
Multisets and Clustering XML Documents

Swami Iyer and Dan A. Simovici

Department of Computer Science,

University of Massachusetts at Boston,

Boston, Massachusetts 02125, USA,

{swamir,dsim}@cs.umb.edu

Abstract

We propose a novel and efficient solution to the prob-
lem of clustering XML documents based on their
structure. We use operations on multisets of paths
of document trees to define certain metrics on multi-
sets. These metrics are used for clustering real and
synthesized XML documents to produce high-quality
clusterings.

1 Introduction

In the recent years, the Extended Markup Language
(XML), due to its simple and flexible text format,
has been playing an increasingly vital role in the ex-
change of a wide variety of data on the web and else-
where. However, with this proliferation of disparate
XML sources, there has also been a growing need
for the organization of the documents produced by
these sources according to their structural traits —
a process referred to as clustering in the data min-
ing literature. Clustering methods use the distances
that estimate the similarity between document struc-
tures in terms of the hierarchical relationships of their
nodes. Most of the XML documents found on the
web, especially when they have been created from
legacy HTML, do not have an associated Document
Type Descriptor (DTD). Hence the XML document
classifier has to rely on the structure of the instance
document alone.

Clustering XML documents is useful for several
reasons. Once a given set of XML documents has

been classified into groups containing structurally re-
lated documents, a DTD inference engine can assign
a DTD to each group individually rather than as-
signing one to the entire set of documents. Formu-
lation and optimization of queries on homogeneous
XML data repositories is much easier and efficient
than on repositories with structurally unrelated doc-
uments. Clustering XML documents also helps solv-
ing the problem of recognizing different data sources
that provide the same kind of information.

Various techniques have been proposed for cluster-
ing XML documents based on their structure. In [6],
the authors view XML documents as trees, and re-
cursively compute the overall distance between two
XML trees from the root nodes to leaf nodes. They
model the problem of computing the minimum dis-
tance between two sets of elements as the worker-to-
task-assignment problem, and use the Munkres’ (aka
Hungarian) algorithm to compute the minimum cost.

In [4], the structure of an XML document is repre-
sented as a time series. By analyzing the coefficients
of the corresponding Fourier transform it is possible
to evaluate the degree of similarity between docu-
ments.

Another approach for evaluating structural dissim-
ilarities between two trees introduced in [1] consists of
finding a “minimum-cost edit script” that transforms
one data tree into another. A variant of the approach
of [1] is considered in [9], which introduces a met-
ric based on an “XML-aware” edit distance between
ordered labeled trees. In [2], the authors propose
algorithms that accomplish clustering by comparing

cluster representatives, which are XML documents
subsuming the most typical structural specifics of a
set of XML documents.

Algorithms that calculate the tree edit distances
between XML documents by considering the struc-
tural summaries of the documents instead of the ac-
tual documents thus minimizing the processing re-
quirements, are discussed in [3].

In this paper, we propose a novel and efficient ap-
proach to the problem of clustering XML documents.
We model an XML document as a labeled rooted tree
and represent the rooted labeled paths — a sequence
of nodes of the tree starting with the root of the tree
and ending with a leaf node — of the tree as a mul-
tiset, which is a function mapping each path to its
multiplicity, i.e., the number of occurrences of the
path within the tree. We extend the notion of sym-
metric difference of sets to that of multisets, and we
define metrics on multisets based on their symmet-
ric difference. Thus, given a set of XML documents,
we can compute their pairwise distance measures by
first building a multiset representation for each of the
document, and by computing the distance measures
between the multisets using the distance metrics we
have introduced. Once we have the distance ma-
trix for the set of documents, we can use one of the
standard hierarchical clustering algorithms to cluster
the documents. Our approach is efficient; the time
taken to build the multiset representation for a doc-
ument is O(k|V |), where k is the maximum level of
nesting in the document, and |V | is the number of
elements in the document; the time taken to com-
pute the distance measure between two XML doc-
uments with multiset representations M and P is
O(size(M) + size(P)), where size(Q) is the number
of unique element names in the document with mul-
tiset representation Q. Our solution works not only
with XML documents that belong to strictly different
— differing at the root level onwards — classes, but
also with documents that differ only at levels that are
farther away from the root.

The rest of this paper is organized as follows. Sec-
tion 2 introduces the notion of a multiset, defines var-
ious set-theoretic operations on multisets, and based
on these operations, defines a set of metrics on mul-
tisets. Section 3 describes how the paths of a labeled

rooted tree can be represented as a multiset. Section
4 defines measures of dissimilarity between labeled
rooted trees given their multiset representations. Sec-
tion 5 provides the algorithms for building a multiset
for a labeled rooted tree, and for computing the dis-
tance measures between any two such trees. Section
6 presents experimental results from running one of
the popular hierarchical clustering algorithms on real
and synthesized data using the distance measures we
have introduced, and, finally, Section 7 concludes our
work.

2 Multisets

Multisets are generalizations of sets that capture the
multiplicity of elements. A valuable reference for
multisets and their multi-faceted applications is [12].

Definition 2.1 A multiset on a set X is a function
M : X −→ N. The number M(x) is the multiplicity
of x in M . If M(x) > 0 we say that x is an element
of M .

The set of multisets on a set X is denoted by
M(X). The empty multiset on X is the multiset
∅∅∅X defined by ∅∅∅X(x) = 0 for every x ∈ X .

The support set of the multiset M is the set

sset(M) = {x ∈ X |M(x) > 0}.

If the set sset(M) is finite, then we say that the mul-
tiset M is finite. The cardinality of the set sset(M)
is the size of the multiset M , denoted by size(M).

We will denote a finite multiset M onX as a formal
sum

M = m1x1 + · · · +mkxk,

where x1, . . . , xk are the distinct members of the set
sset(M) and M(xi) = mi.

The union, intersection and symmetric difference
of two multisets are defined such that they gener-
alize the usual set-theoretic operations. Let M,P

be two multisets on a set X . The union of M and
P is the multiset M ∪ P such that (M ∪ P)(x) =
max{M(x), P (x)}; the intersection of M and P

is the multiset M ∩ P given by (M ∩ P)(x) =
min{M(x), P (x)} for x ∈ X .

2

We define two extensions of the symmetric differ-
ence.

Definition 2.2 The weak symmetric difference of
the multisets M and P on the set X is the multiset
M ⊕P on X defined by (M ⊕P)(x) = |M(x)−P (x)|
for every x ∈ X.

Note that unlike the usual symmetric difference of
sets, this is not an associative operation because, in
general ||a−b|−c| 6= |a−|b−c|| (e.g., ||7−5|−3| = 1,
while |7 − |5 − 3|| = 5). We have

sset(M) ⊕ sset(P) ⊆ sset(M ⊕ P)

for every multiset M,P . This inclusion may be strict
if M and P have at least one common element with
distinct multiplicities.

The strong symmetric difference M⊞P of multisets
that we define next preserves more properties of set
difference. Let φ : N

2 −→ N be the function defined
by

φ(m, p) =

0 if m = p = 0

or m > 0 and p > 0

max{m, p} if exactly one of

m, p is positive,

for m, p ∈ N.

Definition 2.3 The strong symmetric difference of
the multisets M and P on the set X is the multiset
M⊞P on X defined by (M⊞P)(x) = φ (M(x), P (x))
for every x ∈ X.

Observe that φ(φ(m, p), q) > 0 if and only if
φ(m,φ(p, q)) > 0, as it can be easily verified by con-
sidering all possible cases of nullity of m, p and q.
Thus, sset((M ⊞ P) ⊞ Q) = sset(M ⊞ (P ⊞ Q)) for
every multiset M,P,Q, which extends the associative
property of set difference.

The distributivity of set intersection with respect
to symmetric difference of sets is preserved by the
strong symmetric difference of multisets, as shown
next.

Theorem 2.4 Let M,P,Q ∈ M(X) be three multi-
sets on a set X. We have

M ∩ (P ⊞Q) = (M ∩ P) ⊞ (M ∩Q)

Proof. Let m = M(x), p = P (x), and q = Q(x).
The statement follows by analyzing the eight cases,
that occur depending whether each of these number
is 0 or greater than 0.

In general, we have M ⊞ P ≤ M ⊕ P for every
multisets M,P .

Next, we use the weak and strong symmetric dif-
ference of two multisets M,P ∈ M(X) to define a
metric on M(X), where X is a finite set.

Theorem 2.5 Let X be a finite set. The mapping
δ⊕ : M(X)2 −→ R≥0 given by

δ⊕(M,P) =
∑

x∈X

(M ⊕ P)(x)

(M ∪ P)(x)

for M,P ∈ M(X) is a metric on M(X).

Proof. Let M,P be two finite multisets on a finite
set X . If |X | = n, we can define a metric on M(X)
using the Minkowski metric on R

n as

δk(M,P) =

(

∑

x∈X

|M(x) − P (x)|k

)
1
k

for M,P ∈ M(X) and k ≥ 1. In particular, for k = 1
we have the metric

δ1(M,P) =
∑

x∈X

|M(x) − P (x)| =
∑

x∈X

(M ⊕ P)(x).

It is easy to see that for any choice of a weighting
function w : X −→ R≥0 the following is a metric on
the the set of multisets:

δ⊕(M,P) =
∑

x∈X

w(x)|M(x) − P (x)|

=
∑

x∈X

w(x)(M ⊕ P)(x).

Thus,

δ⊕(M,P) =
∑

x∈X

(M ⊕ P)(x)

(M ∪ P)(x)
,

where w(x) = 1
(M∪P)(x) , is a metric.

3

Lemma 2.6 Let X be a set and let M,P be two mul-
tisets on X. Define ΨMP (x) as

ΨMP (x) =

{

0 if M(x) = P (x) = 0
(M⊞P)(x)
(M∪P)(x) otherwise,

for x ∈ X. We have ΨMP (x) ∈ {0, 1} for every
x ∈ X and

ΨMP (x) ≤ ΨMQ(x) + ΨQP (x)

for every M,Q,P ∈ M(X) and x ∈ X.

Proof. The fact that ΨMP (x) ∈ {0, 1} for every
x ∈ X is immediate.

Note that if M(x) = P (x) = 0 the inequality is
clearly satisfied. This is also the case if we have
both M(x) > 0 and P (x) > 0 because in this case
φ(M(x), P (x)) = 0.

Suppose, therefore that exactly one of the numbers
M(x) or P (x), say M(x), is nonnegative, so ΨMP =
1. We have two cases to consider:
Case 1: Q(x) > 0. In this case, ΨMQ(x) = 0 and

ΨQP (x) = 1, which means that the inequality of the
lemma is satisfied.
Case 2: Q(x) = 0. In this case, ΨMQ(x) = 1

and ΨQP (x) = 0, which means again that the same
inequality is satisfied.

Theorem 2.7 The mapping δ⊞ : M(X)2 −→ R≥0

given by

δ⊞(M,P) =
∑

x∈X

ΨMP (x)

for M,P ∈ M(X) is a semi-metric on M(X).

Proof. This is an immediate consequence of
Lemma 2.6

3 The Multiset of Paths of a

Labeled Rooted Tree

A tree is a connected acyclic graph T = (V,E); a
rooted tree is a pair (T , v0), where v0 is a vertex called
the root.

A labeled rooted tree is a 4-tuple (T , v0, l, L), where
(T , v0) is a rooted tree, l : V −→ L is a function, and

L is a set whose elements are referred to as labels ;
l(v) is the label of the vertex v.

The set of finite sequences of elements of a set E
is denoted by seq(E). A rooted labeled path in a
labeled rooted tree (T , v0, l, L) is a sequence of labels
l = (a0, a1, . . . , an) ∈ seq(L) such that there exists a
path (v0, v1, . . . , vn) in T and l(vi) = ai for 0 ≤ i ≤ n.
Clearly, for each vertex v of the rooted tree (T , v0)
there exists a unique path that starts with v0 and
ends with v and for any such vertex there is a rooted
labeled path that ends with l(v).

Unlike the usual practice in graph theory, we de-
fine the length of the rooted path l = (a0, a1, . . . , an)
simply as the length n+1 of the sequence and denote
it as ℓ(l).

For a multiset M = m1p1+ · · ·+mkpk of sequences
of elements of L and a sequence r we define the mul-
tiset rM as

rM = m1rp1 + · · · +mkrpk,

where rpi is the sequence obtained by concatenating
r and pi.

The multiset of rooted labeled paths of a labeled
rooted tree (T , v0, l, L), denoted by RLP(T , v0, l, L),
is a multiset of sequences of labels. This set can be
defined recursively as follows:

1. If T = ({v0}, ∅) and l(v0) = a, then
RLP(T , v0, l, L) = 1(a).

2. Suppose that the immediate descendants of v0 in
T are v1, . . . , vm, and the subtrees of T having
the roots in v1, . . . , vm are T1, . . . , Tm, respec-
tively. Then,

RLP(T , v0, l, L) = 1(a) +

m
∑

i=1

aRLP(Ti, vi, l, L).

Example 3.1 Consider the labeled rooted trees
shown in Figure 1. Their respective multisets of
rooted labeled paths are given by

4

s

s

s s ss s s

s

s

s

s

s

s

s ss ss s

s

s

s

s

s s

ss ss s

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

�
��

A
AA

R1 R2 R3

R4 R5 R6 R7 R8

a

a a a a a

a a

b

b b b b b

b b b bb

c c cc d e c d e c e d

Figure 1: Examples of Labeled Rooted Trees

Tree Multiset of Rooted Labeled Paths

R1 1(a)+ 1(a,b)
R2 1(a)+ 2(a,b)
R3 1(a)+ 3(a,b)
R4 1(a)+ 1(a,b)+2(a,b,c)
R5 1(a)+ 1(a,b)+1(a,b,c)+1(a,b,d)
R6 1(a)+ 1(a,b)+1(a,b,c)+1(a,b,e)
R7 1(a)+1(a,b)+1(a,b,c)+1(a,b,d)+1(a,b,e)
R8 1(a)+1(a,b)+1(a,b,c)+1(a,b,e)+1(a,b,d)

A characterization of multisets of paths of labeled
rooted trees is given next. Recall that a sequence u is
a prefix of a sequence v if v can be written as v = uw

for some sequence w. Further, u is a proper prefix of
v if u is a prefix of v and u 6= v.

Theorem 3.2 Let L be a set. A finite multiset of
sequences M over seq(L) is the multiset of paths of
a labeled rooted tree if and only if the following con-
ditions are satisfied:

(i) there exists a sequence (a) with M((a)) = 1 that
is a proper prefix of every sequence p such that
M(p) > 0;

(ii) for every prefix r of a sequence p such that
M(p) > 0 we have M(r) > 0.

Proof. Suppose that the conditions of the theorem
are satisfied. We must show the existence of a labeled
rooted tree R = (T , v0, l, L) such that RLP(R) = M .

The vertices of T will be indexed by sequences p ∈
seq(L) such that M(p) > 0 and the root of the tree

will be the sequence v(a). Note that the first condition
implies that the sequence (a) is the unique sequence
with this property.

Suppose that p,q are two distinct sequences in
seq(L) such that p is a prefix of q and M(q) > 0. If
p is a sequence of maximal length having these prop-
erties, then q = pa for some a ∈ L. Indeed, if this is
not the case, then there exists a sequence r such that
r is a prefix of q and p is a prefix of r and we have
both r 6= q and r 6= p. By the second condition of
the theorem we have M(r) > 0; since |r| > |p| this
contradicts the maximality of the length of p. We
will consider a pair (vp, vq) as an edge in T and all
edges of this graph will have this form. Note that this
argument implies that for every vertex vq there is a
unique path that begins with v(a) and ends with vq.
Thus, T is indeed a tree. The function l is given by
l(vq) = a, where a is the last symbol of the sequence
q. This completes the definition of R.

We need to verify now that RLP(R) = M . The
argument is by induction on the number n of vertices
of the underlying tree of R.

The basis step, n = 1, is immediate. Suppose
that the equality holds for trees with fewer than
n vertices and let T be the underlying tree of R.
Let T1, . . . , Tm be the immediate subtrees of R and
let R1, . . . ,Rm be the corresponding labeled rooted
trees, Ri = (Ti, v(ai), li, L). Let Ki be the multi-
set of labeled rooted paths of Ri. If we construct
the rooted labeled tree for Ki as we did above for
M , then RKi

coincides with Ri. Thus, by induc-
tive hypothesis, RLP(Ri) = RLP(RKi

) = Ki. Since
M = (a) +

∑m

i=1(a)Ki = (a) +
∑m

i=1(a)RLP(Ri), we
have M = RLP(R).

The necessity of the conditions can be easily shown
and we omit the argument.

4 Metric Space of Labeled

Rooted Trees

We introduce a dissimilarity measure between labeled
rooted trees having a set of labels L using the multi-
sets of rooted labeled paths and a metric defined on
the class of these multisets that uses a weight func-

5

tion.

Definition 4.1 Let R = {T , v0, l, L} and R′ =
{T ′, v′0, l

′, L} be two rooted labeled trees.
The weak dissimilarity between R and R′ is the

number

d⊕(R,R′) =
∑

k∈N

2−(k+1)|L|−k

·
∑ (RLP(R) ⊕ RLP(R′))(p)

(RLP(R) ∪ RLP(R′))(p)
,

and the strong dissimilarity between R and R′ is de-
fined by

d⊞(R,R′)

=
∑

k∈N

2−(k+1)|L|−k

·
∑

ΨRLP(R),RLP(R′)(p)

where p ∈ seq(L) and ℓ(p) = k.

It is clear that the weak and strong dissimilar-
ity measures are semi-metrics on the class of la-
beled rooted trees. In other words, d⋆(R,R) = 0,
d⋆(R,R′) = d⋆(R′,R), and d⋆(R,R′′) ≤ d⋆(R,R′)+
d⋆(R

′,R′′) for every R,R′,R′′, where ⋆ is the ⊕ or ⊞

operation. However, if d⋆(R,R′) = 0 then R,R′ can
differ relative to the order of descendants of a vertex.
Note that d⋆(R,R′) ∈ [0, 1].

Example 4.2 The weak and strong dissimilarity
measures between the labeled rooted trees R1, . . . ,R8

shown in Figure 1 are shown below.
d⊕ R1 R2 R3 R4 R5 R6 R7 R8

R1 0 0.12 0.17 0.12 0.12 0.12 0.12 0.12

R2 0.12 0 0.08 0.25 0.25 0.25 0.25 0.25

R3 0.17 0.08 0 0.29 0.29 0.29 0.29 0.29

R4 0.12 0.25 0.29 0 0.09 0.09 0.10 0.10

R5 0.12 0.25 0.29 0.09 0 0.08 0.04 0.04

R6 0.12 0.25 0.29 0.09 0.08 0 0.04 0.04

R7 0.12 0.25 0.29 0.10 0.04 0.04 0 0

R8 0.12 0.25 0.29 0.10 0.04 0.04 0 0

d
⊞

R1 R2 R3 R4 R5 R6 R7 R8

R1 0 0 0 0.12 0.12 0.12 0.12 0.12

R2 0 0 0 0.12 0.12 0.12 0.12 0.12

R3 0 0 0 0.12 0.12 0.12 0.12 0.12

R4 0.12 0.12 0.12 0 0.06 0.06 0.08 0.08

R5 0.12 0.12 0.12 0.06 0 0.08 0.04 0.04

R6 0.12 0.12 0.12 0.06 0.08 0 0.04 0.04

R7 0.12 0.12 0.12 0.08 0.04 0.04 0 0

R8 0.12 0.12 0.12 0.08 0.04 0.04 0 0

A well-formed XML document, disregarding the
IDREFS, can be represented as a labeled rooted tree,

with the document element forming the root of the
tree, and its sub-elements forming the other vertices.
Attributes of an element can be treated as being the
element’s children, and hence also as vertices of the
tree. Consider the following XML document:

<books>

<book year="1910">

<title>

Principia Mathematica

</title>

<author>

Alfred North Whitehead

</author>

<author>

Bertrand Russell

</author>

<publisher>

Cambridge University Press

</publisher>

</book>

</books>

The above XML document can be modeled as the
labeled rooted tree (T , v0, l, L), where (T , v0) is a
rooted tree, T = (V,E) is a connected acyclic graph
with the set of vertices V = {v0, v1, v2, v3, v4, v5, v6}
and the set of edges E = {(v0, v1), (v1, v2), (v1,
v3), (v1, v4), (v1, v5), (v1, v6)}, and l : V −→ L

is a function such that l(v0) = books, l(v1) =
book, l(v2) = year, l(v3) = title, l(v4) = l(v5) =
author and l(v6) = publisher. Note how we pay no
attention to the content of an XML document; we are
concerned here only with the document’s structure.

The multiset of rooted labeled paths for the labeled
rooted tree representing an XML document can be
constructed using the buildMultiset procedure
discussed in Section 5. The multiset for the above
mentioned document can be expressed as the formal
sum 1(books)+1(books, book)+1(books, book, year)+
1(books, book, title) + 2(books, book, author) +
1(books, book, publisher). Once we have con-
structed the multisets for any two XML docu-
ments, we can use the computeWeakDistance and
computeStrongDistance procedures, also discussed
in Section 5, to compute a measure of dissimilarity
between the documents.

6

5 Algorithms

We first present the algorithm for building the mul-
tiset for a labeled rooted tree. The algorithm does a
depth-first traversal of the tree in order to build the
multiset.

Algorithm 1: buildMultiset

input : Labeled rooted tree R = {T , v0, l, L}
output: The multiset for R
Multiset multiset

Stack nodeStack, sequenceStack

Sequence s

s.add(l(v0))
sequenceStack.push(s)
multiset.addSequence(s)
nodeStack.push(v0)
while nodeStack is not empty do

Node topNode⇐ nodeStack.peek()
Node unvisitedChild⇐ unvisited child of
topNode

if unvisitedChild is not null then
Sequence

topSequence⇐ sequenceStack.peek()
Sequence

newTopSequence⇐ topSequence.copy()
newTopSequence.add(l(unvisitedChild))
sequenceStack.push(newTopSequence)
multiset.addSequence(newTopSequence)
nodeStack.push(unvisitedChild)

else
sequenceStack.pop()
nodeStack.pop()

return multiset

The above algorithm runs in O(k|V |) time, where
k is the length of the longest rooted labeled path in
R, and |V | is the number of vertices in T .

The algorithms for computing the weak and
strong dissimilarity measures between two labeled
rooted trees given their multiset representations are
discussed next.

Algorithm 2: computeWeakDistance

input : Multisets M,P

output: The weak distance d⊕(M,P)
distance⇐ 0.0
Q⇐ sset(M) ∪ sset(P)
Map elementCount

foreach q ∈ Q do
count⇐ elementCount.get(ℓ(q))
if count is null then

elementCount.put(ℓ(q), 1)

else
elementCount.put(ℓ(q), count+ 1)

foreach q ∈ Q do
m⇐M.multiplicity(q)
p⇐ P.multiplicity(q)

d⇐ |m−p|
max{m,p}

distance⇐
distance+ d

elementCount.get(ℓ(q))×2(ℓ(q)+1)

return distance

Algorithm 3: computeStrongDistance

input : Multisets M,P

output: The strong distance d⊞(M,P)
distance⇐ 0.0
Q⇐ sset(M) ∪ sset(P)
Map elementCount

foreach q ∈ Q do
count⇐ elementCount.get(ℓ(q))
if count is null then

elementCount.put(ℓ(q), 1)

else
elementCount.put(ℓ(q), count+ 1)

foreach q ∈ Q do
m⇐M.multiplicity(q)
p⇐ P.multiplicity(q)
ψ ⇐ 1
if m = 0 and p = 0 or m > 0 and p > 0 then

ψ ⇐ 0

distance⇐
distance+ ψ

elementCount.get(ℓ(q))×2(ℓ(q)+1)

return distance

Both computeWeakDistance and

7

computeStrongDistance algorithms run in
O(size(M) + size(P)) time, where M and P are
multisets.

6 Experimental Results

We wrote the program MUDXML [7], an acronym
of Multiset Distance for XML, that implements the
algorithms discussed in Section 5. MUDXML pro-
cesses the XML documents contained in the directory
specified as input, computes their pairwise (weak and
strong) distance measures, and prints the distance
matrix to standard output. We used MUDXML to
cluster three data sets. The first, namely “Niagara”
[8], comprised of randomly picked XML documents
belonging to three distinct classes: department, as-
tronomy, and club. The second, namely “Sigmod”
[11], comprised of randomly picked XML documents
belonging to three distinct classes: index terms, pro-
ceedings, ordinary issue. The third, namely “Syn-
thesized”, comprised of XML documents generated
from three DTDs 1 by ToXGene [13]. The table be-
low summarizes the contents of the data sets used:

Dataset Class (# of Documents)

Niagara
Department (17)
Astronomy (16)
Club (12)

Sigmod
Index Terms (16)
Proceedings (16)
Ordinary Issue (16)

Synthesized
Book Catalog 1 (15)
Book Catalog 2 (15)
Book Catalog 3 (15)

For each of the above data sets, we computed the
distance matrix using our program. In order to clus-
ter the documents based these distance matrices, we
used the hclust function from the cluster package
of the statistical computing software “R” [10]. We
employed the “average” hierarchical clustering algo-
rithm. Figures 2, 3, 4, and 5 show the dendrogram

1The DTDs, representing catalogs of books, were very sim-
ilar, differing only at levels farther away from the root

Figure 2: Niagara Data Set Clusters (Weak Distance
Measure)

plots for the “Niagara” and “Synthesized” data sets
respectively, with the rectangular regions highlight-
ing the clusters:

We used the silhouette method [5] for evaluating
the quality of clusters produced. We again used “R”
for this purpose. The following table shows the av-
erage silhouette coefficients for the three data sets,
along with the value of k2:

2One of the parameters of the pam (Partitioning Around
Medoids) function in “R” that specifies the number of clusters
to look for. The value specified is the one that resulted the
maximum silhouette coefficient.

8

Figure 3: Niagara Data Set Clusters (Strong Distance
Measure)

Figure 4: Synthesized Data Set Clusters (Weak Dis-
tance Measure)

Figure 5: Synthesized Data Set Clusters (Strong Dis-
tance Measure)

Dataset Distance Average k

Sihouette

Niagara Weak 0.94 3
Niagara Strong 0.98 3
Sigmod Weak 0.97 3
Sigmod Strong 0.99 3
Synthesized Weak 0.51 3
Synthesized Strong 1.00 3

From the dendrogram plots and from the silhou-
ette coefficients for the data sets, we can infer that
for XML documents belonging to strictly different
classes (“Niagara” and “Sigmod” in our experiment),
both the weak and strong distance measures yield
“pure” clusters, i.e., the average silhouette coeffi-
cient ≈ 1. When the XML documents differ only
at levels farther away from the root, if all the rooted
labeled paths are equally represented in the docu-
ments, i.e., they have approximately equal multiplic-
ities, the weak distance measure would yield “pure”
clusters. With such documents, the strong distance
measure would yield extremely “pure” clusters as
long as the rooted labeled paths have non-zero mul-
tiplicities. This is the reason we see a low average

9

silhouette coefficient for the “Synthesized” data set
with the weak distance measure and a perfect silhou-
ette coefficient with the strong distance measure.

7 Conclusions

This work presented a novel approach to the problem
of clustering XML documents based on their struc-
ture. We modeled an XML document as a labeled
rooted tree and represented it as a multiset map-
ping the rooted labeled paths in the tree to the cor-
responding multiplicities. We defined distance mea-
sures on labeled rooted trees based on the symmetric
difference of their multisets. We presented algorithms
to build a multiset given a labeled rooted tree, and
to compute the weak and strong distance measures
given two multisets. We applied these algorithms to
both real and synthetic data sets. Clusterings that
are formed based on the distances introduced in this
paper separate well the documents that are struc-
turally different at various depths.

References

[1] S. Chawathe, A. Rajaraman, H. Garcia-Molina, and
J. Widom. Change detection in hierarchically struc-
tured information. In In Proceedings of the ACM
SIGMOD International Conference on Management
of Data, pages 493–504, 1996.

[2] G. Costa, G. Manco, R. Ortale, and A. Tagarelli.
A Tree-Based Approach to Clustering XML Docu-
ments by Structure. In Proceedings of the Conference
on Principles and Practice of Knowledge Discovery
in Databases (PKDD), 2004.

[3] T. Dalamagas, T. Cheng, K. Winkel, and T. Sel-
lis. Clustering XML Documents by Structure. In
Proceedings of the Hellenic Conference on Artificial
Intelligence (SETN), pages 112–121, 2004.

[4] S. Flesca, G. Manco, E. Masciari, L. Pontieri, and
A. Pugliese. Detecting Structural Similarities be-
tween XML Documents. In Proceedings of the In-
ternational Workshop on the Web and Databases
(WebDB), 2002.

[5] L. Kaufman and P. Rousseeuw. Finding Groups in
Data - An Introduction to Cluster Analysis. J. Wiley,
New York, 1990.

[6] J. Long, D. Schwartz, and S. Soecklin. An XML Dis-
tance Measure. In Proceedings of the International
Conference on Data Mining (DMIN), 2005.

[7] http://www.cs.umb.edu/˜swamir/programs/mudxm
l.zip.

[8] http://www.cs.wisc.edu/niagara/data.html.
[9] A. Nierman and H. Jagadish. Evaluating Structural

Similarity in XML Documents. In Proceedings of the
International Workshop on the Web and Databases
(WebDB), 2002.

[10] Available at: http://www.r-project.org/index.html.
[11] http://www.sigmod.org/record/xml/.
[12] A. Syropoulos. Mathematics of multisets. In Mul-

tiset Processing: Mathematical, Computer Science,
and Molecular Computing points of view, Lecture
Notes in Computer Science 2235, pages 347–358.
Springer-Verlag.

[13] http://www.cs.toronto.edu/tox/toxgene/.

10

