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Abstract Symmetric cryptography has been mostly used

in security schemes in sensor networks due to the concern

that public key cryptography (PKC) is too expensive for

sensor devices. While these schemes are efficient in pro-

cessing time, they generally require complicated key

management, which may introduce high memory and

communication overhead. On the contrary, PKC-based

schemes have simple and clean key management, but cost

more computational time. The recent progress in PKC

implementation, specially elliptic curve cryptography

(ECC), on sensors motivates us to design a PKC-based

security scheme and compare its performance with the

symmetric-key counterparts. This paper proposes a prac-

tical PKC-based access control for sensor networks, which

consists of pairwise key establishment, local access con-

trol, and remote access control. We have implemented both

cryptographic primitives on commercial off-the-shelf sen-

sor devices. Building the user access control as a case

study, we show that PKC-based protocol is more advan-

tageous than those built on symmetric cryptography in

terms of the memory usage, message complexity, and

security resilience. Meanwhile, our work also provides

insights in integrating and designing PKC-based security

protocols for sensor networks.

1 Introduction

A main challenge of large scale sensor networks is the

deployment of a practical and robust security mechanism to

mitigate the security risks exposed to the unattended and

resource constrained sensor devices. Motivated by the fact

of insufficient hardware resources, a great deal of research

has focused on the symmetric-key-based solutions [4, 5, 7,

13, 32] for light-weight computation. These symmetric-key

schemes, however, require complicated key management

that may cause high memory and communication overhead.

This drawback has not yet been investigated by experi-

mental work so it is not clear how these schemes perform

in a realistic system.

Recent progress in implementation of elliptic curve

cryptography (ECC) on sensors [9, 12, 14] proves public

key cryptography (PKC) is now feasible for resource

constrained sensors. Given the efficient low-layer primitive

in place, the high-layer PKC-based security scheme design

in sensor networks, however, is not straightforward due to

the special hardware characteristics and requirements of

sensor networks. Therefore the performance of PKC-based

security schemes is still not well investigated. This paper

compares the symmetric cryptography and PKC-based

schemes through an experimental study on an important

sensor network security problem: user access control. Our

results suggest the PKC-based user access control scheme
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is more advantageous in terms of the memory usage,

message complexity, and security resilience.

Sensor data access control becomes an important secu-

rity component as the in-network data storage applications

[15, 31] have been proposed for the sensor platforms with

cheap and large storage capacity. To protect the data,

sensors have to authenticate the user, and control the access

to their data. Existing access control schemes on the

Internet [8, 16] are not feasible for sensor networks due to

the limited power, memory and processing capabilities of

the sensor hardware. Access control in sensor networks

also differs from the conventional schemes in that it is not

enough to simply deny unauthorized users’ accesses to the

data. An unauthorized user should not be allowed to use the

network since the network bandwidth is very limited and,

more importantly, the battery power of each node may be

depleted after malicious users flood messages to the

network.

The aforementioned special sensor hardware and net-

work requirements motivate us to design the user access

control scheme in a very different fashion. Our basic idea

in this paper is to authenticate the user locally by the

sensors in the user’s vicinity and transfer the endorsements

of the local sensors to the remote sensor for data query. In

this way, unauthorized data access request will be rejected

locally so that DoS attacks trying to deplete the battery

power of the network will be blocked locally. The access

control proposed in this paper is composed of several

components. First, the sensors in proximity need

to exchange pairwise keys for secure communications.

Second, the user needs to get authenticated by the local

sensors either for local sensor data access or for remote

sensor data access. Third, the local sensors also need to

help the user and the remote sensor build a pairwise key to

achieve end-to-end security.

While existing symmetric key schemes [4, 5, 7, 13, 32]

can achieve some of the security goals, several significant

drawbacks such as high memory and communication over-

head in key management, and security vulnerabilities, as we

will show in our experimental study, make the symmetric

cryptography bases solutions not desirable. We propose an

ECC-based, practical and security resilient PKC-based user

access control suite. Our approach not only embraces the

cryptographic primitive tweaking to achieve the computa-

tion and communication efficiency, but composes of a

carefully designed and novel threshold-endorsement proto-

col to address the issue of denial-of-service (DoS) in remote

access control. We have implemented all protocols on

widely used MICAz and TelosB motes. Our performance

evaluation compares the proposed access control suite with

prior work which are based on symmetric-key and the pre-

valent RSA on Internet through comprehensive experiments

and rigorous analysis.

In summary, we make the following contributions in this

paper. (1) We provide a detailed comparison of symmetric

cryptography and PKC-based user access control protocols.

Our evaluations are based on actual implementation on

commercial off-the-shelf sensor hardware. To the best of

our knowledge, this is the first experimental study on real

world implementation for two fundamentally different

cryptographic primitives. (2) We have designed a suite of

ECC-based access control protocols including pairwise key

sharing between neighboring sensors, local access control,

and remote access control. We believe the integral security

application sheds new insights into the practicality of the

PKC-based scheme in sensor networks, helps to build a

deeper understanding of the security protocol design in a

resource constrained system. (3) We have implemented the

public key primitive WM-ECC on MICAz and TelosB

motes and HP iPAQ. Compared with the widely used and

comprehensive TinyECC [12], our implementation gives

more efforts in improving the performance on a specific

curve.

2 Related work

The user authentication and communication encryption

have received extensive attentions [8, 16, 18] for security

in large network system. Kerberos [16] has been widely

used in distributed client-server authentication and session

key establishment. Fox et al. proposed a lightweight ver-

sion of Kerberos, Charon [8], for mobile devices. Both

schemes are centralized; a central server has to be on-line

to assist user’s request. In sensor networks, SPINS protocol

[18] shares the same security architecture. While the cen-

tralized schemes have many attractive security features, the

communication overhead becomes a major issue when the

network size scales, specially for the extremely energy

constrained sensor nodes in a large network. For the same

reason, the security schemes [21, 35] relying on a central

server are not desired in the security mechanism design in

large-scale sensor networks.

A number of key establishment schemes based on pre-

distribution have been explored recently [4, 5, 6, 7, 13, 25].

While these symmetric-key-based schemes are computa-

tionally efficient, the trade-off has to be paid for compli-

cated key pre-distribution and key management, which

incur large communication overhead during the key dis-

covery. In their recent work [19], Di Pietro et al. proposed

an interesting key discovery scheme based on pseudo-

random key pre-deployment. The scheme leverages the

hash computation to find the matching keys so that the

communications for key index exchanges in [7] can be

avoided. Unfortunately, this mechanism exposes the secu-

rity vulnerability in node compromising if the adversary
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launches a ‘‘smart attack’’. The PKC-based pairwise key

schemes proposed by Zhang et al. [33, 34] achieve some

nice security features by using ID-based cryptography.

Although the schemes are very novel, the ID-based cryp-

tography is still not feasible for resource constrained sen-

sors. Wang et al. [28] also discusses user access control

scheme by the public key scheme. However, this scheme is

just a simple PKC-based one hop authentication and does

not provide a comprehensive user access control solution.

The most related research to the user access control is

[26, 27, 32]. Zhang et al. [32] proposes several schemes to

restrict and revoke the access privilege of a mobile sink.

The limitation of the scheme is that the mobile sink’s

moving track has to be predetermined by the base station.

Our scheme, however, addresses a more general user/

sensor communication problem. The mobile sink can be

regarded as one type of special users in our scheme.

Although [26] describes a symmetric-key-based local

endorsement scheme which is similar to the threshold

endorsement in this paper, the symmetric-key scheme

suffers larger communication overhead and requires pro-

hibitive amount of memory storage space. The message

authentication scheme in [27] enables the relay nodes to

filter the illegal messages (injected by the adversary) and

prevent the DoS attacks, but cannot determine how much

access privilege a legitimate user has. It is complementary

to the remote access control scheme proposed in this paper.

Precursors in ECC implementation on Berkeley Motes

include Sun Research Labs [9], EccM [14] and TinyECC

[12]. TinyECC is the first public available and widely used

efficient ECC implementation on primary field on Berkeley

Motes. It is a full package implementing 128, 160, and

192-bit in total six SECG/NIST recommended curves on

three generic sensor platforms (MICAz, TelosB, and

Imote). Recently, TinyECC further implements flexible

user library reconfigurability that allows users to have the

choice to pick one or more desired optimization techniques

for their own applications. TinyECC is very comprehen-

sive, and its performance is well tuned. Our WM-ECC

focuses solely on curve secp160r1 with many available

optimization techniques. Due to this special effort, our

WM-ECC on this curve is more efficient than TinyECC.

3 System model and assumptions

We consider a large scale wireless sensor network

deployed in a variety of environments. Data access to the

stored data on each node is protected according to the

attributes of the data. The examples include data type

(temperature, light, or noise), data location, and data col-

lection time. A user equipped with a portable computing

device, such as a PDA, interacts with the sensor network

for data query and retrieval. This device is more powerful

than the sensor nodes, so it is capable of more computa-

tionally intensive tasks. User can query either ‘‘local’’

sensors through direct communication links, or ‘‘remote’’

sensors (that are outside of direct communication range)

through multihop routing by intermediate sensor nodes.

We assume a certification authority (CA) is responsible

for generating all security credentials for sensors. During

the deployment, each sensor is pre-loaded its private key,

public key and the corresponding certificate. The user

acquires his certificate from the CA through an out-of-band

security channel. The certificate includes an access control

list which defines his access privilege. To query the sensor

network, the user needs to attach the certificate with the

query message. The contacted sensor checks the access list

and verifies the user’s privilege. The verification is per-

formed in a distributed fashion without involvement of the

CA. The contacted sensor grants the user the answers that

are compliant with the access privilege. If the users cannot

be verified, the query will be denied.

The adversary may launch either passive attacks or

active attacks, or both. The passive attack includes message

eavesdropping, traffic monitoring and analysis. For active

attack, we mainly focus on following three types. The first

is node compromise. The compromised sensor may capture

the legitimate user information while being accessed and

reveal it to the malicious third party. Second, user collusion

can help malicious users to subvert the system and gain

more access privilege. Third, the adversary may inundate

user queries in the network to deplete the battery power of

sensor nodes. We assume that at most t - 1 sensors (where

t is a security parameter) can be compromised and an

unbounded number of users can collude since it is not hard

for mischievous users to share information and orchestrate

an aggregated analysis to the collected information.

In this paper, we do not address disruption attacks.

Disruptions occur when the adversary, by compromising a

sensor node, drops legitimate messages or contributes a

bogus endorsement share in remote access control (as we

will describe later) to invalidate user remote queries. Even

though disruption attacks in general are difficult to defend

against in sensor networks, a smart adversary is not willing

to launch such attacks because incidents of message

dropping and user remote access failure may easily trigger

system attentions and thus expose the compromised sensors.

4 Pairwise key and local access control

We start the discussion with the secure pairwise key

establishment. A lot of sensing tasks (e.g., event detection

and user remote access endorsement described in Sect. 5)
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are achieved through collaborations of multiple neighbor-

ing sensors, which require secure peer-to-peer communi-

cation to prevent the adversary from eavesdropping. For

the same reason, the secure communication channel is also

desired when a user queries sensors.

In this section, we design an ECC-based pairwise key

establishment scheme for neighboring sensors. A common

way to share a secret between two parties is to use Diffie-

Hellman (DH) scheme. However, DH cannot be directly

used in sensor networks due to the potential Man-In-

The-Middle (MITM) attack. We thus develop our key

establishment scheme based on ephemeral DH protocol over

elliptic curve. We tweak the original DH protocol to defend

against MITM attacks. As we will explain later, our scheme

is to achieve the best communication and computation effi-

ciency. This PKC-based pairwise key scheme can also be

applied for local user access control with a slight modifica-

tion. We give the brief security and cost analysis in the end.

4.1 Pairwise key establishment between two sensor

nodes

We assume the system certification authority (CA) selects

an elliptic curve E over the finite field GF(p), where p is a

large prime number. We denote P as the base point of

E, where P has the order of q (q is a prime number too).

CA keeps a system secret x, and publishes the system

public key Q = xP. We will continue to use this crypto-

system setup throughout this paper.

Similar to the conventional PKI, sensors’ public keys need

to be certified. Since it is not realistic to have an online CA that

can verify the public key in real time, each sensor has to

pre-load its certificate that is pre-computed by CA. We first

discuss how to generate the private key, the public key and

the certificate for each sensor. We first define two one-way

cryptographic hash functions, h1 : f0; 1g�7!½0; q� 1�; h2 :

f0; 1g�7!f0; 1gl; where l is the pairwise key length. Let us

consider a sensor node u (we denote u as the sensor ID). CA

first selects a random number cu, generates its certificate

Cu = cuP, and calculates eu = h1(u||Cu). The private key of

u is derived as qu = eucu ? x, and the corresponding public

key is Qu = quP. Note Cu, qu and Qu satisfy the following

property:

Qu ¼ euCu þ Q: ð1Þ

The function of eu is to bind sensor ID, u, with its

certificate, Cu, so that the sensor cannot claim itself as

another ID v. As we will explain later, eu can be utilized to

bind a user’s access control list with her certificate.

Before the deployment, sensor u is pre-loaded with

qu, Qu and Cu. Considering a typical 160-bit elliptic curve,

these credentials require 100 bytes of memory space.

For two sensors u and v with (qu, Qu, Cu) and

(qv, Qv, Cv) respectively, the ECC-based pairwise key

establishment protocol is illustrated in Fig. 1. We denote

(.)?
k as a symmetric key encyrption operation by using key

k, and denote (.)-
k as a symmetric key decryption opera-

tion by using key k. The symmetric key scheme can be any

existing scheme, such as AES. Sensor u sends v the key

establishment request, which includes u’s public key

Qu, certificate Cu and nonce n0. Sensor v calculates

eu = h1(u||Cu), and verifies u’s public key by plugging eu

and Cu in Eq. 1. The request will be immediately dropped

if the derived public key does not match Qu. If the verifi-

cation is successful, v picks a random rv and generates the

challenge in the following steps:

1. v multiplies rv with Qu to get a secret ECC point Rv.

2. The hash value of Rv, denoted as h2(Rv), is used to

encrypt the randomly picked secret key, kv. The hash

of n0, denoted as n1, forms a nonce chain to defeat the

potential security attacks.

3. v computes Yv by multiplying rv with the base point P.

Upon receiving nv and Yv, u can recover kv because

quYv ¼ qu � rvP ¼ rvQu ¼ Rv; which is used to encrypt kv

and n1 by v. After the decryption, u verifies n1 and con-

tinues the execution of the protocol if n1 is correct.

Otherwise, u exits the protocol immediately.

In addition to the challenge generation, v also sends its

public key Qv and the certificate Cv to u. The same veri-

fication and challenge are performed by u. Finally, u and

v agree on their pairwise key kuv ¼ ku � kv:

The protocol presented in Fig. 1 is a general purpose

scheme which provides security resilience even in an

extremely adverse environment. Considering the fact that

most pairwise key establishment happens in the network

initialization period and, many times, this period of time

can be considered active security attack free (e.g., there is

no compromise and Man-In-The-Middle attack), the fol-

lowing two optimizations can be applied to achieve better

Fig. 1 ECC-Cert: ECC-based pairwise key establishment scheme

between two neighboring sensors: u and v
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efficiency. First, since all sensor nodes are honest at that

time, the verification of public key is not required. Second,

the challenge is only required on one direction when two

neighboring sensors try to establish the key. As the result,

step (6), (7), (8) and (9) in Fig. 1 are not required in the

optimized scheme, and there is not necessary either to

verify the public key in step (2).

The optimized scheme requires only two ECC point

multiplications compared to three in the general scheme.

The further optimization is possible if the sensors have

additional storage space. The idea is to select a set of

random number {rv}, pre-compute the corresponding

points, {Yv = rvP}, and store them in the flash memory.

When v receives the request, it randomly pick one entry

(rv, Yv) and immediately sends Yv to u, and then computes

the challenge. In this way, the two ECC point multiplica-

tions, Rv = rvQu at v and Rv = quYv at u can be computed

simultaneously. As the result, the processing overhead of

pairwise key establishment reduces to only one ECC point

multiplication. After the pairwise key is established,

v erases the selected (rv, Yv) from the storage so that the

same random number/point will not be used again. Note

the optimized protocol is resilient to passive security

attacks. The traffic analysis (if the adversary monitors all

network activities) does not reveal any pairwise key secret.

From now on, we denote ‘‘ECC-Cert’’, ‘‘ECC-NoCert’’,

‘‘ECC-PreComp’’ as the general purpose scheme, the

optimized scheme and the optimized scheme with pre-

computation, respectively, throughout the rest of paper.

‘‘ECC-Cert’’ also can be directly applied for one-hop user

access authentication. In that case, the user, say Alice, has

to give her access list alA and certificate CA, where alA
composes of the user id and the corresponding privilege

mask. The contacted sensor builds Alice’s public key based

on alA and CA, and then perform the rest of authentication

protocol.

4.2 Cost analysis

The cost of the pairwise key establishment and local access

control is determined by the communication and the

computation overhead. The communication overhead can

be measured by the message complexity. ‘‘ECC-Cert’’

shows u has to send three elliptic curve points (Qu, Cu and

Yu) and one scalar value (nu). Given a 160-bit ECC cryp-

tosystem, each point has the size of 40 bytes, and each

scalar value has the size of 20 bytes. Therefore, u and

v have to transmit 140 byte data, and the message com-

plexity for u and v is 280 bytes. Comparatively, in ‘‘ECC-

NoCert’’ and ‘‘ECC-PreComp’’, neither sensor needs to

send the certificate, then the message complexity reduces

to 100 bytes.

In ECC, the point multiplication is much more expen-

sive than other operations, we approximately estimate the

computational cost by counting the number of point mul-

tiplications. As shown in Fig. 1, ‘‘ECC-Cert’’ requires

three point multiplications. Comparatively, ‘‘ECC-NoCert’’

and ‘‘ECC-PreComp’’ only require two and one point

multiplication, respectively. In the local access control,

with the optimization of pre-computation, the sensor has

the similar message overhead as in ‘‘ECC-Cert’’, but has

less computation overhead because the pre-computation

saves one point multiplication.

4.3 Security analysis

In the security analysis, we consider the following potential

threats that an adversary may employ to defeat the pro-

posed challenge-response pairwise key establishment and

the local access control protocols.

– Impersonation. Suppose an adversary forges an iden-

tity w and the corresponding public key Qw and

certificate Cw. Note any one can generate his public key

and the certificate by using system public key Q, but no

one can derive his private key qw without the system

secret x. It is computationally infeasible to compute his

private key qw without the system secret x. To get qw

from Qw is equivalent to solve the discrete logarithm

problem. Without qw, the adversary cannot correctly

respond the challenge so that the pairwise key request

or local query will be immediately rejected by a

legitimate sensor. For the same reason, the adversary

cannot impersonate the legitimate sensors and users

even if he can capture Qu, Cu, Qv, Cv in step (1) and (4)

in the pairwise key establishment protocol shown in

Fig. 1.

– Replay attack. The since the chained nonces are used

in the protocol in Fig. 1, any replayed message except

in step (1) will be dropped immediately. The adversary

cannot gain any advantage by replaying the message in

step (1) because there is no way to respond the

challenge without the corresponding private key.

– Interleaving. In the interleaving attack, the adversary

selectively combines the messages information from

previous or parallel sessions. Due to the challenge-

response nature of the protocol, the adversary cannot

impersonate or deceive the sensor in the interleaving

attack. The reason is that the sensor ID or the user

access list is bind with the certificate, so the private key

is required to correctly respond the two-way challenge.

In addition, the chained nonces allow the legitimate

sensors immediately drop the messages from other

sessions.
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– Reflection. A reflection attack is that an adversary

sends the identical message back to the message

originator for the impersonation purpose. As we

explained above, the adversary cannot correctly

respond the challenge generated by a legitimate sensor,

the attack attempt will fail. Further, a sensor can easily

drop a reflected message once the wrong nonces are

detected.

– Forced delay. The adversary may also block the

message between two legitimate parties and resend it

in a later time, which is so called the forced delay attack.

Obviously, our challenge-response protocol is immured

to this attack. The only effect of this attack is to force the

two parties to drop the protocol session, assuming the

time-out mechanism has been employed in both parties.

– Chosen-text attack. In the chosen-text attack, an

adversary tries the strategically arranged challenges

and tries to extract the other parties private key. As

indicated in our protocol, the sensor always uses a

emphemeral random number, ru and rv, it is impractical

for the adversary to compute the private key of a

legitimate sensor.

5 Remote access control

Theoretically, a simple extension of the certificate-based

local authentication scheme can be used in the remote

query. In that case, the challenge-response messages

between the user and the remote sensor are routed by a

number of intermediate sensors on the routing path. This

multi-hop communication pattern, however, poses new

security and efficiency issues: (1) potential DoS attacks; (2)

high communication overhead for the user authentication

and end-to-end security. The two issues are not found in the

local query and can not be addressed by the certificate-

based scheme due to the following two reasons.

First, because the certificate-based access control

achieves end-to-end security, any intermediate sensor has

no knowledge about the challenge-response message and

cannot detect the DoS attack had the adversary injected a

large number of fake queries.

Second, the message overhead becomes critical in the

multi-hop communication to reduce the energy consump-

tion of intermediate sensors. The certificate-based scheme

requires public key exchanges between two parities. In

practice, the public key size (40 bytes) is larger than the

typical message size in sensor networks (29 bytes). This

overhead may force the sensor to use multiple data packets

to transmit the query that otherwise would be done by just

one packet. While the certificate-based scheme achieves

the user authentication and end-to-end security, it requires

two rounds of communications that carry the public keys

and incurs the large overhead.

Therefore, we develop a threshold endorsement scheme

(inspired by Shamir’s secret sharing [22]) to perform the

remote access control. The basic idea is that any user has to

be authenticated and endorsed by t local sensors before she

can send the remote query. Not only do the t local sensors

block any DoS attack attempt and transfer the trust (of the

authenticated user) to the remote sensor, given the

assumption that the adversary can not compromise t sen-

sors, their endorsements also naturally serve as the pairwise

key between the user and the remote sensor without any

public key transmission. The three components: DoS pre-

vention, user authentication, and message security are

integrated organically in the remote access control scheme.

Our scheme is presented as follows. Again, we have an

elliptic curve E over finite field GF(p) and a base point P with

the order of a prime q. CA maintains a secret polynomial:

f ðyÞ ¼ 1þ a1yþ � � � þ aty
t; ð2Þ

where ai 2 GFðqÞ for 1 B i B t. Note that this secret

polynomial is slightly different from the one in Shamir’s

secret sharing scheme in that the term a0 is equal to 1,

which implies one share of this polynomial, namely the

share (0, 1), is already known. As the result, only t shares

of this polynomial, instead of t ? 1 shares, are enough to

reconstruct the polynomial because the known share can

serve as the (t ? 1)th share. Therefore, to prevent the

secret polynomial from being revealed, the number of

malicious sensors must not be more than t - 1. In this

paper, we assume only up to t - 1 sensors can be

compromised.

Before the deployment, each sensor si (si denotes the

sensor ID) is pre-loaded with a secret share zi, where

zi = f(si). Any t ? 1 shares from t ? 1 sensors, without the

known share, can reconstruct the secret polynomial by

Lagrange interpolation:

f ðyÞ ¼
Xtþ1

i¼1

zi

Ytþ1

j¼1;j 6¼i

sj � y

sj � si
: ð3Þ

When y = 0, the t ? 1 secret shares satisfy:

Xtþ1

i¼1

zili ¼ 1; ð4Þ

where li is the Lagrange coefficient, and determined as

li ¼
Qtþ1

j¼1;j 6¼i
sj

sj�si
: It is true that any t shares, z1,…, zt, plus

the known (0,1) share, also satisfy the above equation with

different Lagrange coefficients. However, the known share

is not the interest of our remote access control scheme,

and we focus on the t ? 1 shares from the sensors in the

following discussion.
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Certification authority also defines a cryptographic hash

function H; mapping a number {0,1}* to a nonzero elliptic

curve point on E. The remote access control protocol is

given in Fig. 2. We denote s1; s2; . . .; st as the local sensors,

sr as the remote sensor. We assume that the ID of the

remote sensor for data access is known by some scheme

that is beyond the scope of this paper, e.g., resource dis-

covery protocols.

The user, Alice, first performs local access control

protocol with t local sensors, s1; . . .; st: After the successful

authentications, each local sensor si endorses Alice in the

following way. First, si calculates RA ¼ HðalAÞ: Note RA is

a point on the elliptic curve E. Then si generates its

endorsement: ziliRA, where the Lagrange coefficient li ¼
Qt

j¼1;j6¼i
sj

sj�si
� sr

sr�si
(here we use sr instead of st?1). In the

next step, si sends the endorsement to Alice through the

secure communication channel established in the local

access control as described in Sect. 4 With the t endorse-

ments collected, Alice calculates the elliptic point

VA, which is the summation of the t endorsements. Note

only Alice knows the value of VA. None of t local sensor

knows VA because each sensor only knows its own share of

VA. Now, VA becomes the shared secret between Alice and

the remote sensor sr. Alice encrypts her access list and

query by using h2(VA), and then sends the encrypted query

along with her access list and lr (lr ¼
Qt

j¼1
sj

sj�sr
; also

calculated by Alice) to the remote sensor sr. Upon the

receipt of the remote access request from Alice, sr first

calculates RA ¼ HðalAÞ and computes V0A = RA - zrlrRA.

According to (4), V0A should be equivalent to VA because:

Xt

i¼1

ziliRA þ zrlrRA ¼ ð
Xt

i¼1

zili þ zrlrÞ � RA ¼ RA: ð5Þ

Therefore, sr can successfully decrypt alA and query.

Finally, sr replies Alice with the query result, again

encrypted by h2(VA).

In summary, the main idea of remote access control is to

design a mechanism that allows a set of local sensors

(because we do not trust a single sensor) to transfer the

trust (if the user is authenticated) to the remote sensor, so

that the remote sensor does not need to perform the inter-

active user authentication employed in local authentication,

which requires several rounds of communications. This

endorsement scheme can be combined with existing

en-route filtering schemes, such as SEF [30] and IHA [36],

to further prevent the adversary from injecting the data

queries through a compromised sensor.

Our scheme can also be extended to work in a sparse

network, where t local sensors are difficult to find at one

time. In that case, the user moves around and finds t sensors

at different locations. All these t sensors perform the same

location authentication as described. To produce the

endorsement shares, t sensors need to communicate with

each other and exchange their ID list and agree on the

remote sensor sr. Note the communications cannot be ini-

tiated by sensor themselves since multi-hop communica-

tions have to be endorsed as we described previously. For

this reason, the user moves back and force, as a carrier, to

distribute the node IDs to each of t sensors. Once t sensors

share their IDs and agree on sr, the rest of scheme is the

same as described previously.

5.1 Cost analysis

To endorse the user, each local sensor only needs to per-

form one ECC point multiplication and one hash function

H:H is a special hash function that maps {0, 1}* onto the

elliptic curve E. According the study by Boneh et al. [2],

this special hash function can be efficiently achieved by

two steps: first we hash onto a certain subset F � f0; 1g�;
then we use a deterministic encoding function to map

F onto E. The message complexity for the threshold local

endorsement is small. Each sensor only needs to send an

elliptic curve point to the user, which has the message size

of 40-bytes (for the 160-bit ECC).

5.2 Security analysis

The proposed remote access control scheme is resilient to

any sensor compromising attack with no more than t - 1

compromised sensors due to the property of the threshold

cryptography. Each sensor si has its own unique secret zi.

Any t - 1 or less shares of secrets are not enough to

recover the secret polynomial [22], and cannot be utilized

to deduce the value of zr hold by the remote sensor.

As described in the protocol, the user knows each share

of endorsement: ziliRA, and even zrlrRA. Combining all

these shares only allows the user to establish shared secret
Fig. 2 ECC-based local threshold endorsement scheme to establish

remote pairwise key between the user and the remote sensor
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with the remote sensor. These shares can not be used to

generate the endorsement for any other access list. Suppose

the user has a forged access list al0A, and the corresponding

R0A ¼ Hðal0AÞ: To generate the endorsement shares ziR
0
A

(1 B i B t), the user has to know zi. However, it is com-

putationally infeasible to retrieve zi from ziliRA. Mean-

while, the knowledge of ziliRA cannot be used to derive

ziliR
0
A. The reason is that RA, R0A are random elliptic curve

points, it is computational infeasible to derive rA; r
0
A 2

GFðqÞ; so that RA = rAP and R0A = r0AP. As the result, it is

impractical to derive ziliR
0
A from ziliRA. For the same rea-

son, the user cannot reuse the acquired secret endorsement

to access a different remote sensor.

Since each endorsing sensor establishes a secure com-

munication channel with the user during the local authen-

tication, the adversary cannot capture any share of the

endorsement by eavesdropping. Therefore, only the user

and the remote sensor share the secret, which is to build the

secure communication channel for the remote access.

Finally, we specifically discuss the following potential

attacks for the impersonation attempt. Since the first part of

the protocol is the user local access control that is executed

between the user and the local endorsing sensors, our

analysis mainly focuses on the second part, which is

between the user and remote sensor.

– Impersonation. Since the user has to be authenticated

by a group of local sensors before he can access the

remote sensor, the impersonation attack is easily

defended by the local screening. When the user himself

is malicious, the impersonation can be in a different

form that the user forges his access list after he is

authenticated by the local sensors. However, as we

have explained above, the malicious user cannot

decrypt the reply from the remote sensor because he

does not possess the private key associated to his

forged access list.

– Replay attack. The remote query answer replied by

the remote sensor is encrypted by the secret key, the

adversary cannot capture any information through the

replay attack. The remote access control protocol, shown

in Fig. 2, can be easily modified by including a nonce to

allow the remote sensor to detect the reply attack.

– Interleaving. There is only one round communication

between the user and the remote sensor. The remote

sensor receives the query, and then encrypts the reply

by using the constructed pairwise key. Without the

pairwise key, which is jointly constructed by the local

endorsing sensors, the adversary cannot decrypt the

reply.

– Reflection. The reflection attack cannot be a threat

because the protocol between the user and the remote

sensor is not a challenge-response authentication.

The user cannot understand the remote access request

sent by himself, and neither can the remote sensor

understand the reply message.

– Forced delay. The adversary cannot gain anything

from the forced delay attack. As we explained, the

reply message from the remote sensor is encrypted.

– Chosen-text attack. Our protocol can be easily

improved to defeat the chosen-text attack by including

a random number, e.g., nonce, in the remote query

access request from the user and the reply message

from the remote sensor.

6 System implementation

We implement our ECC-based user access control on

MICAz motes [10], the most recent MICA family motes

from UC Berkeley. MICAz is powered by a ATmega128

microcontroller, which features an 8MHz, 8-bit RISC CPU,

128K bytes flash memory (ROM) and 4K RAM. The

MICAz runs TinyOS [24] version 1.1.15.

6.1 WM-ECC implementation

Because of the resource stringency on tiny sensor motes,

the implementation of the computationally expensive

public key primitive is a major challenge. We first study

the feasibility of two public key primitives: RSA and ECC.

We have implemented the 1,024-bit (key size) RSA and the

160-bit (key size) ECC security primitive (WM-ECC) on

MICAz motes. These two cryptosystems are comparable

because they offer the same security level [17]. Note that

ECC offers more security per bit than RSA, which is a very

attractive feature for wireless communications. We sum-

marize the performance comparison in Table 1. We find

RSA is much more expensive than ECC in terms of com-

putation time and memory overhead. RSA signature gen-

eration takes 21.5 s, more than 16 times slower than 1.35 s

of ECC signature. Even though, in a special case when the

public key size is only 17 bits (NIST suggested smallest

public exponent), the RSA public key operation can be

done in 0.79 s, the slower private key operation is

Table 1 The performance comparison between 1,024-bit RSA and

160-bit ECC on MICAz motes

Key size (bytes) Sign (s) Verify (s)

RSA 128 21.5 21.5 (0.79s)

WM-ECC 20 1.35 1.96

In a special case, when RSA public key is only 17 bits, the verification

can be finished in 0.79 s
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prohibitive in many applicaitons, including the remote

access control scheme we have proposed. Furthermore,

RSA key size is much larger than ECC. The RSA private

key size is 128 bytes, more than 6 times larger than ECC

private key size. Combining the above two factors, we

believe ECC is a better public key system for sensor

networks.

We choose a SECG recommended elliptic curve,

secp160r1, in our WM-ECC implementation. Due to the

resource constraint, the standard ECC implementation can

not be directly ported to MICAz motes. The extensive

optimizations have to be performed to allow the ECC

primitive to be fitted in the limited memory space, and to

achieve practical processing time for doing ECC exponen-

tiations. Therefore, we have implemented the customized

ECC primitive exclusively for MICAz motes. The imple-

mentation has been done in TinyOS environment with a

combination of NesC and assembly languages. We specifi-

cally target to improve on the performance of the most fre-

quently called modules of long integer multiplication, long

integer division, and modular reduction. Our implementa-

tion comprises of a number of techniques for optimization,

including hybrid multiplication [9] for faster multi-precision

multiplication, Great Division [23] for efficient modular

inversion, and modular reduction optimizing for Pseudo-

Mersenne numbers. To precisely manage the limited CPU

resources (registers), we have implemented these key

modules in AVR assembly language. Due to the space limit,

we omit the detail description of the above optimization and

refer the interested reader to [29] for the details. Our

experiments verify that the optimizations are very effective.

Figure 3 shows the performance of our ECC implementation

on MICAz by applying the optimizations consecutively.

After applying the hybrid multiplication, the multi-precision

multiplication, including squaring, speeds up for 7 times. As

the result, the overall running time reduces to more than

half. The adoption of Pseudo-Mersenne modular reduction

achieves more than 10 time speed-up for modular opera-

tions, and accordingly improves the overall performance

by further 60%. The mixed coordinates, which are used to

reduce the number of slower inversion operations, contrib-

utes 6% improvement. We further convert the bit-string of

the multiplicand to a Non-Adjacent Form to reduce the

number of ECC point addition. This effort also contributes

5% performance enhancement. In the sliding-window

technique, we pre-compute and store several repeatedly used

intermediate values to gain 10% performance improvement.

Finally, by using the Shamir’s trick that uses the similar pre-

computation technique as the sliding-window scheme, we

further reduce the running time by 30%.

6.2 User module and other components

Our user module is composed of two parts. We choose an

HP iPAQ pocket PC as the user computing module to

perform all backend computations. The HP iPAQ features a

522MHz ARM920T PXA270 processor, 64MB RAM and

128MB flash memory. The HP iPAQ is powered by

Microsoft Windows Mobile 5.0. Since the iPAQ wireless

communication module is not compatible with IEEE

802.15.4/ZigBee on MICAz, we use a MICAz sensor mote

to bridge the communication between the user and the

sensor motes. The MICAz mote is responsible for com-

munications with the sensor motes in the network. All the

data processing is performed at the iPAQ. The two parts

communicate through a USB cable.

We implement the same ECC primitive on the iPAQ.

Given the powerful processor and plenty of memory, the

ECC performance on iPAQ was expected to be much

faster. To our surprise, the initial test showed the ECC

point multiplication still costs 200 ms, only 6 times faster

than MICAz with a more than 60 times faster CPU. The

further investigation reveals that C compiler for the mobile

devices has poor optimization capability, so that the multi-

precision integer operation is not optimized. Therefore, we

again re-write the critical components in ARM assembly

language. The judicious decision improves the perfor-

mance from 200 ms down to 40 ms. We summarize the

ECC performance results on both platforms in Table 2.

For the hash function, we adopt SHA-1 160-bit imple-

mentation from a standard crypto library. For MAC

(Message Authentication Code) module, we adopt the RC5

block cipher from TinySec [11]. Both hash and MAC

modules are computationally efficient. It takes several

0 5 10 15 20

1

2

3

4

5

6

7

8 original

hybrid multiplication

special squaring

Pseudo−Mersenne modular reduction

mixed coordinates

Non−Adjacent Form

sliding window

Shamir trick

Processing Time (s)

Point multiplication

Signature

Verification

Fig. 3 Running time for WM-ECC operations (point multiplication,

ECC signature, and ECC verification) by applying various optimiza-

tion techniques
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mili-seconds to do a hash operation. The RC5 encryption

and decryption take less than 1 ms.

6.3 Other sensor platforms

Our ECC-based access control schemes are not only

practical for MICAz motes, but can be deployed on other

sensor platforms. We have successfully ported our whole

software suite to TelosB motes, the latest research oriented

motes developed by UC Berkeley. TelosB is powered by

MSP430 microcontroller. MSP430 incorporates an 8 MHz,

16-bit RISC CPU, 48 KB flash memory (ROM) and 10K

RAM. The RF transceiver on TelosB is IEEE 802.15.4/

ZigBee compliant, the same as on MICAz. Therefore,

TelosB and MICAz motes can be mixed together to form a

heterogeneous sensor network.

Since TelosB mote has a different hardware architec-

ture, all hardware dependent security primitives have to be

re-written for TelosB. We adopt the same optimization

techniques explained previously, and find ECC is also

practical for TelosB motes. The ECC performance on

TelosB is shown in Table 2. Overall, ECC operation on

TelosB is only SLIghtly slower than that on MICAz.

7 Analysis and evaluation

We evaluate our access control schemes using a combi-

nation of theoretical analysis and actual implementation on

a sensor platform. The symmetric key schemes compared

are: Random-key [7], PIKE [4], Blom [6], and Blundo [32].

Random-key, PIKE and Blom are used to compare the

performance of our public key solution when performing

pairwise key establishment. Note that of the different

symmetric schemes considered, only Blundo is explicitly

designed for access control. Thus, we only compare our

local access control solution with Blundo.

The metrics used to compare pairwise key establishment

are memory overhead, message complexity and security

resilience. Since all symmetric-key-based key establishing

schemes require key pre-distribution, the memory overhead

measures the amount of memory space required for each

sensor to achieve a certain degree of key connectivity with

its neighboring nodes. The more keys pre-distributed, the

higher key connectivity can be achieved. The message

complexity measures the amount of communications

required for a certain sensor node to establish pairwise keys

with its neighboring sensors. In security resilience against

the node compromise, we measure the fraction of the

compromised communication links as a result of sensor

compromise. The communication links here are the direct

communication links between any two neighboring sensors.

We implement Random-key scheme and Blundo user

access control scheme as the real world comparison. We

use the following four metrics: key establishing time,

memory overhead, message complexity and energy

consumption. The key establishing time measures the time

duration for a random sensor to establish secret pairwise

key with its neighbors. Similarly, the memory overhead

measures the exact amount of data space required (in the

real implementation) in the access control. The message

complexity then shows the amount of messages transmitted

during the key establishing procedure. The energy con-

sumption estimates the average communication energy

consumed during the key establishment.

Finally, we implement all components in the proposed

remote access control. By focusing on the processing

delay, we demonstrate the delay is small, which makes our

scheme practical in the real world.

7.1 Analytical results

7.1.1 Pairwise key

Random-key [7] can be considered as a base line pairwise

key establishment protocol. Each sensor is randomly pre-

distributed with a number of secret keys from a system key

pool. Any two neighboring sensors try to find a common

key to establish a pairwise key by exchanging the key

indices. Note, Random-Key is included in the evaluations

for completeness, even though it is not particularly well-

suited for the scenario of interest. Blom [6] is a variation of

Random-key scheme. Instead of pre-distributing random

keys, Blom pre-distributes secret vectors from the key

spaces (or matrices) maintained by the system. Any two

sensors having the vectors from a common key space can

establish the pairwise key. PIKE [4] (we only consider

PIKE-2D in this paper) is different from the above two

schemes in that each sensor, identified by a two-dimen-

sional ID, is pre-distributed at least one common secret key

with determined 2�
ffiffiffiffi
N
p

sensors (where N is the number of

sensors in the network), which have either the same row-ID

or column-ID. Any two sensors establish the pairwise key

through the sensor that has the same row-ID with one of the

two sensors and the same column-ID with the other.

Table 2 The comparison of ECC execution time on various platforms,

including MICAz, HP iPAQ and TelosB, for ECC point multiplication

(PM), signature generation (Sign), signature verification (Verify) time

PrivKey (bytes) PubKey (bytes) PM Sign Verify

MICAz 20 40 1.24 s 1.35 s 1.96 s

iPAQ 20 40 40 ms 48 ms 68 ms

TelosB 20 40 1.44 s 1.60 s 2.26 s
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We provide three variations of our ECC-based pairwise

key schemes: ECC-Cert, ECC-NoCert, and ECC-PreComp,

which were discussed in Sect. 4.

Our analysis is based on a randomly, uniformly

deployed sensor network with 10,000 nodes. On average,

each sensor has 20 neighbors. The above parameters are

selected according to [1] so that the sensor network can be

connected with a probability greater than 99%. The senor

node IDs have the size of 2 bytes. The random keys have

the size of 10 bytes. With additional 2 bytes for key indi-

ces, each pre-distributed random key requires 12 bytes for

memory space. We assume the key pool size is 10,000 for

both Random-key and PIKE. We choose 160-bit ECC as

our public key primitive. Accordingly, an ECC certificate

has 40 bytes, an ECC public key has 40 bytes, and an ECC

private key has 20 bytes.

The ability to establish a direct pairwise key (not

through the third party) between two neighboring sensors is

very important, since direct key sharing not only reduces

the communication overhead, more importantly, also

improves the security resilience. Figure 4a shows the

memory overhead required by the key establishing

schemes to achieve a direct key between two sensors with

different probability.

To increase the probability of establishing direct pair-

wise keys, Random-key scheme needs to pre-distribute

more keys in each sensor node. We can see from Fig. 4a,

the memory overhead is increasing linearly when the

required key connectivity increases from 0.1 to 0.9. This

trend becomes exponential when the connectivity is larger

than 0.9. To achieve 100% connectivity, each sensor has

to be pre-loaded with 300 keys, which requires 3.6KB

memory space. Considering MICAz only has 4KB data

space, the 300 keys almost use up all available memory and

leave almost no space for the application programs. Thus,

the Random-key scheme obviously is not practical to

achieve 100% direct key connectivity.

Compared with Random-key scheme, the memory

overhead of PIKE only depends on the network size. Given

10,000 sensor nodes, each sensor has to be pre-loaded with

2� ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10; 000
p

� 1Þ ¼ 198 keys. Therefore, the memory

overhead for PIKE is constantly 12 9 198 = 2,376 bytes.

Blom scheme with k = 29 and x = 50 (please refer [6] for

the details) also introduces high memory overhead as

shown in Fig. 4a, specially when the high key connectivity

rate is required.

Compared to symmetric key schemes, our ECC-based

schemes overall have less memory overhead, specially when

the key connectivity is high. In ECC-NoCert, each sensor

only needs to store its private key and public key pair, which

have the combined size of 60 bytes. In ECC-Cert, each

sensor has to store one more certificate, so the memory

overhead becomes 100 bytes, 40 bytes more than that of

ECC-NoCert. ECC-PreComp has more memory overhead

because each sensor needs to store the pre-computed random

numbers (20 bytes each) and corresponding elliptic curve

points (40 bytes each). Given average 20 neighbors, each

sensor at least stores 20 pre-computed values, which account

for 1,200 bytes more overhead. As the result, the memory

overhead for ECC-PreComp are 1,260 bytes. Note the

memory overhead of the public key base schemes do not

change for achieving different key connectivity.

When the sensors are captured and compromised, the

relative communication links are also compromised. These

compromised links include the direct communication links

connected to the compromised nodes and indirect com-

munication links due to the leakage of the system secret,

such as the subset of system key pool in Random-key

scheme. To simplify the analysis, we assume the the

compromised nodes are evenly and randomly scattered in

the network. Figure 4b plots the number of compromised

indirect communication links due to the node compromise.

Our ECC-based public key scheme is ideal under such

situation. There is no indirect link compromised due to the
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node compromise. In PIKE scheme, each sensor serves the

intermediary for other two sensors. Suppose a sensor with

ID (i, j) is compromised. As the result, all potential links

between any sensor on the ith row and any sensor on the jth

column will be compromised. Given
ffiffiffiffi
N
p

sensors on the ith

row and
ffiffiffiffi
N
p

sensors on the jth column, there are totally

N potential links. Considering the network connectivity is

20/N, on average 20 indirect links can be compromised for

each compromised sensor. In Random-key scheme, the

communication links, which are not directly connected to

the compromised nodes, may also be compromised because

the secret keys used in these indirect links might be revealed

to the adversary when the nodes are captured. Let the

number of captured nodes be x. Given system parameters:

total key pool number P and pre-distributed key number

k, the expected fraction of the compromised communica-

tion links is 1� ð1� k
PÞ

x
[6]. Figure 4b indicates that

Random-key scheme is more vulnerable to the node com-

promise attack. When 32 nodes are compromised, more

than 20,000 links can be compromised. PIKE scheme per-

forms much better, but the number of compromised indirect

links still grows linearly as the number of compromised

sensor increases. As we indicated above, our ECC-based

schemes are resistant to the node compromise. There is no

indirect link can be compromised due to the node capture.

We find Blom scheme is resistant to the node compro-

mise as no indirected link is compromised. As indicated in

[6], however, this feature does not hold when the number

of compromised nodes keeps growing. The security resil-

ience degrades exponentially when the fraction of the

compromised node reaches the certain threshold.

Careful readers may argue that the network parameter

selection have an impact on the results of the above

memory overhead and security resiliency analysis. For

example, the memory overhead of some symmetric-key

schemes, such as Random-key and Blom, are low when the

key connectivity is low. However, the random graph theory

[1] tells that, to have a securely connected sensor networks,

the key connectivity has to maintain a certain level. In our

example, given 10,000 sensors and 20 neighbors for each,

the key connectivity must be greater than 90% in order to

have a securely connected network with the probability of

99%. It is true that the requirement for the key connectivity

reduces to 50% if the average degree of each node

increases from 20 to 36. However, the sensor network in

the latter case is almost twice denser than the former one.

As the result, the hardware cost is nearly doubled because

16 more sensors are needed in each neighborhood area. We

have not found a good way to convert the hardware over-

head to the memory overhead and make the comparison

against our previous memory overhead analysis, but we

believe the hardware cost is an important performance

metric and cannot be ignored. In this paper, we use the

memory overhead as an example to present the extra cost

incurred in the symmetric key schemes.

In addition, it is shown in [20] that the selection of

10,000 keys for the key pool in Random-key for a sensor

network with 10,000 yields a weaker security resilience in

node compromise attacks than the scheme with an optimal

parameter. However, the optimal parameter selection pre-

sented in [20] does not fundamentally change the fact that

the scheme relying on the pseudo-random key distribution

has much less security resilience than that of ECC-based

schemes. As indicated in [20], given a 10,000-node WSN

with the optimal selection of the parameters, approximately

65 node compromises will lead as many as 25% of links

compromised. In ECC-based schemes, with 10,000 nodes

and average degree d, 65 compromised nodes only affect

approximately 65�d
10;000�d=2

¼ 1:3% of the links (which are the

direct links connected to those compromised nodes). In

comparison, the Random-key with optimal parameters is

still much more vulnerable in node compromise attacks.

Based on the above discussion, we believe our security

resilience analysis successfully reveals the security issue of

the Random-key scheme, even though we use an example

with a suboptimal parameter.

7.1.2 Local user access control

User access control requires the sensor nodes to authenticate

the user and verify the user’s access privilege. A symmetric-

key user access control based on Blundo’s scheme is pro-

posed by Zhang et al. [32]. The Blundo’s scheme is very

similar to Blom’s scheme as we explained previously. The

system maintains a symmetric bi-variate polynomial. Each

sensor or user is pre-loaded with a secret share of the poly-

nomial. Any sensor and the user can establish a pairwise key

by plugging other’s public information, such as sensor ID or

user access list, into the secret polynomial share. The access

control can be achieved by integrating the user access list to

the polynomial share, so that the user has to show the genuine

access list, otherwise the user can not establish the pairwise

key with the sensor and can not pass the authentication. The

drawback of this scheme is that it has very limited security

resilience against the user collusion attack. The reason is that

the system secret, polynomial shares, has to be given to the

user. Multiple malicious users may easily gather the infor-

mation, reconstruct the secret polynomial, and finally com-

promise the system security. Here we want to emphasize that

only public key scheme can fundamentally solve the security

hole of the user collusion attack.

We do not compare our ECC-based local user access

control to Blundo access control [32]. We instead perform

comparison experiment to study other advantages of our
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ECC-based local access control. We reserve this part to the

next subsection.

7.2 Experimental results

Here, we demonstrate the advantages of our proposed

public key schemes through real world experiments. For

the comparison purpose, we also implement Random-key

scheme and Blundo’s scheme based access control scheme

on real sensor motes.

7.2.1 Experiment test-bed and parameter setting

We implement the baseline symmetric key scheme,

Random-key, on the same test-bed for the comparison of

pairwise key establishment. We use 10 MICAz motes to

form a sensor neighborhood. Each sensor can directly

communicate with any of other nine neighbors. We select

the key pool size of 10,000. Each key, with the size of 10

bytes, is identified by a two-byte key index. We first gen-

erate 10,000 random keys at a laptop computer. Each mote

is randomly pre-distributed with 150 keys. In the experi-

ment, we have adopted the simple scheduling method to

avoid message collision, which emulates the optimal

communication environment for key establishing. We

randomly pick one out of ten motes to initiate the pairwise

key establishment with all its neighbors. Even with 150

keys pre-loaded, they are not enough for any mote to

establish direct pairwise key with all the neighbors.

Therefore, multiple rounds of key establishment have to be

performed. After the first round direct key establishment,

the initiating mote notifies the neighbors that have already

established direct pairwise keys with it and starts the sec-

ond round of key establishment. The key establishing

protocol is exactly the same in the second round except the

initiator has changed. Each of the neighbors that have

established the direct key is required to perform the indirect

key establishing in the second round. Two rounds of key

establishing still may not achieve 100% key connectivity

for the original initiator. More rounds of such operation

could be necessary. In our experiment, however, we limit it

to three rounds. That means any two neighboring motes at

most have two helpers for establishing indirect pairwise

key. This arrangement is supported by the fact indicated in

Random-key [7] that the number of pairwise key estab-

lished through more than 3 hops is negligible.

Finally, we implement the Blundo access control on our

test-bed. We first generate a random symmetric polyno-

mial. The coefficients have the size of 10 bytes. The

polynomial degree is adjustable for the target security

resilience against the node compromise. Each mote is pre-

distributed with a secret polynomial share, which is

generated by simply plugging in the mote ID. The amount

of memory space for storing the polynomial share is

determined by the polynomial degree. Similar as the access

control test-bed implemented by our ECC public scheme,

we use the HP iPAQ as the user module. Again, the iPAQ

is attached to a MICAz mote.

For all schemes conducted on our test-bed, we repeat the

tests for 20 times, and record the average values.

7.2.2 Pairwise key establishment

Figure 5a illustrates the processing time delay in pairwise

key establishing for achieving different degree of key con-

nection. We select two ECC-based schemes: ECC-PreComp

and ECC-NoCert for this experiment. It clearly shows that

ECC-PreComp is much faster than ECC-NoCert since the

former scheme only requires one ECC multiplication for

both neighboring sensors, while the latter one requires two.

In reality, ECC-PreComp is very practical because the pre-

computation only introduces a very limited memory over-

head compared to that in symmetric key schemes.

Compared to the PKC-based schemes, Random-key

scheme has lower processing overhead when the require-

ment of key connectivity is low. However, this advantage

does not hold if more than 80% key connection is required.

The reason is that the number of pre-distributed keys is not

enough for establishing pairwise keys with all its neigh-

bors. The key establishing time thus increases to infinity.

As shown in Fig. 5a, the time jumps to infinite large at key

connectivity of 0.8. We restrict the pre-distributed key

number due to the limited 4KB memory space in MICAz

motes. In our experiment, with 150 key pre-distributed, a

mote can only establish direct pairwise key with two out of

its nine neighbors. The other pairwise keys are established

through the second and the third rounds of key establishing

procedure.

Figure 5b further reveals that ECC-based pairwise key

scheme has much less message complexity than Random-

key scheme. To establish a pairwise key, two neighboring

motes only need to transmit 120 bytes for both ECC-No-

Cert and ECC-PreComp schemes. In Random-key scheme,

the broadcasting node has to send all key IDs in its key

ring. Given 150 keys and 2 bytes each for key index, the

broadcasting mote transmits 300 byte message. All listen-

ing neighbors also need to respond the key establishing

broadcast, by either replying the challenging message (if

there is shared key), or notifying there is no shared key.

This message overhead has to be paid in all three key

establishing rounds. In wireless sensor networks, high

message complexity increases the chance of message col-

lision and thus causes network congestion. The low mes-

sage complexity is a significant advantage for ECC-based

pairwise key establishing schemes.
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Finally, we compare the energy consumption, including

communication energy and computation energy, during the

pairwise key establishment. We estimate the communica-

tion energy consumption by multiplying the total amount of

communications by an average communication energy

consumption of 18l J/bit [3]. Since the symmetric-key

encryption and decryption are very efficient, we ignore the

computation overhead of Random-key scheme. Compara-

tively, it takes several seconds in the public-key-based

schemes, so the computation energy consumption cannot be

ignored. The ECC computation energy consumption E can

be calculated by E ¼ U � I � t;where U is the voltage, I is the

current and t is the time duration. According to the MICAz

data-sheet, U is 3.0V (two AA batteries), and I is 8mA (the

current draw in the active mode). We plot the results in

Fig. 6a. The dash-line is the communication energy cost of

Random-key scheme. The two solid lines are the combined

communication energy and computation energy consum-

mation of two ECC-based schemes. The figure clearly

identifies the key drawback of Random-key scheme.

The symmetric-key-based scheme consumes more than

twice amounts of communication energy than the

ECC-based scheme even though the public key scheme

consumes more energy in computation. The reason is that

message broadcast is required in Random-key scheme. As

the result, all neighboring sensors need to listen the

broadcasts all the time and consume the energy for

receiving the messages.

We argue that processing time is not a significant metric

for sensor network application as opposed to the memory

usage, message complexity, robustness to sensor compro-

mising. Pairwise key sharing is usually conducted in the

initialization phase of sensor network deployment as

papers on symmetric key pairwise key sharing argue.

Public key protocol for key sharing takes a few more

seconds to finish than symmetric key protocols, which is

tolerable for network initialization and also for online

pairwise key sharing, since it is done only once between

two sensors. From the experimental data, we clearly see

that our protocol performs better than symmetric key
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protocols in terms of memory usage, message complexity

(and thus equivalently energy consumption and system

lifetime), and robustness to network compromising.

7.2.3 Local access control

We first measure the authentication delay in the local access

control. Since the parameter selection in the Blundo’s

scheme based local access control depends on the security

resilience against the node compromise. We test both

schemes under various security resilience requirements.

The user authentication delay is shown in Fig. 6b. When the

security resilience is low, up to 5.5% of sensor nodes

allowed to be compromised, the Blundo access control is

more efficient than our ECC-based scheme. The reason is

that the polynomial operations are much faster than ECC

exponentiation. However, the processing overhead of the

Blundo based scheme increases as the requirement of

security resilient increases. When the requirement of

security resilience is more than 5.5%, the processing over-

head of the symmetric-key-based scheme becomes slower

than our PKC-based scheme. The reason is that the pro-

cessing overhead of our ECC-based scheme does not

change, it always provides the security equivalent to the

discrete logarithm problem.

Note, the security concern of user collusion attack has

not been revealed yet by this experiment. This security

issue has to be considered in real world deployment.

Therefore, either higher degree random polynomial or

multiple polynomial have to be selected to improve the

security. As a result, the processing overhead of the Blundo

based access control will be higher. On the contrary, the

ECC-based access control scheme does not suffer from

user collusion attack, so our scheme can be directly applied

to the real world deployment.

Figure 7a shows the comparison of data size of two

local access control schemes in the real implementation. It

clearly shows that the memory overhead scales linearly in

the Blundo based scheme for satisfying different security

resilience. The degree of the random polynomial is larger

for higher security requirements. As a result, the sensors

need more space to store the corresponding coefficients.

The data size of the ECC-based scheme, as can be easily

predicted, does not change at all.

When Figs. 6b and 7a show that the Blundo access

control has poor security scalability in processing time and

memory overhead, Fig. 7b displays that it also has poor

network scalability in message complexity. Since the

Blundo access control scheme uses ‘‘Cell Merging’’ and

‘‘Block Compression’’[32] to reduce the number of poly-

nomial possessed by the user. The user has to traverse a

Merkle-hash tree. The traversal path length is determined

by the tree size, which is in turn determined by the number

of location blocks, or the network size. Again, our ECC-

based user access control has the advantage of excellent

network scalability; the message complexity is independent

to the network size, fixed at 100 bytes. The figure clearly

shows that the Blundo based scheme has more complexity

than our public key scheme when the network size is just

over 100 blocks. This fact proves our scheme is more

favorable for large network deployment.

7.3 Remote access control

In this subsection, we evaluate our remote access control

scheme. We first provide the micro-benchmark for the local

authenticate and threshold endorsement generation. Then,

we provide the overall estimation of the remote access

performance. In the experiments, we mainly focus on the

user perceived remote access processing delay. Our first
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hand experimental results suggest the PKC-based remote

access control scheme is very practical.

7.3.1 Local endorsement

The local endorsement procedure can be further divided into

user local authentication and endorsement generation. We

have already demonstrated the performance of user local

authentication in the previous section. To be authenticated

by multiple local sensors, a simple and effective optimiza-

tion can be applied to allow the user to be authenticated in

parallel rather than one-by-one. The user first sends its cer-

tificate to all the endorsing sensors, so that the endorsing

sensor can verify the certificate and generate the challenges

simultaneously. Then the user collects all the challenges

from each member of endorsing group and responds them

one-by-one. This optimization is valid for user authentica-

tion because the user device is much more powerful than

sensors. As we showed previously, ECC multiplication on

iPAQ is more than 30 times faster than MICAz mote.

Therefore, the ECC operation overhead on user device is

negligible compared to that of sensors. This also explains

why such optimization does not work in pairwise key

establishment between one sensor and its neighbors.

Figure 8a displays time consumption when the user is

authenticated by multiple endorsing sensors. For the

comparison purpose, we also show the authentication delay

without the optimization. Obviously, the optimized scheme

is significantly more efficient. Before optimization, it takes

more than 45 s for the user to finish authentication with 16

endorsing sensors. This delay dramatically reduces to 5s

after the optimization.

After finishing the user authentication, the endorsing

sensors perform threshold endorsement to establish pair-

wise key between the user and the remote sensor. We

continue the above authentication experiment. Each

endorsing sensor immediately computes its endorsement

share and then sends to the user sequentially. Figure 8b

shows the user waiting time to receive all the endorsement

shares. With the number of endorsing sensors changing

from 4 to 32, the time duration linearly grows from 4.5 to

8.9 s. The measurement includes the user local authenti-

cation time (local pairwise key establishing time). The

performance is consistent with that displayed in Fig. 8a.

The threshold endorsement requires each sensor to perform

one more ECC point multiplication at the cost around 1.3s

as showed previously.

Upon the receipt of the remote access query, the remote

sensor has to verify the authenticity of the remote query by

decrypting the message using its own secret share as presented

in Sect. 5 The computational complexity of this operation is

independent to the number of local endorsing sensors. The

only expensive operation at the remote sensor is one ECC

point multiplication. It takes only 1.4 s for the remote sensor

to calculate its secret share and verify the query.

7.3.2 Complete remote access control

Finally, we are eager to investigate the overall performance

of the remote access control, including the threshold sig-

nature generation, message propagation, and remote sensor

verification. We assume the local endorsing sensors have

already established pairwise key with each others. To

simplify the experiment, the user directly sends the query to

the remote sensor. Then we add the estimated hop-by-hop

forwarding delay to estimate the performance for various

hop distances. The estimated forwarding delay is the com-

munication delay in sensor RF transceiver. Our estimation

fixes the amount of communication delay to 17.5 ms.1

Figure 9a shows the estimated overall user remote query

response time, given the size of local endorsing group with

4, 8 and 16, respectively. We find the overall remote query

delay is short. When the remote sensor is located at 20 hops

away, the user query response time is 6.8 s. When the

larger size of the local endorsing sensor group is required,

the additional overhead increases moderately.

7.3.3 Porting to other sensor platforms

Finally, we demonstrate that our ECC-based user access

control suite can also be efficiently deployed on a different

sensor platform, TelosB mote. Figure 9b illustrates the

performance comparison between the two platforms for

remote access control with the setup of 8 local endorsing

sensors. The overall access control performance on the two

platforms is very close, although the performance on

TelosB is slightly worse because ECC on TelosB is slightly

slower. In practice, MICAz and TelosB can be deployed

together to form a heterogeneous sensor network for user

access control purpose because they share the same RF

transceiver.

8 Conclusion

This paper proposes a PKC-based access control for sensor

networks, which consists of pairwise key establishment, local

access control, and remote access control The main idea is to

certify the user’s access list by a group of local sensors in his

vicinity, and pass the local endorsement to the remote sensor

if local authentication is passed. ECC and threshold cryptog-

raphy have been used extensively in the scheme. We have

performed a comparison test by implementing both

1 Based on our experimental result of forwarding a 60 byte payload

in MICAz motes.
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symmetric-key and public-key primitives on popular sensor

motes. Our experiment results suggest the PKC-based proto-

col is more advantageous than the symmetric key in terms of

the memory usage, message complexity, and security resil-

ience. To the best of our knowledge, this is the first compre-

hensive experimental comparison between symmetric-key

and public-key scheme in sensor networks.
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