
A MACHINE LEARNING APPROACH FOR IDENTIFYING THE PTEN NON-CODING CERNA NETWORK

SWAMI IYERα, ROBERT MORAYβ , PRAJNA KULKARNIα, RAHUL KULKARNIα AND KOUROSH ZARRINGHALAMβ

DEPARTMENT OF PHYSICSα AND DEPARTMENT OF MATHEMATICSβ

UNIVERSITY OF MASSACHUSETTS AT BOSTON

INTRODUCTION

PTEN is one of the most commonly altered
tumor-suppressor genes in human cancers. It has
been shown that even a subtle decrease in PTEN
levels can significantly increase tumor suscepti-
bility, whereas elevation of PTEN levels can in-
duce a tumor-suppressive metabolic state. Recent
work has further demonstrated that microRNA
(miRNA)-based regulation of PTEN can be mod-
ulated by the expression of competing endoge-
nous RNA (ceRNA) targets. Several protein-
coding RNAs that function as PTEN-regulating
ceRNAs have now been experimentally validated
[1]. However, the role of non-coding ceRNAs
of PTEN has not been explored so far. In
this work we present a machine learning ap-
proach for a large-scale identification of the non-
coding ceRNA network of PTEN. We train a bi-
nary classifier on biologically relevant features
extracted from the predicted target sites of PTEN-
associated miRNAs.

METHODS

We used a logistic regression model—a super-
vised learning algorithm—to distinguish PTEN-
regulating ceRNAs from ones that are not. The
training data for the binary classifier comprised of
experimentally validated PTEN-regulating ceR-
NAs (see Table 1) as positive examples, and
their random shuffles as negative examples. The
3’UTR sequences of the ceRNAs were shuffled us-
ing three different schemes, yielding three differ-
ent training datasets: Γae in which the ceRNA
sequences where shuffled 100 times using the
Altschul-Erickson dinucleotide shuffle algorithm
[2]; Γsemi-random in which the ceRNA sequences
were randomly shuffled 100 times; and Γrandom
in which the sequences were random, but having
the same length as the ceRNA sequences.

PTEN
ceRNAs

ABHD13, CCDC6, CNOT6L2,
CTBP22, DCLK11, DKK1,
HIAT11, HIF1A2, KLF63,
LRCH11, NRAS, RB11, SER-
INC12, TAF51, TNKS2, VAPA2

PTEN
miRNAs

hsa-mir-17, hsa-mir-20a, hsa-
mir-93, hsa-mir-106a, hsa-mir-
106b, hsa-mir-20b, hsa-mir-519a,
hsa-mir-519d, hsa-mir-18a, hsa-
mir-216a, hsa-mir-217, hsa-mir-
21, hsa-mir-141, hsa-mir-221,
hsa-mir-222, hsa-mir-302a, hsa-
mir-19a

Table 1: Experimentally validated PTEN-regulating
ceRNAs and PTEN-associated miRNAs [1].

The features for the model were the number of
target sites of PTEN-associated miRNAs (see Ta-
ble 1) on the candidate ceRNA and the associated
score, both computed using miRmap [3].

RESULTS

Figures 1 (a)-(c) show the positive (blue) and negative (red) examples in the three training datasets, Γae
(a), Γsemi-random (b), and Γrandom (c). The x and y axes respectively denote the number of PTEN-associated
miRNA targets on the candidate ceRNA and the corresponding miRmap score. The figures also indicate
the decision boundary, i.e., the line separating the positive examples from the negative ones, computed
by the logistic regression model.
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Figure 1: The three training datasets, Γae (a), Γsemi-random (b), and Γrandom (c), along with the decision boundaries
computed using a logistic regression model.

The in-sample accuracy of our model, i.e., accuracy within the training dataset, was measured using
F-score, which is calculated as

F-score = 2
precision · recall

precision + recall
,

where

precision =
number of true positives

number of outcomes tested positive
and recall =

number of true positives
number of positives

.

The out-of-sample accuracy, i.e, accuracy outside the training dataset, was calculated using leave-one-
out-cross-validation (LOOC) as the fraction of samples that were correctly classified by the model. The
F-score and LOOC accuracy values are shown in Table 2.

Training Dataset F-score LOOC Accuracy (%)
Γae 0.62 65.62

Γsemi-random 0.65 54.84
Γrandom 0.67 64.52

Table 2: The F-score and LOOC accuracy values for the three training datasets.

CONCLUSIONS AND FUTURE RESEARCH

The supervised learning approach that we have
proposed for identifying the PTEN non-coding
ceRNA network suggests that the number of tar-
get sites of PTEN-associated miRNAs on the can-
didate ceRNA, along with the score that mea-
sures the quality of the target-site binding, are
reasonable predictors of whether the candidate is
a ceRNA of PTEN or not. The relatively low ac-
curacy of our method is due to the small size of
the training dataset and due to the fact that the
negative examples are synthesized. We hope to
remedy this issue in the future by considering
more positive examples of experimentally vali-
dated ceRNAs of PTEN and using known non-
ceRNAs as negative examples. This in turn will
allow us investigate other predictors, such as the
expression levels of the candidate ceRNAs in nor-
mal and tumor cells. The model, once trained on a
more comprehensive training dataset, can be run
on the entire genome to identify potential coding
and non-coding ceRNAs of PTEN, which can then
be experimentally validated. We would also like
to explore other supervised learning algorithms,
such as support vector machines.
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