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Lists

A list (object of type list) is an ordered collection of objects

Creating a list

<name > = [<expression >, <expression >, ..., <expression >]

Example

suits = ["Clubs", "Diamonds", "Hearts", "Spades"]

x = [0.30, 0.60, 0.10]
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Lists

Appending to a list

<name > += [<expression >]

Example (creating a list a with n zeros)

1 a = []

2 for i in range(n):

3 a += [0.0]

Variable trace (n = 3)

line # a i

1 []

2 [] 0

3 [0.0] 0

2 [0.0] 1

3 [0.0, 0.0] 1

2 [0.0, 0.0] 2

3 [0.0, 0.0, 0.0] 2
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Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2
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Lists

Memory model for a list <name> with n objects

0
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Lists

Lists are mutable

Example (reversing a list a)

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n - 1 - i]

5 a[n - 1 - i] = temp

Variable trace (a = [1, 2, 3, 4, 5])

line # a n i

1 [1, 2, 3, 4, 5] 5

2 [1, 2, 3, 4, 5] 5 0

5 [5, 2, 3, 4, 1] 5 0

2 [5, 2, 3, 4, 1] 5 1

5 [5, 4, 3, 2, 1] 5 1
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Lists

Lists can be iterated by index

Example (averaging the numbers in a list a)

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total i average

1 0.0

2 0.0 0

3 2.0 0

2 2.0 1

3 6.0 1

2 6.0 2

3 12.0 2

4 12.0 4.0
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Lists

Lists can also be iterated by value

Example (averaging the numbers in a list a)

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total v average

1 0.0

2 0.0 2.0

3 2.0 2.0

2 2.0 4.0

3 6.0 4.0

2 6.0 6.0

3 12.0 6.0

4 12.0 4.0
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Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value
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Lists

Aliasing refers to the situation where two variables refer to the same object

Example

x = [1, 3, 7]

y = x

x[1] = 42

stdio.writeln(x)

stdio.writeln(y)

[1, 42, 7]

[1, 42, 7]
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Lists

Creating a list y as a copy (not an alias) of x, using a loop

y = []

for v in x:

y += [v]

Creating a list y as a copy (not an alias) of x, using slicing

y = x[:]

In general, x[i:j] returns a sublist [x[i], ..., x[j - 1]], with i = 0 and j = len(x) if either is unspecified
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Lists

Example (playing cards)

# Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

# Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

# Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

# Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS ))

suit = stdrandom.uniformInt (0, len(SUITS ))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])
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Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)
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• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000
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Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ _



Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ python3 sample.py 20 20



Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ python3 sample.py 20 20

15 11 13 1 5 8 16 7 0 4 10 18 19 14 3 12 2 6 9 17

$ _



Lists

L sample.py

import stdarray

import stdio

import stdrandom

import sys

m = int(sys.argv [1])

n = int(sys.argv [2])

perm = stdarray.create1D(n, 0)

for i in range(n):

perm[i] = i

for i in range(m):

r = stdrandom.uniformInt(i, n)

temp = perm[r]

perm[r] = perm[i]

perm[i] = temp

for i in range(m):

stdio.write(str(perm[i]) + " ")

stdio.writeln ()
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L sample.py

import stdarray

import stdio

import stdrandom

import sys

m = int(sys.argv [1])

n = int(sys.argv [2])

perm = stdarray.create1D(n, 0)

for i in range(n):

perm[i] = i

for i in range(m):

r = stdrandom.uniformInt(i, n)

temp = perm[r]

perm[r] = perm[i]

perm[i] = temp

for i in range(m):

stdio.write(str(perm[i]) + " ")

stdio.writeln ()
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Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ _
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Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000
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Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ _
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Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000



Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ _



Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ python3 couponcollector.py 1000000



Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ python3 couponcollector.py 1000000

13401736

$ _



Lists

L couponcollector.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

count = 0

collectedCount = 0

isCollected = stdarray.create1D(n, False)

while collectedCount < n:

value = stdrandom.uniformInt (0, n)

count += 1

if not isCollected[value]:

collectedCount += 1

isCollected[value] = True

stdio.writeln(count)
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L couponcollector.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

count = 0

collectedCount = 0

isCollected = stdarray.create1D(n, False)

while collectedCount < n:

value = stdrandom.uniformInt (0, n)

count += 1

if not isCollected[value]:

collectedCount += 1

isCollected[value] = True

stdio.writeln(count)
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Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ _
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Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100
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Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ _
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Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000



Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ _



Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ python3 primesieve.py 1000000



Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ python3 primesieve.py 1000000

78498

$ _



Lists

L primesieve.py

import stdarray

import stdio

import sys

n = int(sys.argv [1])

isPrime = stdarray.create1D(n + 1, True)

for i in range(2, n):

if isPrime[i]:

for j in range(2, n // i + 1):

isPrime[i * j] = False

count = 0

for i in range(2, n + 1):

if isPrime[i]:

count += 1

stdio.writeln(count)
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L primesieve.py

import stdarray

import stdio

import sys

n = int(sys.argv [1])

isPrime = stdarray.create1D(n + 1, True)

for i in range(2, n):

if isPrime[i]:

for j in range(2, n // i + 1):

isPrime[i * j] = False

count = 0

for i in range(2, n + 1):

if isPrime[i]:

count += 1

stdio.writeln(count)
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<name > = [[<expression >, <expression >, ..., <expression >],

[<expression >, <expression >, ..., <expression >],

...

[<expression >, <expression >, ..., <expression >]]

Example

a = [[ 1, 2, 3, 4],

[ 5, 6, 7, 8],

[ 9, 10, 11, 12]]

i = [[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]
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Creating a 2D list

<name > = [[<expression >, <expression >, ..., <expression >],

[<expression >, <expression >, ..., <expression >],

...

[<expression >, <expression >, ..., <expression >]]

Example

a = [[ 1, 2, 3, 4],

[ 5, 6, 7, 8],

[ 9, 10, 11, 12]]

i = [[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]



Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]
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Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]



Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]



Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]



Lists

The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):

4 c[i][j] = a[i][j] + b[i][j]

Variable trace (a = [[1.0, 2.0], [3.0, 4.0]], b = [[2.0, 3.0], [4.0, 5.0]], n = 2)

line # c i j

1 [[0.0, 0.0], [0.0, 0.0]]

2 [[0.0, 0.0], [0.0, 0.0]] 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 0

4 [[3.0, 0.0], [0.0, 0.0]] 0 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 1

4 [[3.0, 5.0], [0.0, 0.0]] 0 1

2 [[3.0, 5.0], [0.0, 0.0]] 1

3 [[3.0, 5.0], [0.0, 0.0]] 1 0

4 [[3.0, 5.0], [7.0, 0.0]] 1 0

3 [[3.0, 5.0], [7.0, 0.0]] 1 1

4 [[3.0, 5.0], [7.0, 9.0]] 1 1
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The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):
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Memory model for a 2D list <name> with m rows and n columns

0

−→
0

...

1

...

2

...

· · ·

n - 1

...

1

−→
0

...

1

...

2

...

· · ·

n - 1
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2
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...

1

...

2
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· · ·

n - 1
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· · ·
m - 1

−→
0

...

1

...

2

...

· · ·

n - 1

...

Note: m can be obtained as len(<name>) and n as len(<name>[0])

Index to row-major order: k = n * i + j

Row-major order to index: i = k // n and j = k % n
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Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000
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Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice
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Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends
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Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ _
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Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ python3 selfavoid.py 80 1000



Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ python3 selfavoid.py 80 1000

98% dead ends

$ _
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Lists

L selfavoid.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

trials = int(sys.argv [2])

deadEnds = 0

for t in range(trials ):

a = stdarray.create2D(n, n, False)

x = n // 2

y = n // 2

while x > 0 and x < n - 1 and y > 0 and y < n - 1:

a[x][y] = True
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elif r == 3 and not a[x][y + 1]:

y += 1

elif r == 4 and not a[x][y - 1]:

y -= 1

stdio.writeln(str (100 * deadEnds // trials) + "% dead ends")
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a[x][y] = True

if a[x - 1][y] and a[x + 1][y] and a[x][y - 1] and a[x][y + 1]:

deadEnds += 1
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if r == 1 and not a[x + 1][y]:

x += 1

elif r == 2 and not a[x - 1][y]:

x -= 1

elif r == 3 and not a[x][y + 1]:

y += 1

elif r == 4 and not a[x][y - 1]:

y -= 1

stdio.writeln(str (100 * deadEnds // trials) + "% dead ends")
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A 2D list with rows of nonuniform length is called a ragged list

Example (writing a ragged list a)

for i in range(len(a)):

for j in range(len(a[i])):

stdio.write(a[i][j])

stdio.write(" ")

stdio.writeln ()

Output when a = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
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>>> fruit = set(basket)
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>>> "orange" in fruit
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>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True
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>>> a - b

{"b", "d", "r"}

>>> a | b
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>>> a & b

{"c", "a"}

>>> a ^ b

{"l", "r", "d", "m", "b", "z"}

>>> _
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You can loop over a sequence with access to both index and value using enumerate()
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for i, v in enumerate (["tic", "tac", "toe"]):

stdio.writeln(str(i) + " " + v)
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Advanced Looping Techniques

You can loop over two or more equal-length sequences at the same time using zip()

Example

questions = ["name", "quest", "favorite color"]

answers = ["lancelot", "the holy grail", "blue"]

for q, a in zip(questions , answers ):

stdio.writeln("What is your " + q + "? It is " + a + ".")

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.
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Advanced Looping Techniques

You can loop over a sequence in reverse using reversed()

Example

for i in reversed(range(1, 10, 2)):

stdio.writeln(i)
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Advanced Looping Techniques

You can loop over a sequence in sorted order using sorted()

Example

basket = ["orange", "apple", "pear", "orange", "banana", "apple"]

for fruit in sorted(basket ):

stdio.writeln(fruit)
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