
Introduction to Programming in Python
Algorithms and Data Structures: Analysis of Algorithms



Outline

1 Performance

2 Time Complexity

3 Space Complexity



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds



Time Complexity

/ triplesum.py

from instream import InStream

import stdio

import sys

def main ():

inStream = InStream(sys.argv [1])

a = inStream.readAllInts ()

stdio.writeln(count(a))

def count(a):

n = len(a)

count = 0

for i in range(0, n):

for j in range(i + 1, n):

for k in range(j + 1, n):

if a[i] + a[j] + a[k] == 0:

count += 1

return count

if __name__ == ’__main__ ’:

main()



Time Complexity

/ triplesum.py

from instream import InStream

import stdio

import sys

def main ():

inStream = InStream(sys.argv [1])

a = inStream.readAllInts ()

stdio.writeln(count(a))

def count(a):

n = len(a)

count = 0

for i in range(0, n):

for j in range(i + 1, n):

for k in range(j + 1, n):

if a[i] + a[j] + a[k] == 0:

count += 1

return count

if __name__ == ’__main__ ’:

main()



Time Complexity

n f (n)

1K 0.28s

2K 1.8s

4K 14.06s

8K 111.83s

16K 892.19s

f (n) = 0.2273121n3 + 0.007625303n2 + 0.006868505n + 0.01817256

T (n) = n3



Time Complexity

n f (n)

1K 0.28s

2K 1.8s

4K 14.06s

8K 111.83s

16K 892.19s

f (n) = 0.2273121n3 + 0.007625303n2 + 0.006868505n + 0.01817256

T (n) = n3



Time Complexity

n f (n)

1K 0.28s

2K 1.8s

4K 14.06s

8K 111.83s

16K 892.19s

f (n) = 0.2273121n3 + 0.007625303n2 + 0.006868505n + 0.01817256

T (n) = n3



Time Complexity

n f (n)

1K 0.28s

2K 1.8s

4K 14.06s

8K 111.83s

16K 892.19s

f (n) = 0.2273121n3 + 0.007625303n2 + 0.006868505n + 0.01817256

T (n) = n3



Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!



Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!



Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!



Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!



Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!



Time Complexity

Running time classifications

Name T (n) Code Description Example

constant 1 statement increment the ith element in an array

logarithmic log n divide and discard binary search

linear n loop find the maximum

linearithmic n log n divide and conquer merge sort

quadratic n2 double loop check all ordered pairs

cubic n3 triple loop check all ordered triples

exponential 2n exhaustive search check all subsets



Time Complexity

Running time classifications

Name T (n) Code Description Example

constant 1 statement increment the ith element in an array

logarithmic log n divide and discard binary search

linear n loop find the maximum

linearithmic n log n divide and conquer merge sort

quadratic n2 double loop check all ordered pairs

cubic n3 triple loop check all ordered triples

exponential 2n exhaustive search check all subsets



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least


	Outline
	Performance
	Time Complexity
	Space Complexity

