Introduction to Programming in Python
Assignment 5 (Atomic Nature of Matter) Discussion

Introduction

Goal: track the motion of particles undergoing Brownian motion, fit this data to Einstein's model, and estimate
Avogadro's constant

Problem 1 (Particle Representation)

Define a data type called Blob in blob.py to represent a particle (aka blob). The data type must support the following
API:

Blob() constructs an empty blob b
b.add(x, y) adds a pixel (x, y) to b
b.mass () returns the mass of b, ie, the number of pixels in it

b.distanceTo(c) returns the Euclidean distance between the center of mass of b and the center of mass of blob
c

str(b) returns a string representation of b

X ~/workspace/atomic_nature_of matter

$ python3 blob.py
1001 -100 -1

<ctrl-d>
a =1 (0.0000, 0.0000)
b = 4 (0.0000, 0.0000)

dist(a, b) = 0.0

Problem 1 (Particle Representation)

Instance variables:
- x-coordinate of center of mass, _x (float)
- y-coordinate of center of mass, _y (float)

- Number of pixels, _pixels (int)

Blob()

- Initialize the instance variables appropriately

b.add(x, y)
- Use the idea of running average! to update the center of mass of blob b

- Increment the number of pixels in blob b by 1

b.mass ()

- Return the number of pixels in the blob b

b.distanceTo(c)
- Return the Euclidean distance between the center of mass of blob b and the center of mass of blob ¢

[. . _ . . Xp—1-(n=1)+xp
If X,_1 is the average value of n — 1 points x1, x2, . . ., X1, then the average value X, of n points x1, X2, ..., Xp—_1,Xn is —_—

Problem 2 (Particle Identification)

Define a data type called BlobFinder in blob_finder.py that supports the following API. Use depth-first search to
efficiently identify the blobs.

BlobFinder(pic, tau) constructs a blob finder bf to find blobs in the picture pic using a luminance threshold
tau

bf . getBeads (pixels) returns a list of all blobs with mass > pixels, ie, a list of beads

Problem 2 (Particle Identification)

X ~/workspace/atomic_nature_of matter

$ python3 blob_finder.py 25 180.0 data/run_1/frame00001. jpg
13 Beads:

29 (214.7241, 82.8276)

36 (223.6111, 116.6667)

42 (260.2381, 234.8571)

35 (266.0286, 315.7143)

31 (286.5806, 355.4516)

37 (299.0541, 399.1351)

35 (310.5143, 214.6000)

15 Blobs:

29 (214.7241, 82.8276)
36 (223.6111, 116.6667)
1 (254.0000, 223.0000)
42 (260.2381, 234.8571)
35 (266.0286, 315.7143)
31 (286.5806, 355.4516)
37 (299.0541, 399.1351)
35 (310.5143, 214.6000)

Problem 2 (Particle Identification)

Instance variable:

- Blobs identified by this blob finder, _blobs (list of Blob objects).

BlobFinder ()
- Initialize blobs to an empty list.
- Create a 2D list of booleans called marked, having the same dimensions as pic.
- Enumerate the pixels of pic, and for each pixel (i, j):
- create a Blob object called blob;
- call _findBlob() with the appropriate arguments; and
- add blob to blobs if it has a non-zero mass.
bf._findBlob()

- Base case: return if pixel (i, j) is out of bounds, or if it is marked, or if its luminance (use the luminance ()
method from Color for this) is less than tau.

- Mark the pixel (i, j).
- Add the pixel (i, j) to the blob blob.
- Recursively call _findBlob() on the N, E, W, and S pixels.

bf.getBeads (pixels)

- Return a list of blobs from blobs that have a mass > pixels.

Problem 3 (Particle Tracking)

Implement a program called bead_tracker.py that accepts p (int), tau (float), delta (float), and a sequence of JPEG
filenames as command-line arguments; identifies the beads in each JPEG image using BlobFinder; and writes to
standard output (one per line, formatted with 4 decimal places to the right of decimal point) the radial distance that
each bead moves from one frame to the next (assuming it is no more than delta)

X ~/workspace/atomic_nature_of matter

$ python3 bead_tracker.py 25 180.0 25.0 data/run_1/frame00000.jpg \
data/run_1/frame00001. jpg

7.1833

L7932

.1693

.5287

L4292

.3962

OO

Problem 3 (Particle Tracking)

Accept command-line arguments pixels (int), tau (float), and delta (float)

Construct a BlobFinder object for the frame sys.argv[4] and from it get a list of beads prevBeads that have at least
pixels pixels

For each frame starting at sys.argv[5]:
- Construct a BlobFinder object and from it get a list of beads currBeads that have at least pixels pixels

- For each bead currBead in currBeads, find a bead prevBead from prevBeads that is no further than delta and is
closest to currBead, and if such a bead is found, write its distance (using format string *%.4f\n’) to currBead

- Write a newline character

- Set prevBeads to currBeads

Problem 4 (Estimating Avogadro’s Constant)

Implement a program called avogadro.py that accepts the displacements (output of bead_tracker.py) from standard
input; computes an estimate of Avogadro’s constant using the formulae described above; and writes the value to

standard output

‘ X ~/workspace/atomic_nature_of matter

$ python3 bead_tracker.py 25 180.0 25.0 data/run_1/* | python3 avogadro.py
6.633037e+23

Problem 4 (Estimating Avogadro’s Constant)

Initialize ETA, RHO, T, and R to appropriate values

Calculate var as the sum of the squares of the n displacements (each converted from pixels to meters) read from
standard input

Divide var by 2 * n
Estimate Boltzmann's constant as 6 * math.pi * var * ETA * RHO / T
Estimate Avogadro's constant as R / k

Write to standard output the Avogadro constant in scientific notation (using the format string "%e")

	Introduction
	Problem 1 (Particle Representation)
	Problem 2 (Particle Identification)
	Problem 3 (Particle Tracking)
	Problem 4 (Estimating Avogadro's Constant)

