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Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Performance

Algorithms are methods for solving computational problems

Data structures are schemes for arranging data, amenable to efficient processing by algorithms

The performance characteristics of a program is determined by

- its time complexity, ie, how long it takes; and

- its space complexity, ie, how much memory it needs

The execution time of a program of size n is a function f (n) determined from the cost of executing each statement, and
the frequency of execution of each statement

The running time T (n) of the program is an approximation of f (n) obtained by ignoring any lower-order terms and
constant coefficients

For example, if f (n) = 31n2 + 78n + 42, then T (n) = n2



Time Complexity

Program: triplesum.py

- Command-line input: filename (String)

- Standard output: the number of unordered triples (x , y , z) from the file such that x + y + z = 0

& ~/workspace/dsa/programs

$ cat ../ data/1Kints.txt

324110

-442472

...

745942

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/1Kints.txt

70

0.7 seconds

$ /usr/bin/time --format=’%e seconds ’ python3 triplesum.py ../ data/2Kints.txt

528

5.9 seconds
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Time Complexity

/ triplesum.py

from instream import InStream

import stdio

import sys

def main ():

inStream = InStream(sys.argv [1])

a = inStream.readAllInts ()

stdio.writeln(count(a))

def count(a):

n = len(a)

count = 0

for i in range(0, n):

for j in range(i + 1, n):

for k in range(j + 1, n):

if a[i] + a[j] + a[k] == 0:

count += 1

return count

if __name__ == ’__main__ ’:

main()
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Time Complexity

n f (n)

1K 0.28s

2K 1.8s

4K 14.06s

8K 111.83s

16K 892.19s

f (n) = 0.2273121n3 + 0.007625303n2 + 0.006868505n + 0.01817256

T (n) = n3
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Time Complexity

def count(a):

n = len(a)

count = 0 [A]
for i in range(0, n): [B]

for j in range(i + 1, n): [C ]
for k in range(j + 1, n): [D]

if a[i] + a[j] + a[k] == 0:

count += 1 [E ]
return count

Statement Block Time Frequency Total Time

[A] t4 1 t4

[B] t3 n t3n

[C ] t2
(n
2

)
1 = n2/2− n/2 t2(n2/2− n/2)

[D] t1
(n
3

)
= n3/6− n2/2 + n/3 t1(n3/6− n2/2 + n/3)

[E ] t0 x (depends on input) t0x

Grand total: f (n) = (t1/6)n3 + (t2/2− t1/2)n2 + (t1/3− t2/2 + t3)n + t4 + t0x

Running time: T (n) = n3

1
(
n
k

)
= n!

k!(n−k)!
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Time Complexity

Running time classifications

Name T (n) Code Description Example

constant 1 statement increment the ith element in an array

logarithmic log n divide and discard binary search

linear n loop find the maximum

linearithmic n log n divide and conquer merge sort

quadratic n2 double loop check all ordered pairs

cubic n3 triple loop check all ordered triples

exponential 2n exhaustive search check all subsets
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Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least



Space Complexity

The sizes of objects of built-in types differ from system to system, so the sizes of data types that we create also differ
accordingly

The function call sys.getsizeof(x) returns the number of bytes that a built-in object x consumes on a particular system

Sizes of built-in objects on a typical system

Object Size in Bytes

integer 24

float 24

boolean 24

string of n characters 40 + n

list of n integers 72 + 8n + 24n = 72 + 32n

m-by-n list of integers 72 + 8m +m(72 + 32n) = 72 + 80m + 32mn

user-defined hundreds of bytes, at least


	Outline
	Performance
	Time Complexity
	Space Complexity

