Basic Data Types

1 Exercises

Exercise 1. What is the value and type of each of the following expressions?
a. "1" + " - " + "1"
b. "This parrot would not voom if you put " $+\operatorname{str}(4)+$ " million volts through it!"
c. "42" * 3
d. $\operatorname{int}(" 42 ") * 3$
e. float("3.14") * 3
f. 1-1-1-1
g. $3 / 2+2 * 5$
h. $3 / / 2+2 * 5$
i. $3.14+\operatorname{int}($ math.pi) ** $2 \% 5$
j. (3.14 + int(math.pi) ** 2) \% 5
k. $8<=2$ or $8 \mathrm{e} 2<=2 \mathrm{e} 8$
l. $5+\operatorname{int}($ stdrandom.uniformFloat $(0,1) * 5)$

Exercise 2. Consider the following program:

```
< mystery.py
import stdio
import sys
a = int(sys.argv [1])
b = int(sys.argv[2])
c = int(sys.argv [3])
stdio.writeln(a ** 2 == b ** 2 + c ** 2 or b ** 2 == a ** 2 + c ** 2 or c ** 2 == a ** 2 + b ** 2)
```

a. What does the program write when run with command-line arguments 1,2 , and 3 ?
b. What does the program write when run with command-line arguments 3,4 , and 5 ?
c. What does the program write in general?

Exercise 3. Implement a program called far2cen.py that accepts f (float) as command-line argument representing the temperature in Fahrenheit, and writes to standard output the Celsius equivalent c of the temperature, calculated as $c=\frac{5}{9}(f-32)$. How would you run the program on the terminal to convert $42^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$?

Exercise 4. Implement a program called die.py that accepts n (int) as command-line argument, simulates the roll of an n-sided die, and writes the number rolled to standard output.

2 Solutions

Solution 1.

a. "1-1" (str)
b. "This parrot would not voom if you put 4 million volts through it!" (str)
c. " 424242 N (str)
d. 126 (int)
e. 9.42 (float)
f. -2 (int)
g. 11.5 (float)
h. 11 (int)
i. 7.14 (float)
j. 2.14 (float)
k. True (bool)

1. A random number from the interval $[5,10$) (int)

Solution 2.

a. False
b. True
c. Accepts three command-line arguments a, b, and c as integers and writes True if the square of any one of them is equal to the sum of squares of the other two, and False otherwise.

Solution 3.

```
\sigma}\mathrm{ far2cen.py
import stdio
import sys
f = float(sys.argv[1])
c=(f - 32)*5/9
stdio.writeln(f)
```

```
>_ ~/workspace/ipp/programs
\$ python3 far2cen.py 42
```


Solution 4.

E die.py
import stdio
import stdrandom
import sys
$\mathrm{n}=$ int (sys.argv[1])
result = stdrandom.uniformInt (1, $n+1)$
stdio.writeln(result)

