
Basic Data Types

Outline

1 Types

2 Expressions

3 Statements

4 Strings

5 Integers

6 Floats

7 Booleans

8 Operator Precedence

9 Python Console

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Types

A data type is a set of values along with a set of operations defined on those values

The four basic data types:

1 str for sequences of characters

2 int for integers

3 float for floating-point numbers

4 bool for true/false values

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

A literal is a representation of a data-type value

Example:

• "Hello, World" and "Cogito, ergo sum" are string literals

• 42 and 1729 are integer literals

• 3.14159 and 2.71828 are floating-point literals

• True and False are boolean literals

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

An identifier is a representation of a name

Each identifier is a sequence of letters, digits, and underscores, not starting with a digit

Example:

• abc, Ab_, abc123, and a_b are valid identifiers

• Ab*, 1abc, and a+b are not

Keywords such as and, def, import, lambda, and while cannot be used as identifiers

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

A variable is a name associated with a data-type value

Example: total representing the running total of a sequence of numbers

A constant variable is one whose associated data-type value does not change during the execution of a program

Example: SPEED_OF_LIGHT representing the known speed of light

A variable’s value is accessed as [<target>.]<name>

Example: total, SPEED_OF_LIGHT, sys.argv, and math.pi

Expressions

An operator is a representation of a data-type operation

+, -, *, /, and % represent arithmetic operations on integers and floats

not, or, and and represent logical operations on booleans

Expressions

An operator is a representation of a data-type operation

+, -, *, /, and % represent arithmetic operations on integers and floats

not, or, and and represent logical operations on booleans

Expressions

An operator is a representation of a data-type operation

+, -, *, /, and % represent arithmetic operations on integers and floats

not, or, and and represent logical operations on booleans

Expressions

An operator is a representation of a data-type operation

+, -, *, /, and % represent arithmetic operations on integers and floats

not, or, and and represent logical operations on booleans

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Many programming tasks involve not only built-in operators, but also functions

Three kinds of functions:

1 Built-in functions

2 Functions defined in standard libraries

3 Functions defined in user-defined libraries

A function is called as [<library>.]<name>(<argument1>, <argument2>, ...)

Example: stdio.writeln("Hello, World")

Some functions (called void functions) do not return a value while others (called non-void functions) do return a value

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

Example

²

int(x) returns the integer value of x

float(x) returns the floating-point value of x

str(x) returns string value of x

² math

exp(x) returns ex

sqrt(x) returns
√

x

² stdio

writeln(x = "") writes x followed by newline to standard output

write(x = "") writes x to standard output

² stdrandom

uniformFloat(lo, hi) returns a float chosen uniformly at random from the interval [lo, hi)

bernoulli(p = 0.5) returns True with probability p and False with probability 1 - p

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Expressions

An expression is a combination of literals, variables, operators, and non-void function calls that evaluates to a value

Example:

• 2, 4

• a, b, c

• b * b - 4 * a * c

• math.sqrt(b * b - 4 * a * c)

• (-b + math.sqrt(b * b - 4 * a * c)) / (2 * a)

Statements

A statement is a syntactic unit that expresses some action to be carried out

Import statement

import <library >

Example

import stdio

import sys

Statements

A statement is a syntactic unit that expresses some action to be carried out

Import statement

import <library >

Example

import stdio

import sys

Statements

A statement is a syntactic unit that expresses some action to be carried out

Import statement

import <library >

Example

import stdio

import sys

Statements

A statement is a syntactic unit that expresses some action to be carried out

Import statement

import <library >

Example

import stdio

import sys

Statements

Function call statement

[<library >.]<name >(<argument1 >, <argument2 >, ...)

Example

stdio.write("Cogito , ")

stdio.write("ergo sum")

stdio.writeln ()

Statements

Function call statement

[<library >.]<name >(<argument1 >, <argument2 >, ...)

Example

stdio.write("Cogito , ")

stdio.write("ergo sum")

stdio.writeln ()

Statements

Function call statement

[<library >.]<name >(<argument1 >, <argument2 >, ...)

Example

stdio.write("Cogito , ")

stdio.write("ergo sum")

stdio.writeln ()

Statements

Assignment statement

<name > = <expression >

Example

a = "python3"

b = 42

c = 3.14159

d = True

e = None

a b c d e

"python3"

str

42

int

3.14159

float

True

bool

None

Statements

Assignment statement

<name > = <expression >

Example

a = "python3"

b = 42

c = 3.14159

d = True

e = None

a b c d e

"python3"

str

42

int

3.14159

float

True

bool

None

Statements

Assignment statement

<name > = <expression >

Example

a = "python3"

b = 42

c = 3.14159

d = True

e = None

a b c d e

"python3"

str

42

int

3.14159

float

True

bool

None

Statements

Example (exchanging the values of two variables a and b)

a = 42

b = 1729

t = a # t is now 42

a = b # a is now 1729

b = t # b is now 42

stdio.writeln(a)

stdio.writeln(b)

1729

42

Statements

Example (exchanging the values of two variables a and b)

a = 42

b = 1729

t = a # t is now 42

a = b # a is now 1729

b = t # b is now 42

stdio.writeln(a)

stdio.writeln(b)

1729

42

Statements

Example (exchanging the values of two variables a and b)

a = 42

b = 1729

t = a # t is now 42

a = b # a is now 1729

b = t # b is now 42

stdio.writeln(a)

stdio.writeln(b)

1729

42

Statements

Equivalent assignment statement forms

<name > <operator >= <expression >

<name > = <name > <operator > <expression >

where <operator> is **, *, /, //, %, +, or -

Example

x *= 5

x = x * 5

Statements

Equivalent assignment statement forms

<name > <operator >= <expression >

<name > = <name > <operator > <expression >

where <operator> is **, *, /, //, %, +, or -

Example

x *= 5

x = x * 5

Statements

Equivalent assignment statement forms

<name > <operator >= <expression >

<name > = <name > <operator > <expression >

where <operator> is **, *, /, //, %, +, or -

Example

x *= 5

x = x * 5

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

The str data type represents strings (sequences of characters)

A str literal is specified by enclosing a sequence of characters in matching single quotes

Example: "Hello, World" and "Cogito, ergo sum"

Tab, newline, backslash, and double quote characters are specified using escape sequences "\t", "\n", "\\", and "\""

Example: "Hello, world\n" and "\"Python\" is great"

Operations:

• Concatenation (+)

Example: "123" + "456" evaluates to "123456"

• Replication (*)

Example: 3 * "ab" and "ab" * 3 evaluate to "ababab"

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

& ~/workspace/ipp/programs

$ _

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

& ~/workspace/ipp/programs

$ python3 dateformats.py 14 03 1879

Strings

Program: dateformats.py

• Command-line input: d (str), m (str), and y (str) representing a date

• Standard output: the date in different formats

& ~/workspace/ipp/programs

$ python3 dateformats.py 14 03 1879

14/03/1879

03/14/1879

1879/03/14

$ _

Strings

L dateformats.py

import stdio

import sys

d = sys.argv [1]

m = sys.argv [2]

y = sys.argv [3]

dmy = d + "/" + m + "/" + y

mdy = m + "/" + d + "/" + y

ymd = y + "/" + m + "/" + d

stdio.writeln(dmy)

stdio.writeln(mdy)

stdio.writeln(ymd)

Strings

L dateformats.py

import stdio

import sys

d = sys.argv [1]

m = sys.argv [2]

y = sys.argv [3]

dmy = d + "/" + m + "/" + y

mdy = m + "/" + d + "/" + y

ymd = y + "/" + m + "/" + d

stdio.writeln(dmy)

stdio.writeln(mdy)

stdio.writeln(ymd)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

The int data type represents integers

An int literal is specified as a sequence of digits 0 through 9

Example: 42 and 1729

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Floored division(//)

• Remainder (%)

• Exponentiation (**)

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

& ~/workspace/ipp/programs

$ _

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

& ~/workspace/ipp/programs

$ python3 sumofsquares.py 3 4

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

& ~/workspace/ipp/programs

$ python3 sumofsquares.py 3 4

25

$ _

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

& ~/workspace/ipp/programs

$ python3 sumofsquares.py 3 4

25

$ python3 sumofsquares.py 6 8

Integers

Program: sumofsquares.py

• Command-line input: x (int) and y (int)

• Standard output: x2 + y2

& ~/workspace/ipp/programs

$ python3 sumofsquares.py 3 4

25

$ python3 sumofsquares.py 6 8

100

$ _

Integers

L sumofsquares.py

import stdio

import sys

x = int(sys.argv [1])

y = int(sys.argv [2])

result = x * x + y * y

stdio.writeln(result)

Integers

L sumofsquares.py

import stdio

import sys

x = int(sys.argv [1])

y = int(sys.argv [2])

result = x * x + y * y

stdio.writeln(result)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

The float data type represents floating-point numbers

A floating-point literal is specified as a sequence of digits with a decimal point

Example: 3.14159 and 2.71828

Scientific notation: 6.022e23 represents 6.022× 1023 and 6.674e-11 represents 6.674× 10−11

Operations:

• Addition (+)

• Subtraction/negation (-)

• Multiplication (*)

• Division (/)

• Exponentiation (**)

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/ipp/programs

$ _

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/ipp/programs

$ python3 quadratic.py 1 -5 6

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/ipp/programs

$ python3 quadratic.py 1 -5 6

Root # 1 = 3.0

Root # 2 = 2.0

$ _

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/ipp/programs

$ python3 quadratic.py 1 -5 6

Root # 1 = 3.0

Root # 2 = 2.0

$ python3 quadratic.py 1 -1 -1

Floats

Program: quadratic.py

• Command-line input: a (float), b (float), and c (float)

• Standard output: roots of the quadratic equation ax2 + bx + c = 0

& ~/workspace/ipp/programs

$ python3 quadratic.py 1 -5 6

Root # 1 = 3.0

Root # 2 = 2.0

$ python3 quadratic.py 1 -1 -1

Root # 1 = 1.618033988749895

Root # 2 = -0.6180339887498949

$ _

Floats

L quadratic.py

import math

import stdio

import sys

a = float(sys.argv [1])

b = float(sys.argv [2])

c = float(sys.argv [3])

discriminant = b * b - 4 * a * c

root1 = (-b + math.sqrt(discriminant)) / (2 * a)

root2 = (-b - math.sqrt(discriminant)) / (2 * a)

stdio.writeln("Root # 1 = " + str(root1))

stdio.writeln("Root # 2 = " + str(root2))

Floats

L quadratic.py

import math

import stdio

import sys

a = float(sys.argv [1])

b = float(sys.argv [2])

c = float(sys.argv [3])

discriminant = b * b - 4 * a * c

root1 = (-b + math.sqrt(discriminant)) / (2 * a)

root2 = (-b - math.sqrt(discriminant)) / (2 * a)

stdio.writeln("Root # 1 = " + str(root1))

stdio.writeln("Root # 2 = " + str(root2))

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

The bool data type represents truth values (true or false) from logic

The two bool literals are True and False

Operations:

• Logical not (not)

• Logical or (or)

• Logical and (and)

Truth tables for the logical operations

x not x

False True

True False

x y x or y

False False False

False True True

True False True

True True True

x y x and y

False False False

False True False

True False False

True True True

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Two objects of the same type can be compared using comparison operators — the result is a boolean value

Comparison operators:

• Equal (==)

• Not equal (!=)

• Less than (<)

• Less than or equal (<=)

• Greater than (>)

• Greater than or equal (>=)

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ _

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

True

$ _

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

True

$ python3 leapyear.py 1900

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

True

$ python3 leapyear.py 1900

False

$ _

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

True

$ python3 leapyear.py 1900

False

$ python3 leapyear.py 2000

Booleans

Program: leapyear.py

• Command-line input: y (int)

• Standard output: whether y is a leap year or not

& ~/workspace/ipp/programs

$ python3 leapyear.py 2020

True

$ python3 leapyear.py 1900

False

$ python3 leapyear.py 2000

True

$ _

Booleans

L leapyear.py

import stdio

import sys

y = int(sys.argv [1])

result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

stdio.writeln(result)

Booleans

L leapyear.py

import stdio

import sys

y = int(sys.argv [1])

result = y % 4 == 0 and y % 100 != 0 or y % 400 == 0

stdio.writeln(result)

Operator Precedence

Operator precedence (highest to lowest)

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != equality

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Parentheses can be used to override precedence rules

Operator Precedence

Operator precedence (highest to lowest)

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != equality

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Parentheses can be used to override precedence rules

Operator Precedence

Operator precedence (highest to lowest)

** exponentiation

+, - unary

*, /, //, % multiplicative

+, - additive

<, <=, >, >= comparison

==, != equality

=, **=, *=, /=, //=, %=, +=, -= assignment

is, is not identity

in, not in membership

not, or, and logical

Parentheses can be used to override precedence rules

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> _

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> _

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

>>> _

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

>>> x = 2

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

>>> x = 2

>>> _

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

>>> x = 2

>>> math.sqrt(x)

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

The Python Console1 available in PyCharm can be used as an interactive calculator

Example

& ~/workspace/ipp/programs

>>> 3 ** 2 + 4 ** 2

25

>>> import math

>>> x = 2

>>> math.sqrt(x)

1.4142135623730951

>>> _

1To launch from terminal, run the command python3; and to return to the terminal, run the built-in function exit()

Python Console

Run dir(<library>) to get a list of attributes for a library

Example

Python Console

Run dir(<library>) to get a list of attributes for a library

Example

Python Console

Run dir(<library>) to get a list of attributes for a library

Example

& ~/workspace/ipp/programs

>>> _

Python Console

Run dir(<library>) to get a list of attributes for a library

Example

& ~/workspace/ipp/programs

>>> dir(math)

Python Console

Run dir(<library>) to get a list of attributes for a library

Example

& ~/workspace/ipp/programs

>>> dir(math)

[’__doc__ ’, ’__loader__ ’, ’__name__ ’, ’__package__ ’, ’__spec__ ’, ’acos ’, ’acosh ’, ’asin ’, ’asinh ’,

’atan ’, ’atan2 ’, ’atanh ’, ’ceil ’, ’copysign ’, ’cos ’, ’cosh ’, ’degrees ’, ’e’, ’erf ’, ’erfc ’, ’exp ’,

’expm1 ’, ’fabs ’, ’factorial ’, ’floor ’, ’fmod ’, ’frexp ’, ’fsum ’, ’gamma ’, ’gcd ’, ’hypot ’, ’inf ’,

’isclose ’, ’isfinite ’, ’isinf ’, ’isnan ’, ’ldexp ’, ’lgamma ’, ’log ’, ’log10 ’, ’log1p ’, ’log2 ’, ’modf ’,

’nan ’, ’pi’, ’pow ’, ’radians ’, ’sin ’, ’sinh ’, ’sqrt ’, ’tan ’, ’tanh ’, ’tau ’, ’trunc ’]

>>> _

Python Console

Run help(<library>) to access documentation for a library

Example

Python Console

Run help(<library>) to access documentation for a library

Example

Python Console

Run help(<library>) to access documentation for a library

Example

& ~/workspace/ipp/programs

>>> _

Python Console

Run help(<library>) to access documentation for a library

Example

& ~/workspace/ipp/programs

>>> help(math)

Python Console

Run help(<library>) to access documentation for a library

Example

& ~/workspace/ipp/programs

>>> help(math)

Help on built -in module math:

NAME

math

FILE

(built -in)

DESCRIPTION

This module is always available. It provides access to the

mathematical functions defined by the C standard.

FUNCTIONS

acos (...)

acos(x)

Return the arc cosine (measured in radians) of x.

...

DATA

e = 2.718281828459045

pi = 3.141592653589793

>>> _

Python Console

Run help(<library>.<name>) to access documentation for a particular function from a library

Example

Python Console

Run help(<library>.<name>) to access documentation for a particular function from a library

Example

Python Console

Run help(<library>.<name>) to access documentation for a particular function from a library

Example

& ~/workspace/ipp/programs

>>> _

Python Console

Run help(<library>.<name>) to access documentation for a particular function from a library

Example

& ~/workspace/ipp/programs

>>> help(math.sqrt)

Python Console

Run help(<library>.<name>) to access documentation for a particular function from a library

Example

& ~/workspace/ipp/programs

>>> help(math.sqrt)

Help on built -in function sqrt in module math:

sqrt (...)

sqrt(x)

Return the square root of x.

>>> _

	Outline
	Types
	Expressions
	Statements
	Strings
	Integers
	Floats
	Booleans
	Operator Precedence
	Python Console

