
Introduction to Programming in Python
Assignment 5 (Atomic Nature of Matter) Discussion



Introduction

Goal: track the motion of particles undergoing Brownian motion, fit this data to Einstein’s model, and estimate
Avogadro’s constant



Problem 1 (Particle Representation)

Define a data type called Blob in blob.py to represent a particle (aka blob). The data type must support the following
API:

Blob() constructs an empty blob b

b.add(x, y) adds a pixel (x, y) to b

b.mass() returns the mass of b, ie, the number of pixels in it

b.distanceTo(c) returns the Euclidean distance between the center of mass of b and the center of mass of blob
c

str(b) returns a string representation of b

× ~/workspace/atomic nature of matter

$ python3 blob.py

1 0 0 1 -1 0 0 -1

<ctrl -d>

a = 1 (0.0000 , 0.0000)

b = 4 (0.0000 , 0.0000)

dist(a, b) = 0.0



Problem 1 (Particle Representation)

Instance variables:

- x-coordinate of center of mass, _x (float)

- y -coordinate of center of mass, _y (float)

- Number of pixels, _pixels (int)

Blob()

- Initialize the instance variables appropriately

b.add(x, y)

- Use the idea of running average1 to update the center of mass of blob b

- Increment the number of pixels in blob b by 1

b.mass()

- Return the number of pixels in the blob b

b.distanceTo(c)

- Return the Euclidean distance between the center of mass of blob b and the center of mass of blob c

1If x̄n−1 is the average value of n − 1 points x1, x2, . . . , xn−1, then the average value x̄n of n points x1, x2, . . . , xn−1, xn is
x̄n−1·(n−1)+xn

n
.



Problem 2 (Particle Identification)

Define a data type called BlobFinder in blob_finder.py that supports the following API. Use depth-first search to
efficiently identify the blobs.

BlobFinder(pic, tau) constructs a blob finder bf to find blobs in the picture pic using a luminance threshold
tau

bf.getBeads(pixels) returns a list of all blobs with mass ≥ pixels, ie, a list of beads



Problem 2 (Particle Identification)

× ~/workspace/atomic nature of matter

$ python3 blob_finder.py 25 180.0 data/run_1/frame00001.jpg

13 Beads:

29 (214.7241 , 82.8276)

36 (223.6111 , 116.6667)

42 (260.2381 , 234.8571)

35 (266.0286 , 315.7143)

31 (286.5806 , 355.4516)

37 (299.0541 , 399.1351)

35 (310.5143 , 214.6000)

...

15 Blobs:

29 (214.7241 , 82.8276)

36 (223.6111 , 116.6667)

1 (254.0000 , 223.0000)

42 (260.2381 , 234.8571)

35 (266.0286 , 315.7143)

31 (286.5806 , 355.4516)

37 (299.0541 , 399.1351)

35 (310.5143 , 214.6000)

...



Problem 2 (Particle Identification)

Instance variable:

- Blobs identified by this blob finder, _blobs (list of Blob objects).

BlobFinder()

- Initialize blobs to an empty list.

- Create a 2D list of booleans called marked, having the same dimensions as pic.

- Enumerate the pixels of pic, and for each pixel (i, j):

- create a Blob object called blob;
- call _findBlob() with the appropriate arguments; and
- add blob to blobs if it has a non-zero mass.

bf._findBlob()

- Base case: return if pixel (i, j) is out of bounds, or if it is marked, or if its luminance (use the luminance()

method from Color for this) is less than tau.

- Mark the pixel (i, j).

- Add the pixel (i, j) to the blob blob.

- Recursively call _findBlob() on the N, E, W, and S pixels.

bf.getBeads(pixels)

- Return a list of blobs from blobs that have a mass ≥ pixels.



Problem 3 (Particle Tracking)

Implement a program called bead_tracker.py that accepts p (int), tau (float), delta (float), and a sequence of JPEG
filenames as command-line arguments; identifies the beads in each JPEG image using BlobFinder; and writes to
standard output (one per line, formatted with 4 decimal places to the right of decimal point) the radial distance that
each bead moves from one frame to the next (assuming it is no more than delta)

× ~/workspace/atomic nature of matter

$ python3 bead_tracker.py 25 180.0 25.0 data/run_1/frame00000.jpg \

data/run_1/frame00001.jpg

7.1833

4.7932

2.1693

5.5287

5.4292

4.3962



Problem 3 (Particle Tracking)

Accept command-line arguments pixels (int), tau (float), and delta (float)

Construct a BlobFinder object for the frame sys.argv[4] and from it get a list of beads prevBeads that have at least
pixels pixels

For each frame starting at sys.argv[5]:

- Construct a BlobFinder object and from it get a list of beads currBeads that have at least pixels pixels

- For each bead currBead in currBeads, find a bead prevBead from prevBeads that is no further than delta and is
closest to currBead, and if such a bead is found, write its distance (using format string ’%.4f\n’) to currBead

- Write a newline character

- Set prevBeads to currBeads



Problem 4 (Estimating Avogadro’s Constant)

Implement a program called avogadro.py that accepts the displacements (output of bead_tracker.py) from standard
input; computes an estimate of Avogadro’s constant using the formulae described above; and writes the value to
standard output

× ~/workspace/atomic nature of matter

$ python3 bead_tracker.py 25 180.0 25.0 data/run_1 /* | python3 avogadro.py

6.633037e+23



Problem 4 (Estimating Avogadro’s Constant)

Initialize ETA, RHO, T, and R to appropriate values

Calculate var as the sum of the squares of the n displacements (each converted from pixels to meters) read from
standard input

Divide var by 2 * n

Estimate Boltzmann’s constant as 6 * math.pi * var * ETA * RHO / T

Estimate Avogadro’s constant as R / k

Write to standard output the Avogadro constant in scientific notation (using the format string "%e")


	Introduction
	Problem 1 (Particle Representation)
	Problem 2 (Particle Identification)
	Problem 3 (Particle Tracking)
	Problem 4 (Estimating Avogadro's Constant)

