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Efficient Techniques for
Monitoring Missing RFID Tags

Chiu C. Tan, Bo Sheng, and Qun Li

Abstract—As RFID tags become more widespread, new ap-
proaches for managing larger numbers of RFID tags will be
needed. In this paper, we consider the problem of how to
accurately and efficiently monitor a set of RFID tags for missing
tags. Our approach accurately monitors a set of tags without
collecting IDs from them. It differs from traditional research
which focuses on faster ways for collecting IDs from every tag.
We present two monitoring protocols, one designed for a trusted
reader and the other for an untrusted reader.

Index Terms—Authentication, privacy, RFID, search, security.

I. INTRODUCTION

INVENTORY control is one of the main applications of
radio frequency identity (RFID) technology. By attaching

an RFID tag on items to be monitored, the owner can
periodically scan the tags to determine what tags, and hence
what items, are currently present. This process is useful for
instance, to retailers wanting to detect shrinkage (thief), a
serious problem estimated to cost 30 billion dollars a year [1].

This simple method of scanning all the tags and compare
them against earlier records poses two problems. First, as the
number of RFID tags becomes large, collecting every tag id
is very time consuming. While existing research efforts have
focused on improving hardware and protocol design to speed
up data collection, the increasing number of RFID tags will
inevitably outpace our ability to collect the data. Walmart is
estimated to generate seven terabytes of RFID data per day
when RFID tags are attached to individual items [2]. Simply
collecting all the data is no longer feasible. We argue that
a different approach for monitoring large numbers of tags is
needed.

Second, the straightforward approach cannot defend against
a dishonest RFID reader. A dishonest reader can simply
collect the tag ids prior to the theft, and replay the data
back to the server later. The conventional defense against
a dishonest reader centers on creating “yoking proofs” [3]
where a set of RFID tags create a chain of dependent MAC
computations [4] within a given time. However, yoking proofs
require additional tag improvements like an accurate on-chip
timer and cryptographic MAC functions which increase the
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cost of the tag. The on-chip timer is also very inflexible since
different number of tags will need different amounts of time
to complete a proof, but the on-chip timer once designed onto
hardware cannot be modified. A flexible solution suitable for
low cost RFID tags is desired.

In this paper, we consider the problem of accurately and
efficiently monitoring a large group of RFID tags for missing
tags. We consider the scenario that the RFID reader can
interact with the tags and pass the collected information to
the server so that the server will be able to remotely monitor
the “intactness” of the group of tags. We provide two protocols
to solve this problem, a trusted reader protocol and a untrusted
reader protocol. In the first protocol, a short bitstring is formed
by forcing each tag to reply in a certain slot in the reply frame.
The bitstring can be a very efficient way to determine whether
a certain number of tags are missing. In the second protocol,
in order to solve the “yoking” problem in a more flexible
fashion, we adopt a timer in the server side and force two
readers reading two split sets to communicate with each other
frequently so that the timer may expire for an invalid reading.

We make the following contributions in this paper. (1) We
propose a monitoring technique which does not require the
reader to collect ids from each RFID tag, but is still able to ac-
curately monitor for missing tags. (2) We present a lightweight
solution that resistant to a dishonest RFID reader returning
inaccurate answers. (3) We improve on [5] by performing
evaluations using parameters derived from commercial RFID
hardware. These results as well as additional discussion on
practical details such as channel conditions can better discern
the actual impacts of these protocols.

The rest of the paper is organized as follows. We review
the related work in the next section, followed by our problem
formulation. Sections 𝐼𝑉 and 𝑉 contains trusted and untrusted
reader protocols respectively. We evaluate our schemes in
Section 𝑉 𝐼 , and discuss some practical implementation issues
in Section 𝑉 𝐼𝐼 . Finally, we conclude in Section 𝑉 𝐼𝐼𝐼 .

II. RELATED WORK

The idea behind improving the performance of data collec-
tion from RFID tags usually involves reducing the number
of collisions between tags. In an RFID system, an reader
uses a slotted ALOHA-like scheme to regulate tag replies.
Under this scheme [6], [7], the reader first broadcasts a frame
size and a random number (𝑓, 𝑟) to all the tags. Each RFID
tag uses the random number 𝑟 together with its own id to
hash to a slot number 𝑠𝑛 between [1, 𝑓 ] to return their id,
where 𝑠𝑛 = ℎ(𝑖𝑑 ⊕ 𝑟) mod 𝑓. The reader broadcast the end
of each slot to the tags and each tag will decrement their
𝑠𝑛 accordingly. When a tag’s 𝑠𝑛 reaches slot 0, the tag will
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broadcast a 16 bit random number (RN16). For instance,
assuming we have two RFID tags, A and B, which pick slots
numbers 2 and 3 respectively.

Reader Tag A Tag B Note
broadcast slot number slot number

0𝑡ℎ broadcast 2 3
1𝑠𝑡 broadcast 1 2
2𝑛𝑑 broadcast 0 1 Tag A responds
3𝑟𝑑 broadcast NA 0 Tag B responds

If no other tags’ 𝑠𝑛 is also slot 0, the reader will receive
only one RN16, and respond with an ACK, after which the
tag will reply with its id. If multiple tags broadcast RN16s,
the reader will detect a collision and not send an ACK. The
tags will not respond with their ids, but keep silent waiting for
the next (𝑓, 𝑟) pair. The reader can repeat this process, which
we term collect all, to identify all the tags in the set. Many
schemes [8]–[13] have been proposed to reduce collisions so
as to improve the data collection process.

While faster data collection will definitely improve moni-
toring performance, these solutions are ultimately bounded by
the number of tags. Regardless of the protocol used, the RFID
reader will still have to isolate each tag in the collection at
least once to obtain data. We take a different approach which
does not require the reader to isolate every tag.

The problem of using a dishonest reader is similar to the
“yoking proof” problem introduced by Juels [3]. A yoking
proof allows an RFID reader to prove to a verifier that two
RFID tags were scanned simultaneously at the same location.
The proof cannot be tampered by an adversarial reader. Later
work by [14], [15] and [16] improves on this idea, but is still
limited to two tags.

More relevant to our dishonest reader problem is [4] which
creates a proof for an arbitrary number of RFID tags. The
paper assumes that all RFID tags are queried by the reader in
a pre-specified order. The reader first sends a value to the
first RFID tag to sign with its secret key. Let us call the
return value 𝑎1. The reader then forwards 𝑎1 to the second
tag to sign, and collects the result 𝑎2. The reader sends 𝑎2
to the third tag, and so on until all tags are contacted. The
reader can use the final result to prove that all the tags are
present. Each RFID tag is assumed to have an on-chip timer
and incrementing counter. The counter is factored into each
tag’s encryption, and is engineered to automatically increment
when the timer expires. When the reader first starts the proof,
the timer is initialized. If the reader does not complete the
proof in time, the counter will increment. Subsequent RFID
tag’s encryption will have a different counter value, resulting
in an invalid proof.

However, [4] requires the reader to contact each RFID tag
individually, a time consuming process when there are a large
number of tags. In addition, [4] requires the reader to query
the set of RFID tags in a specific order to generate a correct
proof. This requirement creates additional overhead since the
order in which tags are read is irrelevant when monitoring for
theft. Finally, their paper assumes that each RFID tag has an
on-chip timer, which is inflexible in accommodating different
group sizes.

TABLE I
NOTATIONS

𝑅 / 𝑇∗ RFID reader / set of 𝑛 RFID tags
(𝑓, 𝑟) frame size and random number
𝑛 / 𝑚 # of tags in a set / # of tolerated missing tags
𝛼 / ℎ(.) confidence level / hash function
𝑖𝑑 / 𝑏𝑠 id of an RFID tag / bitstring of length 𝑓
𝑠𝑛 slot number between [1, 𝑓 ]
𝑐 # of adversary communications
𝑐𝑡 counter built into RFID tag

Another possible defense against dishonest readers is to use
cryptographic search protocols like [17] where the RFID tags
will maintain a timestamp of the previous successful read. A
secure server can issue an access list to the RFID reader that
is valid only for a given time period, and require the reader
to return the set of collected RFID tag responses. A dishonest
reader that tries to query the tags multiple times ahead of time
will be detected by the server. Cryptographic search protocols
share a similar limitation as yoking proof protocols in that
the reader must contact each tag one at a time, leading to
bad performance when the number of tags to be monitored is
large.

III. PROBLEM FORMULATION

We assume that a server has a group of objects, and an
RFID tag with a unique id is attached to each object. We refer
to this group of objects as a set of tags. A set of tags once
created is assumed to remain static, meaning no tags added to
or removed from the set.

We consider an RFID reader, 𝑅, entrusted with a set of 𝑛
RFID tags, 𝑇∗, by the server. In this paper, we consider this set
of tags to be “intact’’ if all the tags in the set are physically
present together at the same time. There are two additional
parameters in our problem, a tolerance of 𝑚 missing tags and
a confidence level 𝛼. Both parameters are set according to the
server’s requirements. A higher tolerance and lower confidence
level will result in faster performance with less accuracy. A
set is considered intact if there are 𝑚 or less tags missing. The
confidence level 𝛼 specifies the lower bound of the probability
that the missing tags are detected. Table I summerizes the
notation used in this paper.

Protocol goals : The goal of a server is to remotely, quickly
and accurately determine whether a set of tags is intact. The
server first specifies a tolerance of 𝑚 missing tags and a
confidence level 𝛼, and instructs a reader to scan all the tags to
collect a bitstring. The server then uses this result to determine
whether there are any missing tags. Our protocols succeed if
the server is able to determine a set of tags is not intact when
more than 𝑚 tags are missing with probability of at least 𝛼.
In this paper, we assume that an adversary will always steal
𝑚+1 tags, since for any 𝑚, the hardest scenario for the server
to detect is when there are just 𝑚+ 1 tags missing.

Adversary model : The goal of the adversary is to steal
RFID tags. The adversary launches the attack by physically
removing tags from the set. We do not consider more involved
attacks where an adversary steals some tags, clones the stolen
tags to make replicate tags, and replaces the replicate tags back
into the set. Under this scenario, the server cannot detect any
missing tags if the replicate tags are identical to the removed
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tags. Since this complicated attack requires certain technical
expertise, and is unlikely to be used against commodity items
tracked by low cost tags, we do not consider this form of
attacks in this paper.

Our paper considers two scenarios, the first where the reader
contacted by the server is honest, and the second where the
reader is dishonest. In the first scenario, the adversary simply
attempts to steal some tags. Once the tags are stolen, the tags
are assumed to be out of the range of the reader. Therefore,
when a reader issues a query, the stolen tags will not reply.

In the second scenario, the adversary controls the RFID
reader responsible for replying to the server. The terms “ad-
versary” and “dishonest reader” can be used interchangeably
in this scenario. After stealing some RFID tags, the adversary
is assumed to still be able to communicate with the stolen tags.
This can be thought of as the adversary having a collaborator
also armed with an RFID reader. The stolen tags are in the
control of the collaborator. The adversary can communicate
with the collaborator using a fast communication channel to
obtain data about the stolen tags if needed.

IV. TRP: TRUSTED READER PROTOCOL

In this section, we present our trusted reader protocol,TRP,
where the RFID reader is assumed to be always honest. Given
a set of RFID tags, TRP returns a bitstring to the server to
check if the set of tags is intact.

A. Intuition and assumptions

TRP modifies the slot picking behavior used in collect all
so that instead of having a tag pick a slot and return its id, we
let the tag simply reply with a few random bits signifying the
tag has chosen that slot. In other words, instead of the reader
receiving

{⋅ ⋅ ⋅ ∣ 𝑖𝑑1 ∣ 0 ∣ 𝑖𝑑6 ∣ 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 ∣ 0 ∣ ⋅ ⋅ ⋅ },
where 0 indicates no tag picked that slot to reply, and 𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
denotes multiple tags trying to reply in the same slot, the
reader will receive

{⋅ ⋅ ⋅ ∣random bits∣ 0 ∣random bits∣random bits∣ 0 ∣ ⋅ ⋅ ⋅ }.
This is more efficient since the tag id is much longer than
the random bits transmitted. From the reply, the reader can
generate the bitstring

𝑏𝑠 = {⋅ ⋅ ⋅ ∣ 1 ∣ 0 ∣ 1 ∣ 1 ∣ 0 ∣ ⋅ ⋅ ⋅ }.
where 1 indicates at least one tag has picked that slot.

TRP exploits the fact that a low cost RFID tag picks a
reply slot in a deterministic fashion. Thus, given a particular
random number 𝑟 and frame size 𝑓 , a tag will always pick
the same slot to reply. Since the server knows all the ids in
a set, as well as the parameters (𝑓, 𝑟), the server will be able
to determine the resulting bitstring for an intact set ahead of
time. The intuition behind TRP is to let the server pick a (𝑓, 𝑟)
for the reader to broadcast to the set of tags. The server then
compares the bitstring returned by the reader with the bitstring
generated from the server’s records. A match will indicate that
the set is intact.

B. TRP algorithm

The reader uses a different (𝑓, 𝑟) pair each time he wants to
check the intactness of 𝑇∗. The server can either communicate
a new (𝑓, 𝑟) each time the reader executes TRP, or the server
can issue a list of different (𝑓, 𝑟) pairs to the reader ahead of
time.

Alg. 1 shows the overall interaction between the reader and
tags. Each tag in the set executes Alg. 2 independently. The
reader executes Alg. 3 to generate the bitstring 𝑏𝑠 and return it
to the server. Notice that unlike the collect all method which
requires several rounds to collect the tag information, our TRP
algorithm only requires a single round. Furthermore, in Alg. 2
Line 5 the tag does not need to return the tag id to the reader.
The tag can return a much shorter random number to inform
the reader of its presence. This shortens the transmission time
since less bits are transmitted.

Algorithm 1 Interaction between reader 𝑅 and group of tags 𝑇∗
1: Reader broadcasts (𝑓, 𝑟) to all tags 𝑇∗
2: Each tag 𝑇𝑖 executes Alg. 2
3: Reader executes Alg. 3
4: Reader returns 𝑏𝑠 to server

Algorithm 2 Algorithm for Tag 𝑇𝑖

1: Receive (𝑓, 𝑟) from 𝑅
2: Determine slot number 𝑠𝑛 = ℎ(𝑖𝑑𝑖 ⊕ 𝑟) mod 𝑓
3: while 𝑅 broadcasts slot number do
4: if broadcast matches 𝑠𝑛 then
5: Return random number to 𝑅

Algorithm 3 Algorithm for Reader 𝑅

1: Create bitstring array 𝑏𝑠 of length 𝑓 , initialize all entries to 0
2: for slot number 𝑠𝑛 = 1 to 𝑓 do
3: Broadcast 𝑠𝑛 and listen for reply
4: if receive reply then
5: Set 𝑏𝑠[𝑠𝑛] to 1

C. Analysis

In this subsection we present the analysis of how to choose
a frame size 𝑓 subject to a tolerance level 𝑚 and confidence
level 𝛼. As mentioned earlier, we define a tolerance of 𝑚
missing tags, where a set of tags can be considered intact
when there are at most 𝑚 missing tags from the set. The set
is considered not intact when at least 𝑚+1 tags are missing.
Since an appropriate value of 𝑚 is application specific, we
assume that 𝑚 is a given parameter in this paper.

To quantify accuracy, we introduce a confidence parameter
𝛼. The parameter 𝛼 describes the requirement of the proba-
bility of detecting at least 𝑚+1 missing tags. An appropriate
value of 𝛼 is also defined by the application. A server requiring
strict monitoring can assign 𝑚 = 0 and 𝛼 = 0.99 for high
accuracy.

Our problem can be defined as given 𝑛,𝑚 and 𝛼, we want
to pick the smallest 𝑓 for Alg. 1 such that we can detect with
more than 𝛼 probability when there are more than 𝑚 out of 𝑛
tags are missing. We use 𝑔(𝑛, 𝑥, 𝑓) to denote the probability of
detecting the set is not intact with frame size 𝑓 when exactly
𝑥 tags are missing. Since the scanning time is proportional to
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the frame size 𝑓 , our problem is formulated as to

minimize 𝑓

𝑠.𝑡. ∀𝑥 > 𝑚, 𝑔(𝑛, 𝑥, 𝑓) > 𝛼. (1)

Theorem 1: Given 𝑛, 𝑥 and 𝑓 ,

𝑔(𝑛, 𝑥, 𝑓) = 1−
𝑓∑

𝑖=0

(
𝑓
𝑖

)
𝑝𝑖(1− 𝑝)𝑓−𝑖 ⋅ (1 − 𝑖

𝑓
)𝑥,

where 𝑝 = 𝑒−
𝑛−𝑥
𝑓 .

Proof: Let 𝑁0 represent the number of empty slots in
the frame generated by the currently present 𝑛 − 𝑥 tags. A
missing tag will be detected if it selects one of these 𝑁0 slots
to respond, which has a probability of 𝑁0

𝑓 . The probability
that we can not detect any of 𝑥 missing tags is (1 − 𝑁0

𝑓 )𝑥.
For each slot, the probability of being one of the 𝑁0 empty
slot is 𝑝 = (1− 1

𝑓 )
𝑛−𝑥 = 𝑒−

𝑛−𝑥
𝑓 .

Thus, 𝑁0 is a random variable following a binomial distri-

bution. For 𝑖 ∈ [0, 𝑓 ], 𝑃𝑟(𝑁0 = 𝑖) =

(
𝑓
𝑖

)
𝑝𝑖(1 − 𝑝)𝑓−𝑖.

Therefore,

𝑔(𝑛, 𝑥, 𝑓) = 1−
𝑓∑

𝑖=0

𝑃𝑟(𝑁0 = 𝑖) ⋅ (1− 𝑖

𝑓
)𝑥

= 1−
𝑓∑

𝑖=0

(
𝑓
𝑖

)
𝑝𝑖(1− 𝑝)𝑓−𝑖 ⋅ (1 − 𝑖

𝑓
)𝑥.

Lemma 1: Given 𝑛 and 𝑓 , if 𝑥1 > 𝑥2, then 𝑔(𝑛, 𝑥1, 𝑓) >
𝑔(𝑛, 𝑥2, 𝑓).

Proof: It is obvious that more missing tags tend to yield
higher probability of being detected.

Theorem 2: If we set 𝑔(𝑛,𝑚+1, 𝑓) > 𝛼, then the accuracy
constraint (1) is satisfied.

Proof: According to Lemma 1, ∀𝑥 > 𝑚, 𝑔(𝑛, 𝑥, 𝑓) ≥
𝑔(𝑛,𝑚+ 1, 𝑓). Therefore, missing exactly 𝑚+ 1 tags is the
worst case for our detection. Thus, any value of 𝑓 satisfying
𝑔(𝑛,𝑚 + 1, 𝑓) > 𝛼 can guarantee the accuracy requirement.

Considering the objective of minimizing 𝑓 , the optimal
value of 𝑓 is

𝑓 = min{𝑓 ∣𝑔(𝑛,𝑚+ 1, 𝑓) > 𝛼}. (2)

V. UTRP: UNTRUSTED READER PROTOCOL

In this section, we discuss UTRP, our protocol to defend
against an untrusted reader. UTRP prevents a dishonest reader
from generating a 𝑏𝑠 that can satisfy the server without having
an intact set. For sake of brevity, the terms “dishonest reader”
and “reader" are used interchangeable for the remainder of
this section. An honest reader will be explicitely specified.

A. Vulnerabilities

We begin by examining how TRP is vulnerable when
executed by an untrusted reader. As mentioned earlier, a
dishonest reader can reply previously collected bitstring 𝑏𝑠
back to the server. The server can attempt to prevent such
an attack by issuing a new (𝑓, 𝑟) to the reader every time

R2
Hi−speed
communication

R R1

Honest reader Dishonest readers

=Vbs bsbs1 bs2

Fig. 1. Vulnerability of TRP.

the reader executes TRP. However, using a new (𝑓, 𝑟) will
not foil a dishonest reader with access to multiple colluding
readers linked by a high speed communication channel. In
this attack, the reader first divides the set of tags into smaller
groups, and assigns each smaller group to his collaborator.
Each collaborator is assumed to have an RFID reader. When
the reader wants to convince the server the set is intact, the
reader’s collaborators can scan their respective groups and
forward the data to the reader. For simplicity, we assume that
the reader divides the original set into two groups, 𝑠1 and 𝑠2.
Fig. 1 illustrates the attack.

The reader succeeds if he is able to generate a proof 𝑏𝑠
from 𝑠1 and 𝑠2 located in two separate locations, such that 𝑏𝑠
is the same as 𝑏𝑠. The reader assigns himself as 𝑅1 to read
𝑠1 and his collaborator as 𝑅2 to read 𝑠2. We assume that 𝑅1

and 𝑅2 both know (𝑓, 𝑟). Alg. 4 presents the algorithm of the
attack. We see that so long as the both readers 𝑅1and 𝑅2 have
a high speed communication, 𝑅1 and 𝑅2 behave just like a
single reader.

Algorithm 4 Attack algorithm against TRP

1: Both 𝑅1 and 𝑅2 execute Alg. 1 on 𝑠1 and 𝑠2, and obtains 𝑏𝑠𝑠1
and 𝑏𝑠𝑠2 respectively.

2: 𝑅2 forwards 𝑏𝑠𝑠2 to 𝑅1.
3: 𝑅1 executes (𝑏𝑠𝑠1 ∨ 𝑏𝑠𝑠2) to obtain 𝑏𝑠, where 𝑏𝑠 = 𝑏𝑠
4: 𝑅1 returns 𝑏𝑠 to the server.

A simple solution is to require a reader to complete Alg. 1
within some specified time 𝑡. However, selecting an appropri-
ate 𝑡 is difficult since 𝑡 has to be long enough for an honest
reader to complete a 𝑏𝑠 for the server, yet short enough such
that 𝑅1 and 𝑅2 cannot collaborate by passing data to each
other. For instance, in Alg. 4, a correct 𝑏𝑠 can be derived if
𝑅2 can communicate with 𝑅1 less than 𝑡. Since a successful
attack requires only one communication between the readers,
picking a good 𝑡 is difficult.

B. Intuition and assumptions

The intuition behind our solution is to force collaborating
readers to communicate enough times such that the latency is
large enough to be accurately estimated by the server. UTRP
accomplishes this by introducing two additional components,
a re-seeding process, and a counter.

UTRP requires a reader to re-seed by sending a new
(𝑓, 𝑟) to all tags that have yet to reply each time the reader
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0 1 10 0 1 1 0 ..
T1 T1T2 T2

Original bs New bs after re−seeding

Remaining tags re−seed
First reply

Fig. 2. Re-seeding after first reply.

Re−seed
backwards

0 0

1 2 3 4 1 2 4

0

First reply

Slot 
Number

. 1 .
3

Reader 2Reader 1

0 0

Fig. 3. Re-seeding just from slot 2.

encounters a reply. The new 𝑓 is equal to the number of slots
left from the previous 𝑓 . For example, initially we have 𝑓 = 10
and the first slot has a tag reply. The new 𝑓 value will thus be
9. The new random number 𝑟 is determined by the server.
The re-seeding will result in a 𝑏𝑠 different from the prior
one. To illustrate, in Fig. 2, tag 𝑇 1 is the first reply. The
reader will send a new (𝑓, 𝑟) to remaining tags to pick a new
slot. Tag 𝑇 2 picks a different slot after re-seeding, creating a
different 𝑏𝑠. Collaborating readers wanting to obtain 𝑏𝑠 = 𝑏𝑠
have to re-seed each time either reader receives a reply. Since
no reader can determine in advance which slot will receive a
reply, collaborating readers must check with each other after
either reader obtains a reply in a single slot.

However, re-seeding does not prevent readers from running
the algorithm multiple times to gain some information. Each
reader can first read every slot in frame size 𝑓 to determine
which slot has a reply. The readers then exchange this in-
formation and scan all the tags again to arrive at the correct
bitstring. For example in Fig. 3, 𝑅1 and 𝑅2 first scan all their
tags to determine that a re-seed is necessary in slot 2. Both
readers can then repeat the process by re-seeding tags starting
from slot 2 to complete the 𝑏𝑠. A mechanism to prevent a
reader from going backwards is needed.

We adopt an assumption made in several earlier research [3],
[4], [14]–[16] that each RFID tag has a counter 𝑐𝑡, and the
value of the counter can only be incremented by one each
time. The tag will automatically increment its counter each
time it receives a (𝑓, 𝑟) pair. A reader that attempts to move
backwards to re-seed the tags will have an incorrect counter
value. An RFID tag now picks a slot as 𝑠𝑛 = ℎ(𝑖𝑑 ⊕ 𝑟 ⊕
𝑐𝑡) mod 𝑓.

C. UTRP algorithms

We let the server issue a frame size together with 𝑓 random
numbers. (𝑓, 𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑓 ), to a reader. The reader is supposed
to use each random number only once in the given order. For
example, let 𝑓 = 15 and 𝑟1 = 5, 𝑟2 = 9. Reader 𝑅 will first

send out (15, 5). Assuming that some tag replies in the first
slot, 𝑅 is supposed to re-seed by broadcasting (14, 9) so that
each remaining tag can pick a new slot. A reader that does not
follow this rule will not yield the right answer to the server.

Alg. 5 illustrates the overall protocol, and Alg. 6 and Alg. 7
show the reader and tag behavior respectively. Collaborating
readers will have to communicate with each other after Alg. 6
Line 5 to determine whether to re-seed. If either collaborating
reader receives a reply, both readers must re-seed. A reader
cannot predict in advance whether any tag will reply in the
next slot since a tag picks a slot number 𝑠𝑛 using the random
number 𝑟, and the list of random numbers is determined by
the server.

Algorithm 5 Interaction between server and 𝑅

1: Server generates (𝑓, 𝑟1, ⋅ ⋅ ⋅ , 𝑟𝑓 ), sends to 𝑅, and starts the timer
2: 𝑅 broadcasts (𝑓, 𝑟1) to all the tags 𝑇∗
3: 𝑇∗ executes Alg. 7
4: 𝑅 executes Alg. 6
5: if 𝑅 returns correct 𝑏𝑠 to server before timer expires then
6: Server accepts 𝑅’s proof

Algorithm 6 UTRP algorithm for reader 𝑅

1: Create a bitstring array 𝑏𝑠 of length 𝑓 , initialize all entries to 0.
2: Set 𝑓 ′ = 𝑓
3: for slot number 𝑠𝑛 = 1 to 𝑓 do
4: Broadcast 𝑠𝑛− 𝑓 + 𝑓 ′ and listen for reply
5: if receive reply then
6: Set 𝑏𝑠[𝑠𝑛] to 1, and 𝑓 ′ = 𝑓 − 𝑠𝑛
7: Broadcast (𝑓 ′, 𝑟) where 𝑟 is the next random number in

the sequence
8: Return 𝑏𝑠 to server

Algorithm 7 UTRP algorithm for tag 𝑇𝑖

1: Receive (𝑓, 𝑟) from 𝑅. Increment 𝑐𝑡 = 𝑐𝑡+ 1.
2: Determine slot number 𝑠𝑛 = ℎ(𝑖𝑑𝑖 ⊕ 𝑟 ⊕ 𝑐𝑡) mod 𝑓
3: while 𝑅 is broadcasting do
4: if 𝑅 broadcasts slot number and slot number matches 𝑠𝑛 then
5: Return random number to 𝑅, keep silent
6: else if 𝑅 broadcasts a new frame size and random number

(𝑓, 𝑟) then
7: Receive (𝑓, 𝑟) from 𝑅. Increment 𝑐𝑡 = 𝑐𝑡+ 1
8: Determine new slot number 𝑠𝑛 = ℎ(𝑖𝑑𝑖 ⊕ 𝑟 ⊕ 𝑐𝑡) mod 𝑓

The reader also cannot attempt to execute Alg. 6 multiple
times to determine which slots will have a reply since the
counter value will change. In Alg. 7 Line 1, the tag will
automatically increment the counter each time it receives a
new (𝑓, 𝑟). Since a tag in UTRP picks a new slot using
𝑖𝑑⊕𝑟⊕𝑐𝑡, a different 𝑐𝑡 will cause the final 𝑏𝑠 to be different.
Note that since an RFID tag can only communicate with a
single reader at a time, the counter in Alg. 7 will not be
incremented by any other readers.

D. Analysis

The analysis for UTRP is similar to the TRP analysis
presented earlier. The difference is that in TRP, the information
contained in the missing tags is gone. In UTRP, we consider
the dishonest 𝑅 removes more than 𝑚 missing tags, but yet
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is able to obtain some information from the removed tags.
Compared with TRP, when the same number of tags are
missing, the dishonest reader has higher probability to pass the
verification since the dishonest reader has more information
than that in TRP.

UTRP requires the reader to return 𝑏𝑠 before timer 𝑡 expires.
The intuition of using a timer is to limit the communication
between dishonest readers, thus increase the probability of
detecting the missing tags. For a given frame size and random
number, the scanning time for a honest reader to finish the
protocol may vary. The server sets the timer to an empirical
value, which is conservative so that a honest reader can
definitely respond before the due time. We assume that the
server can estimate the minimum and maximum scanning
time of a honest reader, indicated as 𝑆𝑇𝑚𝑖𝑛 and 𝑆𝑇𝑚𝑎𝑥

respectively. The server thus sets 𝑡 = 𝑆𝑇𝑚𝑎𝑥.
Since a reader cannot predict in advance in which slot there

will be a reply, UTRP forces the dishonest readers to wait
for a message from other readers every time it encounters an
empty slot. If a dishonest reader receives a reply in the current
slot, it can continue re-seeding and scanning the following
slots without waiting for the results from other readers. We
let 𝑡𝑐𝑜𝑚𝑚 be the average communication overhead between
two dishonest readers. Given 𝑡, we claim that the dishonest
readers can communicate in at most 𝑐 = 𝑡−𝑆𝑇𝑚𝑖𝑛

𝑡𝑐𝑜𝑚𝑚
slots.

Let us consider the whole set of 𝑛 tags is divided into two
sets 𝑠1 and 𝑠2. Without loss of generality, let ∣𝑠1∣ ≥ ∣𝑠2∣ > 𝑚.
Assume there are two dishonest readers 𝑅1 and 𝑅2 scanning
𝑠1 and 𝑠2 respectively. Each time 𝑅1 encounters an empty slot
(a slot where no tag replies), 𝑅1 will have to pause to check
with 𝑅2. If 𝑅2 receives a reply in that particular slot, both
𝑅1 and 𝑅2 will have to re-seed. Otherwise 𝑅1 can continue
broadcasting the remaining slots. Since the dishonest readers
cannot communicate after every slot within 𝑡, the best strategy
for the dishonest readers to pass our verification is as follows:

1) 𝑅1 waits for the messages from 𝑅2 in the first 𝑐 empty
slots it has encountered;

2) 𝑅1 finishes scanning the following slots (with 𝑠1) and
sends the bitstring to the server.

With this strategy, the first part (with communication) of the
bitstring is correct, but the remaining part may be suspicious.
The following analysis tries to derive an appropriate value for
𝑓 , such that the server can catch the difference in this scenario
with high probability (> 𝛼).

Similar to the TRP analysis, the worst case occurs when
the number of missing tags is just beyond the tolerant range,
i.e., ∣𝑠2∣ = 𝑚 + 1. Intuitively, while the number of missing
tags is smaller, we need longer frame size to guarantee the
same accuracy requirement. In the following, we will discuss
how to set parameter in this worst case to satisfy the accuracy
requirement. The optimal frame size for the worst case is thus
the optimal for all cases.

Theorem 3: Assume after 𝑐′ slots, the dishonest read 𝑅1

will have encountered 𝑐 number of empty slots. The expected
value of 𝑐′ is 𝑐

𝑒
−𝑛−𝑚−1

𝑓

.

Proof: For each slot, the probability that no tags respond

is 𝑝 = (1 − 1
𝑓 )

∣𝑠1∣ = 𝑒−
∣𝑠1∣
𝑓 . After 𝑐′ slots, the expected

number of empty slots is 𝑝 ⋅ 𝑐′. By resolving 𝑝 ⋅ 𝑐′ = 𝑐, we

have 𝑐′ = 𝑐

𝑒
− 𝑛−𝑚−1

𝑓

.

Theorem 4: Let 𝑥 be the number of the tags in 𝑠2, which
respond after the first 𝑐′ slots. Given 𝑖 ∈ [0,𝑚+ 1),

𝑃𝑟(𝑥 = 𝑖) =

(
𝑚+ 1

𝑖

)
(1− 𝑐′

𝑓
)𝑖(

𝑐′

𝑓
)𝑚+1−𝑖.

Proof: Since each tag randomly picks a slot in the frame,
it has 1− 𝑐′

𝑓 probability to respond after the first 𝑐 slots. Thus,

𝑥 follows a binomial distribution as 𝑥 ∼ 𝐵(1− 𝑐′
𝑓 , ∣𝑠2∣). Thus,

we have

𝑃𝑟(𝑥 = 𝑖) =

(
𝑚+ 1

𝑖

)
(1− 𝑐′

𝑓
)𝑖(

𝑐′

𝑓
)𝑚+1−𝑖.

With similar proof, we have the following theorem.
Theorem 5: Let 𝑦 be the number of the tags in 𝑠1, which

respond after the first 𝑐′ slots. Given 𝑖 ∈ [0, 𝑛−𝑚− 1),

𝑃𝑟(𝑦 = 𝑖) =

(
𝑛−𝑚− 1

𝑖

)
(1− 𝑐′

𝑓
)𝑖(

𝑐′

𝑓
)𝑛−𝑚−𝑖−1.

On one hand, in 𝑠2, the tags replying after the first 𝑐′ slots
are ‘real’ missing tags in this problem. On the other hand,
among the tags in 𝑠1, only those responding after the first
𝑐′ slots are considered useful in detecting the missing tags.
For a given frame size 𝑓 , 𝑓 − 𝑐′ is the effective frame size for
distinguishing the bitstring with missing tags. Thus, the server
has 𝑔(𝑥 + 𝑦, 𝑥, 𝑓 − 𝑐′) probability to detect the difference.
Considering all possible values of 𝑥 and 𝑦, a frame size 𝑓 can
satisfy the accuracy requirement, if

𝑚+1∑
𝑖=0

𝑛−𝑚−1∑
𝑗=0

𝑃𝑟(𝑥 = 𝑖)⋅𝑃𝑟(𝑦 = 𝑗)⋅𝑔(𝑖+𝑗, 𝑖, 𝑓−𝑐′) > 𝛼. (3)

Therefore, the optimal frame size is the minimal value satis-
fying the above condition.

VI. EVALUATION

We use extensive simulations to evaluate the efficiency and
accuracy of TRP and UTRP. To determine the performance,
we need to estimate the latency of different types of slots. We
use the reported values for the Alien ALR-9800 EPC Class 1
Gen 2 RFID reader depicted in [18] to estimate the latency
of a collision slot, as well as the amount of time needed to
transmit the RFID tag’s id back to the reader. We assume that
the time needed for an empty slot as equal to the time needed
for a collision slot. While a reader can determine an slot is
empty without waiting for the entire time duration needed to
transmit an RN16, different types of RFID readers may wait
for different amounts of time. This assumption serves as an
upper bound, since a reader can determine whether the slot is
empty, single, or collision after waiting for a period of time
equal to that needed to transmit an RN16.

A. TRP Performance

We compare TRP against the conventional collect all
method. We implemented the collect all method using the
guidelines proposed by [9] that set the optimal frame size to
the number of unidentified tags left in a set, that is 𝑓 = 𝑛 in the
first round, and 𝑓 set to equal the remaining tags that have yet
to transmit for subsequent rounds. Note this implementation
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of collect all considers an ideal scenario where a reader is
assumed to know the cardinality of remaining tags to compute
the optimal frame size. An RFID reader cannot do this in
practice. To accommodate the tolerance 𝑚, we consider collect
all algorithm to be completed once 𝑛−𝑚 tags are collected.

We perform simulations varying the number of tags 𝑛 from
200 to 10000 tags, and setting the tolerance level 𝑚 to one
percent of the 𝑛 number of tags. Fig. 4 compares the efficiency
between our TRP algorithm and the collect all method with the
confidence level 𝛼 = 0.95. We observe that when the number
of tags are small, approximately 200 tags, the performance
of collect all and TRP is about the same. However, when
the number of tags to monitor increase, the time latency of
TRP grows much slower than the time needed for collect all.
When monitoring 10000 RFID tags, TRP is approximately
20 times faster than collect all, requiring only 0.8 seconds to
complete verses 17 seconds for collect all. We show the results
of changing the confidence level 𝛼 in Fig. 5 at 1000 tags. The
additional time needed to when selecting higher values of 𝛼,
for example, from 0.9 to 0.95 is very small, only 0.4 seconds.
These results show that TRP is suitable for monitoring large
number of tags.

Fig. 6 shows the accuracy of TRP when using the frame
size 𝑓 shown in Fig. 4. With a tolerance of 𝑚, the most
difficult situation for TRP to detect missing tags is when there
are just 𝑚 + 1 missing tags. The horizontal dashed line in
Fig. 6 denotes the confidence level 𝛼. Each bar represents
probability TRP detects 𝑚+ 1 missing tags from a set. Bars
over the horizontal line denote where TRP has successful
detected 𝑚+ 1 missing tags with probability greater than 𝛼.
As we can see, TRP detects the missing tags over probability
𝛼.

B. UTRP Performance

The closest alternative to defending against a dishonest
reader is to use yoking proofs. We use the yoking proof

for arbitrary number of tags [4], which we denote as 𝑌 𝑃 ,
to compare against UTRP. Since 𝑌 𝑃 cannot be executing
by existing RFID equipment, we estimate it’s performance
as follows. 𝑌 𝑃 requires the reader to query the RFID tags
one at a time in a fixed order. Each RFID tag will execute
a cryptographic function and return the answer back to the
reader for further processing. Using [18], we assume that
the time needed query just one tag is 1.9 ms. This time is
approximately the time needed for the reader to broadcast the
tag id and the tag to respond with its id. This is only an
approximation because the RFID reader mode necessary read
just one tag without doing anti-collision was not performed
in [18]. We estimate the cryptographic overhead for a reader
and each tag to be 0.1 ms. Finally, we assume that the last 𝑚
tags are chosen as the 𝑚 tolerated missing tags.

To evaluate UTRP, we let a dishonest reader split the set
of tags into two, and assume that the dishonest reader can
communicate with his accomplice for 𝑐 = 20 slots before
executing Alg. 5 on the remaining tags in his set. To determine
the efficiency of UTRP, we compare the time needed to
execute UTRP against 𝑌 𝑃 in Fig. 7. We see that UTRP
outperforms 𝑌 𝑃 for all group sizes of RFID tags. In terms
of accuracy, UTRP like TRP is able to detect the missing
tags with probability larger than the confidence level 𝛼. The
difference is that in UTRP, we add a very small number of slots
(between 5 and 10 slots) to the calculated frame size given in
Eq. (3). This is because the derivation of 𝑐′ in Theorem 3 relies
on the expected value, which introduces a slight inaccuracy.

VII. PRACTICAL DISCUSSION

The evaluation in the prior section demonstrated the perfor-
mance gains from TRP and UTRP. In this section, we examine
the practical issues involved with implementing TRP or UTRP
on actual hardware. We begin by examining the tradeoffs of
our protocols against existing solutions.

Protocol tradeoffs: The alternative of TRP is the collect
all method. The tradeoff for faster performance is that TRP
does not return as much information as collect all. TRP is
unable, for instance, determine how many tags are missing, not
what are the missing tag ids. As such, a user can use TRP to
determine when to do an expensive collect all operation. Given
that TRP is almost 20 times faster when dealing with large
tag populations, a user can save considerable time by running
TRP frequently to detect thief, and only execute collect all
periodically to collect more detailed information.

A similar tradeoff exists when comparing UTRP against
𝑌 𝑃 , in that UTRP is faster but returns less information.
However, we argue that unlike the TRP and collect all, UTRP
is a better choice than 𝑌 𝑃 for dealing with an untrusted reader.
𝑌 𝑃 requires a fixed timer to be built into each RFID tag, and
this timer is configured to timeout depending the size of the
group of tags. This means that the a tag group of different
sizes will need a different timer value. The cost of changing
this timer value when tags are reorganized is too high, making
𝑌 𝑃 inflexible to accommodate different group sizes.

Implementation issues: While both TRP and UTRP do not
require a significant departure from existing RFID standards,
some modifications are still needed for implementation. First,
both protocols require the RFID tags only broadcast the
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random RN16 number, and not their actual ids. This can be
accomplished by programming the RFID reader to always
assume that each reply slot in the bitstring is a collision.
This will “fool” the tags into thinking there is a collision
and not return their ids. Second, both protocols require the
reader to output to the user the results of the bitstring after the
tags have replied. Current commercial readers like the Alien
ALR-9800 do collect this information, but do not provide
the means of returning it to the user. A more open reader
platform [19] may allow this function to be implemented in
the future. Finally, UTRP requires the RFID tags to contain an
incremental counter which current Class 1 Gen 2 RFID tags
do not implement. A slightly more advance RFID tag can be
implemented to provide this function.

Environmental conditions: In a practical setting, environ-
mental conditions such as background noise and absorption
rates of different materials, will affect the wireless channel
between the reader and tags. To illustrate, we set up an
experiment by placing an RFID tag on an empty glass bottle,
and place the reader 50 cm away. The reader is programmed
to continuously read the tag for several seconds. This allows
us to determine the read rate, the number of times the tag
was read per second. This is one of the standard metrics for
RFID read performance [20]. In this setup, we were able to
obtain a read rate of 14.67 reads per second. We then filled up
the bottle with water, and repeated the experiment again, and
obtaining a read rate of 13.8 reads per second. This shows the
effects of the medium on RFID tag performance.

We can mitigate this effect using two strategies. The first is
to change the tolerance level 𝑚 to accommodate the missing
tag replies. The user can experimentally estimate the number
of responses that will be missed and adjust 𝑚 accordingly.
For example, let the experiments indicate about 1% of the
present RFID tags will not respond, and the user is willing to
tolerate 2% missing RFID tags. Then the user will set 𝑚 =
2%+ 1% ∗ (100%− 2%) = 2.98%.

The second strategy is to place multiple RFID tags onto the
same object. The intuition is that at certain angles, an RFID
tag may not be read by the RFID reader. Placing multiple
tags at different locations on the same object makes it more
likely that at least one of the tags will be picked up by the
RFID reader [21]. We let each RFID tag ID take the form
{Group ID∣Tag ID}. The RFID reader will query each group
ID separately, perform a logical OR on the returned bitstring
from each group, and run the protocols on the resulting
bitstring. By placing multiple tags on the same object, even
if one of the tags is blocked and cannot received the reader’s
signal, the other tags can still respond when the reader tests for
a different group. This way, our schemes will not erroneously
conclude there are missing tags when in effect there are not.

VIII. CONCLUSION

In this paper, we consider the problem of monitoring a
large set of RFID tags for missing tags. We provide two
protocols,TRP for an honest reader, and UTRP for a dishonest
reader, to accurately and efficiently monitor the RFID tags.
Our results show that TRP and UTRP performs 20 and 8 times
faster than the alternative methods respectively when there are
10000 tags in a given set. At the same time, both protocols

are able to accurately detect tags are missing even when there
is only one more missing tag than the tolerance level. These
results suggests that our protocols are especially suitable for
large numbers of RFID tags.
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