. Deng, “A Novel Privacy
Preserving Authentication and Access Control Scheme for
Pervasive Computing Environment,” IEEE Trans. Vehicular Tech-
nology, vol. 55, no. 4, pp. 1373-1384, July 2006.

[29] L. Hu and D. Evans, “Secure Aggregation for Wireless Networks,”
Proc. Workshop Security and Assurance in Ad Hoc Networks, 2003.

[30] B. Przydatek, D. Song, and A. Perrig, “SIA: Secure Information
Aggregation in Sensor Networks,” Proc. ACM Conf. Embedded
Networked Sensor Systems, 2003.

[31] Y. Yang, X. Wang, S. Zhu, and G. Cao, “SDAP: A Secure Hop-by-
Hop Data Aggregation Protocol for Sensor Networks,” Proc.
Seventh Int’l Symp. Mobile Ad Hoc Networking and Computing, 2006.

[32] H. Chan, A. Perrig, and D. Song, “Secure Hierarchical in-Network
Aggregation in Sensor Networks,” Proc. 13th ACM Conf. Computer
and Comm. Security (CCS ’06), 2006.

[33] F. Ye, H. Luo, S. Lu, and L. Zhang, “Statistical En-Route Detection
and Filtering of Injected False Data in Sensor Networks,” Proc.
IEEE INFOCOM, 2004.

[34] C. Kuo, M. Luk, R. Negi, and A. Perrig, “Message-in-a-Bottle:
User-Friendly and Secure Key Deployment for Sensor Nodes,”
Proc. ACM Conf. Embedded Networked Sensor Systems, 2007.

[35] Intel Lab Data, http://berkeley.intel-research.net/labdata, 2011.

Bo Sheng received the PhD degree in computer
science from the College of William and Mary in
2010. He is an assistant professor in the
Department of Computer Science at the Uni-
versity of Massachusetts, Boston. His research
interests include wireless networks and em-
bedded systems with an emphasis on efficiency
and security issues. He is a member of the IEEE.

Qun Li received the PhD degree in computer
science from Dartmouth College. He is an
associate professor in the Department of Com-
puter Science at the College of William and
Mary. He received the US National Science
Foundation Career award in 2008. His research
interests include wireless networks, sensor net-
works, RFID, and pervasive computing systems.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1326 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 9, SEPTEMBER 2011

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (IEEE Settings with Allen Press Trim size)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [567.000 774.000]
>> setpagedevice

