
Introduction to Programming in Python
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Data Types

A data type specifies a range of values along with a set of operations defined on those values

Basic data types

- str for sequences of characters with string operations

- int for integers with arithmetic operations

- float for floating-point numbers (aka floats) with arithmetic operations

- bool for boolean (true/false) values with logical operations

- complex for complex numbers specified as <real part> + <imaginary part>j (eg, 2 + 3j) with
complex-number operations
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Expressions

A literal represents a basic data-type value

Example

- "Hello, World" is a string literal

- 42 is an integer literal

- 3.14159 is a floating-point literal

- True and False are boolean literals
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Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers
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Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi
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An operator represents a data-type operation

Example

- +, -, *, /, %, and ** represent arithmetic operations on integers and floats

- not, or, and and represent logical operations on booleans
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Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())
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Expressions

Example

Built-in Functions

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

math

exp(x) returns ex

sqrt(x) returns
√
x

sys

exit(x = "") exits the Python interpreter with the message x
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Expressions

Example

stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p
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Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- math.sqrt(b * b - 4 * a * c)

- (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)
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Statements

A syntactic unit that expresses some action to be carried out

Example

1 import stdio

2 import sys

3

4 message = sys.argv [1]

5 stdio.writeln(message)
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Statements

Function call statement

1 <name >(<arg1 >, <arg2 >, ...)

2 <target >.<name >(<arg1 >, <arg2 >, ...)

Example

1 stdio.writeln("To be, or not to be, that is the question.")

2 sys.exit("Done!")
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Assignment statement

1 <name > = <expression >

2 <name1 >, <name2 >, <name3 >, ... = <expression1 >, <expression2 >, <expression3 >, ...
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1 a = "Python"

2 b, c, d = 42, 3.14159 , True

3 e = None

a b c d e

"Python"

str

42

int

3.14159

float

True

bool

None
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Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)
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Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)
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The assignment statement

1 <name > = <name > <operator > <expression >

is equivalent to

1 <name > <operator >= <expression >

where <operator> is **, *, /, //, %, +, or -
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Statements

Example
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3 x /= 4

4 x //= 3

5 x %= 3

6 x += 1

7 x -= 1
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Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"
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- Standard output: the date in different formats
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Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

× ~/workspace/ipp

1 $ python3 dateformats.py 14 03 1879

2 14/03/1879

3 03/14/1879

4 1879/03/14

5 $ _



Strings

× dateformats.py

1 import stdio

2 import sys

3

4 d = sys.argv [1]

5 m = sys.argv [2]

6 y = sys.argv [3]

7 dmy = d + "/" + m + "/" + y

8 mdy = m + "/" + d + "/" + y

9 ymd = y + "/" + m + "/" + d

10 stdio.writeln(dmy)

11 stdio.writeln(mdy)

12 stdio.writeln(ymd)



Strings

× dateformats.py

1 import stdio

2 import sys

3

4 d = sys.argv [1]

5 m = sys.argv [2]

6 y = sys.argv [3]

7 dmy = d + "/" + m + "/" + y

8 mdy = m + "/" + d + "/" + y

9 ymd = y + "/" + m + "/" + d

10 stdio.writeln(dmy)

11 stdio.writeln(mdy)

12 stdio.writeln(ymd)



Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25
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Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2
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Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp
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2 25
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Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2 25

3 $ python3 sumofsquares.py 6 8
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Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2 25

3 $ python3 sumofsquares.py 6 8

4 100

5 $ _



Integers

× sumofsquares.py

1 import stdio

2 import sys

3

4 x = int(sys.argv [1])

5 y = int(sys.argv [2])

6 result = x * x + y * y

7 stdio.writeln(result)



Integers

× sumofsquares.py

1 import stdio

2 import sys

3

4 x = int(sys.argv [1])

5 y = int(sys.argv [2])

6 result = x * x + y * y

7 stdio.writeln(result)



Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0
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Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a
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Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp
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Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp
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2 Root 1 = 3.0

3 Root 2 = 2.0

4 $ python3 quadratic.py 1 -1 -1

5

6

7



Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ python3 quadratic.py 1 -5 6

2 Root 1 = 3.0

3 Root 2 = 2.0

4 $ python3 quadratic.py 1 -1 -1

5 Root 1 = 1.618033988749895

6 Root 2 = -0.6180339887498949

7 $ _



Floats

× quadratic.py

1 import math

2 import stdio

3 import sys

4

5 a = float(sys.argv [1])

6 b = float(sys.argv [2])

7 c = float(sys.argv [3])

8 discriminant = b * b - 4 * a * c

9 root1 = (-b + math.sqrt(discriminant )) / (2 * a)

10 root2 = (-b - math.sqrt(discriminant )) / (2 * a)

11 stdio.writeln("Root # 1 = " + str(root1))

12 stdio.writeln("Root # 2 = " + str(root2))



Floats

× quadratic.py

1 import math

2 import stdio

3 import sys

4

5 a = float(sys.argv [1])

6 b = float(sys.argv [2])

7 c = float(sys.argv [3])

8 discriminant = b * b - 4 * a * c

9 root1 = (-b + math.sqrt(discriminant )) / (2 * a)

10 root2 = (-b - math.sqrt(discriminant )) / (2 * a)

11 stdio.writeln("Root # 1 = " + str(root1))

12 stdio.writeln("Root # 2 = " + str(root2))



Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True
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Booleans

Two objects of the same type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to False

- Not equal (!=) — eg, 5 != 2 evaluates to True

- Less than (<) — eg, 5 < 2 evaluates to False

- Less than or equal (<=) — eg, 5 <= 2 evaluates to False

- Greater than (>) — eg, 5 > 2 evaluates to True

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to True
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Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400
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leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True
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leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise
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leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise
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1 $ python3 leapyear.py 2020
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3 $ python3 leapyear.py 1900
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Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000
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A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400



Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000

6 True

7 $ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400



Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000

6 True

7 $ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400



Booleans

× leapyear.py

1 import stdio

2 import sys

3

4 y = int(sys.argv [1])

5 result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

6 stdio.writeln(result)



Booleans

× leapyear.py

1 import stdio

2 import sys

3

4 y = int(sys.argv [1])

5 result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

6 stdio.writeln(result)



Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125
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not, or, and logical
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