
Introduction to Programming in Python
Imperative Programming: Basic Data Types

Outline

1 Data Types

2 Expressions

3 Statements

4 Strings

5 Integers

6 Floats

7 Booleans

8 Operator Precedence

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Basic data types

- str for sequences of characters with string operations

- int for integers with arithmetic operations

- float for floating-point numbers (aka floats) with arithmetic operations

- bool for boolean (true/false) values with logical operations

- complex for complex numbers specified as <real part> + <imaginary part>j (eg, 2 + 3j) with
complex-number operations

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Basic data types

- str for sequences of characters with string operations

- int for integers with arithmetic operations

- float for floating-point numbers (aka floats) with arithmetic operations

- bool for boolean (true/false) values with logical operations

- complex for complex numbers specified as <real part> + <imaginary part>j (eg, 2 + 3j) with
complex-number operations

Data Types

A data type specifies a range of values along with a set of operations defined on those values

Basic data types

- str for sequences of characters with string operations

- int for integers with arithmetic operations

- float for floating-point numbers (aka floats) with arithmetic operations

- bool for boolean (true/false) values with logical operations

- complex for complex numbers specified as <real part> + <imaginary part>j (eg, 2 + 3j) with
complex-number operations

Expressions

A literal represents a basic data-type value

Example

- "Hello, World" is a string literal

- 42 is an integer literal

- 3.14159 is a floating-point literal

- True and False are boolean literals

Expressions

A literal represents a basic data-type value

Example

- "Hello, World" is a string literal

- 42 is an integer literal

- 3.14159 is a floating-point literal

- True and False are boolean literals

Expressions

A literal represents a basic data-type value

Example

- "Hello, World" is a string literal

- 42 is an integer literal

- 3.14159 is a floating-point literal

- True and False are boolean literals

Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier represents a name

Each identifier is a sequence of letters, digits, and underscore symbols, not starting with a digit

Example: abc, _abc, abc123, and Abc are valid identifiers whereas abc*, 1abc, and abc+ are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable associates a name with a data-type value

Example: age

A constant variable is one whose value does not change during the execution of a program

Example: SPEED_OF_LIGHT

A variable’s value is accessed as <name> or <target>.<name>

Example: age, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

An operator represents a data-type operation

Example

- +, -, *, /, %, and ** represent arithmetic operations on integers and floats

- not, or, and and represent logical operations on booleans

Expressions

An operator represents a data-type operation

Example

- +, -, *, /, %, and ** represent arithmetic operations on integers and floats

- not, or, and and represent logical operations on booleans

Expressions

An operator represents a data-type operation

Example

- +, -, *, /, %, and ** represent arithmetic operations on integers and floats

- not, or, and and represent logical operations on booleans

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Many programming tasks involve not only operators, but also functions

Three kinds of functions

1. Built-in functions

2. Functions defined in standard libraries

3. Functions defined in user-defined libraries

A function is called as <name>(<arg1>, <arg2>, ...) or <target>.<name>(<arg1>, <arg2>, ...)

Example: stdio.writeln("Hello, World") and math.sqrt(2)

A function that does not return a value is called a void function (eg, stdio.writeln())

A function that returns a value is called a non-void function (eg, math.sqrt())

Expressions

Example

Built-in Functions

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

math

exp(x) returns ex

sqrt(x) returns
√
x

sys

exit(x = "") exits the Python interpreter with the message x

Expressions

Example

Built-in Functions

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

math

exp(x) returns ex

sqrt(x) returns
√
x

sys

exit(x = "") exits the Python interpreter with the message x

Expressions

Example

stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- math.sqrt(b * b - 4 * a * c)

- (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- math.sqrt(b * b - 4 * a * c)

- (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- math.sqrt(b * b - 4 * a * c)

- (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls

Every expression has a type and a value

Example

- 2, 4

- a, b, c

- b * b - 4 * a * c

- math.sqrt(b * b - 4 * a * c)

- (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Statements

A syntactic unit that expresses some action to be carried out

Example

1 import stdio

2 import sys

3

4 message = sys.argv [1]

5 stdio.writeln(message)

Statements

A syntactic unit that expresses some action to be carried out

Example

1 import stdio

2 import sys

3

4 message = sys.argv [1]

5 stdio.writeln(message)

Statements

A syntactic unit that expresses some action to be carried out

Example

1 import stdio

2 import sys

3

4 message = sys.argv [1]

5 stdio.writeln(message)

Statements

Import statement

1 import <library >

Example

1 import math

2 import stdio

3 import sys

Statements

Import statement

1 import <library >

Example

1 import math

2 import stdio

3 import sys

Statements

Import statement

1 import <library >

Example

1 import math

2 import stdio

3 import sys

Statements

Function call statement

1 <name >(<arg1 >, <arg2 >, ...)

2 <target >.<name >(<arg1 >, <arg2 >, ...)

Example

1 stdio.writeln("To be, or not to be, that is the question.")

2 sys.exit("Done!")

Statements

Function call statement

1 <name >(<arg1 >, <arg2 >, ...)

2 <target >.<name >(<arg1 >, <arg2 >, ...)

Example

1 stdio.writeln("To be, or not to be, that is the question.")

2 sys.exit("Done!")

Statements

Function call statement

1 <name >(<arg1 >, <arg2 >, ...)

2 <target >.<name >(<arg1 >, <arg2 >, ...)

Example

1 stdio.writeln("To be, or not to be, that is the question.")

2 sys.exit("Done!")

Statements

Assignment statement

1 <name > = <expression >

2 <name1 >, <name2 >, <name3 >, ... = <expression1 >, <expression2 >, <expression3 >, ...

Example

1 a = "Python"

2 b, c, d = 42, 3.14159 , True

3 e = None

a b c d e

"Python"

str

42

int

3.14159

float

True

bool

None

Statements

Assignment statement

1 <name > = <expression >

2 <name1 >, <name2 >, <name3 >, ... = <expression1 >, <expression2 >, <expression3 >, ...

Example

1 a = "Python"

2 b, c, d = 42, 3.14159 , True

3 e = None

a b c d e

"Python"

str

42

int

3.14159

float

True

bool

None

Statements

Assignment statement

1 <name > = <expression >

2 <name1 >, <name2 >, <name3 >, ... = <expression1 >, <expression2 >, <expression3 >, ...

Example

1 a = "Python"

2 b, c, d = 42, 3.14159 , True

3 e = None

a b c d e

"Python"

str

42

int

3.14159

float

True

bool

None

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

1

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

3 42

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

4 42 1729

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

6 42 1729 42

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

7 1729 1729 42

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

8 1729 42 42

×

1

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

10 1729 42 42

×

1 1729

2

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

11 1729 42 42

×

1 1729

2 42

Statements

Example (swapping idiom)

1 import stdio

2

3 a = 42

4 b = 1729

5

6 t = a

7 a = b

8 b = t

9

10 stdio.writeln(a)

11 stdio.writeln(b)

line # a b t

×

1 1729

2 42

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

1

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

3 2

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

4 32

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

5 64

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

6 16.0

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

7 5.0

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

8 2.0

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

9 3.0

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

10 2.0

×

1

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

12 2.0

×

1 2.0

Statements

Example (variable update)

1 import stdio

2

3 x = 2

4 x = x ** 5

5 x = x * 2

6 x = x / 4

7 x = x // 3

8 x = x % 3

9 x = x + 1

10 x = x - 1

11

12 stdio.writeln(x)

line # x

×

1 2.0

Statements

The assignment statement

1 <name > = <name > <operator > <expression >

is equivalent to

1 <name > <operator >= <expression >

where <operator> is **, *, /, //, %, +, or -

Statements

The assignment statement

1 <name > = <name > <operator > <expression >

is equivalent to

1 <name > <operator >= <expression >

where <operator> is **, *, /, //, %, +, or -

Statements

Example

1 x = x ** 5

2 x = x * 2

3 x = x / 4

4 x = x // 3

5 x = x % 3

6 x = x + 1

7 x = x - 1

are equivalent to

1 x **= 5

2 x *= 2

3 x /= 4

4 x //= 3

5 x %= 3

6 x += 1

7 x -= 1

Statements

Example

1 x = x ** 5

2 x = x * 2

3 x = x / 4

4 x = x // 3

5 x = x % 3

6 x = x + 1

7 x = x - 1

are equivalent to

1 x **= 5

2 x *= 2

3 x /= 4

4 x //= 3

5 x %= 3

6 x += 1

7 x -= 1

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching double quotes

Example: "Hello, World"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n"

Operations

- Concatenation (+) — eg, "123" + "456" evaluates to "123456"

- Replication (*) — eg, 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

× ~/workspace/ipp

1 $ _

2

3

4

5

Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

× ~/workspace/ipp

1 $ python3 dateformats.py 14 03 1879

2

3

4

5

Strings

dateformats.py

- Command-line input: d (str), m (str), and y (str) representing a date

- Standard output: the date in different formats

× ~/workspace/ipp

1 $ python3 dateformats.py 14 03 1879

2 14/03/1879

3 03/14/1879

4 1879/03/14

5 $ _

Strings

× dateformats.py

1 import stdio

2 import sys

3

4 d = sys.argv [1]

5 m = sys.argv [2]

6 y = sys.argv [3]

7 dmy = d + "/" + m + "/" + y

8 mdy = m + "/" + d + "/" + y

9 ymd = y + "/" + m + "/" + d

10 stdio.writeln(dmy)

11 stdio.writeln(mdy)

12 stdio.writeln(ymd)

Strings

× dateformats.py

1 import stdio

2 import sys

3

4 d = sys.argv [1]

5 m = sys.argv [2]

6 y = sys.argv [3]

7 dmy = d + "/" + m + "/" + y

8 mdy = m + "/" + d + "/" + y

9 ymd = y + "/" + m + "/" + d

10 stdio.writeln(dmy)

11 stdio.writeln(mdy)

12 stdio.writeln(ymd)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42

Operations

- Addition (+) — eg, 5 + 2 evaluates to 7

- Subtraction/negation (-) — eg, 5 - 2 evaluates to 3 and -(-3) evaluates to 3

- Multiplication (*) — eg, 5 * 2 evaluates to 10

- Division (/) — eg, 5 / 2 evaluates to 2.5

- Floored division (//) — eg, 5 // 2 evaluates to 2

- Remainder (%) — eg, 5 % 2 evaluates to 1

- Exponentiation (**) — eg, 5 ** 2 evaluates to 25

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ _

2

3

4

5

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2

3

4

5

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2 25

3 $ _

4

5

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2 25

3 $ python3 sumofsquares.py 6 8

4

5

Integers

sumofsquares.py

- Command-line input: x (int) and y (int)

- Standard output: x2 + y2

× ~/workspace/ipp

1 $ python3 sumofsquares.py 3 4

2 25

3 $ python3 sumofsquares.py 6 8

4 100

5 $ _

Integers

× sumofsquares.py

1 import stdio

2 import sys

3

4 x = int(sys.argv [1])

5 y = int(sys.argv [2])

6 result = x * x + y * y

7 stdio.writeln(result)

Integers

× sumofsquares.py

1 import stdio

2 import sys

3

4 x = int(sys.argv [1])

5 y = int(sys.argv [2])

6 result = x * x + y * y

7 stdio.writeln(result)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159

Scientific notation can be used to represent very large and very small numbers

Example: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations

- Addition (+) — eg, 16.0 + 0.5 evaluates to 16.5

- Subtraction/negation (-) — eg, 16.0 - 0.5 evaluates to 15.5 and -(-3.0) evaluates to 3.0

- Multiplication (*) — eg, 16.0 * 0.5 evaluates to 8.0

- Division (/) — eg, 16.0 / 0.5 evaluates to 32.0

- Exponentiation (**) — eg, 16.0 ** 0.5 evaluates to 4.0

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ _

2

3

4

5

6

7

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ python3 quadratic.py 1 -5 6

2

3

4

5

6

7

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ python3 quadratic.py 1 -5 6

2 Root 1 = 3.0

3 Root 2 = 2.0

4 $ _

5

6

7

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ python3 quadratic.py 1 -5 6

2 Root 1 = 3.0

3 Root 2 = 2.0

4 $ python3 quadratic.py 1 -1 -1

5

6

7

Floats

quadratic.py

- Command-line input: a (float), b (float), and c (float)

- Standard output: the two roots of the quadratic equation ax2 + bx + c = 0, computed as
−b±

√
b2−4ac

2a

× ~/workspace/ipp

1 $ python3 quadratic.py 1 -5 6

2 Root 1 = 3.0

3 Root 2 = 2.0

4 $ python3 quadratic.py 1 -1 -1

5 Root 1 = 1.618033988749895

6 Root 2 = -0.6180339887498949

7 $ _

Floats

× quadratic.py

1 import math

2 import stdio

3 import sys

4

5 a = float(sys.argv [1])

6 b = float(sys.argv [2])

7 c = float(sys.argv [3])

8 discriminant = b * b - 4 * a * c

9 root1 = (-b + math.sqrt(discriminant)) / (2 * a)

10 root2 = (-b - math.sqrt(discriminant)) / (2 * a)

11 stdio.writeln("Root # 1 = " + str(root1))

12 stdio.writeln("Root # 2 = " + str(root2))

Floats

× quadratic.py

1 import math

2 import stdio

3 import sys

4

5 a = float(sys.argv [1])

6 b = float(sys.argv [2])

7 c = float(sys.argv [3])

8 discriminant = b * b - 4 * a * c

9 root1 = (-b + math.sqrt(discriminant)) / (2 * a)

10 root2 = (-b - math.sqrt(discriminant)) / (2 * a)

11 stdio.writeln("Root # 1 = " + str(root1))

12 stdio.writeln("Root # 2 = " + str(root2))

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations

- Logical not (not)

- Logical or (or)

- Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

Two objects of the same type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to False

- Not equal (!=) — eg, 5 != 2 evaluates to True

- Less than (<) — eg, 5 < 2 evaluates to False

- Less than or equal (<=) — eg, 5 <= 2 evaluates to False

- Greater than (>) — eg, 5 > 2 evaluates to True

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to True

Booleans

Two objects of the same type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to False

- Not equal (!=) — eg, 5 != 2 evaluates to True

- Less than (<) — eg, 5 < 2 evaluates to False

- Less than or equal (<=) — eg, 5 <= 2 evaluates to False

- Greater than (>) — eg, 5 > 2 evaluates to True

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to True

Booleans

Two objects of the same type can be compared using comparison operators, the result of which is a boolean value

Comparison operators

- Equal (==) — eg, 5 == 2 evaluates to False

- Not equal (!=) — eg, 5 != 2 evaluates to True

- Less than (<) — eg, 5 < 2 evaluates to False

- Less than or equal (<=) — eg, 5 <= 2 evaluates to False

- Greater than (>) — eg, 5 > 2 evaluates to True

- Greater than or equal (>=) — eg, 5 >= 2 evaluates to True

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ _

2

3

4

5

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2

3

4

5

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ _

4

5

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4

5

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ _

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000

6

7

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000

6 True

7 $ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

leapyear.py

- Command-line input: y (int)

- Standard output: True if y is a leap year and False otherwise

× ~/workspace/ipp

1 $ python3 leapyear.py 2020

2 True

3 $ python3 leapyear.py 1900

4 False

5 $ python3 leapyear.py 2000

6 True

7 $ _

A leap year is one that is divisible by 4 and is not divisible by 100 or is divisible by 400

Booleans

× leapyear.py

1 import stdio

2 import sys

3

4 y = int(sys.argv [1])

5 result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

6 stdio.writeln(result)

Booleans

× leapyear.py

1 import stdio

2 import sys

3

4 y = int(sys.argv [1])

5 result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

6 stdio.writeln(result)

Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125

Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125

Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125

Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125

Operator Precedence

From highest to lowest

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != comparison

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Example: 3 + 2 ** 3 evaluates to 11

Parentheses can be used to override precedence rules

Example: (3 + 2) ** 3 evaluates to 125

	Outline
	Data Types
	Expressions
	Statements
	Strings
	Integers
	Floats
	Booleans
	Operator Precedence

