
Collection Data Types

Outline

1 Lists

2 Tuples

3 Sets

4 Dictionaries

5 Advanced Looping Techniques

Lists

A list (object of type list) is an ordered collection of objects

Creating a list

<name > = [<expression >, <expression >, ..., <expression >]

Example

suits = ["Clubs", "Diamonds", "Hearts", "Spades"]

x = [0.30, 0.60, 0.10]

Lists

A list (object of type list) is an ordered collection of objects

Creating a list

<name > = [<expression >, <expression >, ..., <expression >]

Example

suits = ["Clubs", "Diamonds", "Hearts", "Spades"]

x = [0.30, 0.60, 0.10]

Lists

A list (object of type list) is an ordered collection of objects

Creating a list

<name > = [<expression >, <expression >, ..., <expression >]

Example

suits = ["Clubs", "Diamonds", "Hearts", "Spades"]

x = [0.30, 0.60, 0.10]

Lists

A list (object of type list) is an ordered collection of objects

Creating a list

<name > = [<expression >, <expression >, ..., <expression >]

Example

suits = ["Clubs", "Diamonds", "Hearts", "Spades"]

x = [0.30, 0.60, 0.10]

Lists

Appending to a list

<name > += [<expression >]

Example (creating a list a with n zeros)

1 a = []

2 for i in range(n):

3 a += [0.0]

Variable trace (n = 3)

line # a i

1 []

2 [] 0

3 [0.0] 0

2 [0.0] 1

3 [0.0, 0.0] 1

2 [0.0, 0.0] 2

3 [0.0, 0.0, 0.0] 2

Lists

Appending to a list

<name > += [<expression >]

Example (creating a list a with n zeros)

1 a = []

2 for i in range(n):

3 a += [0.0]

Variable trace (n = 3)

line # a i

1 []

2 [] 0

3 [0.0] 0

2 [0.0] 1

3 [0.0, 0.0] 1

2 [0.0, 0.0] 2

3 [0.0, 0.0, 0.0] 2

Lists

Appending to a list

<name > += [<expression >]

Example (creating a list a with n zeros)

1 a = []

2 for i in range(n):

3 a += [0.0]

Variable trace (n = 3)

line # a i

1 []

2 [] 0

3 [0.0] 0

2 [0.0] 1

3 [0.0, 0.0] 1

2 [0.0, 0.0] 2

3 [0.0, 0.0, 0.0] 2

Lists

Appending to a list

<name > += [<expression >]

Example (creating a list a with n zeros)

1 a = []

2 for i in range(n):

3 a += [0.0]

Variable trace (n = 3)

line # a i

1 []

2 [] 0

3 [0.0] 0

2 [0.0] 1

3 [0.0, 0.0] 1

2 [0.0, 0.0] 2

3 [0.0, 0.0, 0.0] 2

Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2

Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2

Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2

Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2

Lists

The number of objects in a list <name> is obtained as len(<name>)

The ith object in a list <name> is referred to as <name>[i], where 0 <= i < len(<name>)

Example (computing the dot product of lists x and y)

1 total = 0.0

2 for i in range(len(x)):

3 total += x[i] * y[i]

Variable trace (x = [1.0, 2.0, 3.0], y = [4.0, 5.0, 6.0])

line # total i

1 0.0

2 0.0 0

3 4.0 0

2 4.0 1

3 14.0 1

2 14.0 2

3 32.0 2

Lists

Memory model for a list <name> with n objects

0

...

1

...

2

...

· · ·

n - 1

...

Lists

Memory model for a list <name> with n objects

0

...

1

...

2

...

· · ·

n - 1

...

Lists

Lists are mutable

Example (reversing a list a)

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n - 1 - i]

5 a[n - 1 - i] = temp

Variable trace (a = [1, 2, 3, 4, 5])

line # a n i

1 [1, 2, 3, 4, 5] 5

2 [1, 2, 3, 4, 5] 5 0

5 [5, 2, 3, 4, 1] 5 0

2 [5, 2, 3, 4, 1] 5 1

5 [5, 4, 3, 2, 1] 5 1

Lists

Lists are mutable

Example (reversing a list a)

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n - 1 - i]

5 a[n - 1 - i] = temp

Variable trace (a = [1, 2, 3, 4, 5])

line # a n i

1 [1, 2, 3, 4, 5] 5

2 [1, 2, 3, 4, 5] 5 0

5 [5, 2, 3, 4, 1] 5 0

2 [5, 2, 3, 4, 1] 5 1

5 [5, 4, 3, 2, 1] 5 1

Lists

Lists are mutable

Example (reversing a list a)

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n - 1 - i]

5 a[n - 1 - i] = temp

Variable trace (a = [1, 2, 3, 4, 5])

line # a n i

1 [1, 2, 3, 4, 5] 5

2 [1, 2, 3, 4, 5] 5 0

5 [5, 2, 3, 4, 1] 5 0

2 [5, 2, 3, 4, 1] 5 1

5 [5, 4, 3, 2, 1] 5 1

Lists

Lists are mutable

Example (reversing a list a)

1 n = len(a)

2 for i in range(n // 2):

3 temp = a[i]

4 a[i] = a[n - 1 - i]

5 a[n - 1 - i] = temp

Variable trace (a = [1, 2, 3, 4, 5])

line # a n i

1 [1, 2, 3, 4, 5] 5

2 [1, 2, 3, 4, 5] 5 0

5 [5, 2, 3, 4, 1] 5 0

2 [5, 2, 3, 4, 1] 5 1

5 [5, 4, 3, 2, 1] 5 1

Lists

Lists can be iterated by index

Example (averaging the numbers in a list a)

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total i average

1 0.0

2 0.0 0

3 2.0 0

2 2.0 1

3 6.0 1

2 6.0 2

3 12.0 2

4 12.0 4.0

Lists

Lists can be iterated by index

Example (averaging the numbers in a list a)

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total i average

1 0.0

2 0.0 0

3 2.0 0

2 2.0 1

3 6.0 1

2 6.0 2

3 12.0 2

4 12.0 4.0

Lists

Lists can be iterated by index

Example (averaging the numbers in a list a)

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total i average

1 0.0

2 0.0 0

3 2.0 0

2 2.0 1

3 6.0 1

2 6.0 2

3 12.0 2

4 12.0 4.0

Lists

Lists can be iterated by index

Example (averaging the numbers in a list a)

1 total = 0.0

2 for i in range(len(a)):

3 total += a[i]

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total i average

1 0.0

2 0.0 0

3 2.0 0

2 2.0 1

3 6.0 1

2 6.0 2

3 12.0 2

4 12.0 4.0

Lists

Lists can also be iterated by value

Example (averaging the numbers in a list a)

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total v average

1 0.0

2 0.0 2.0

3 2.0 2.0

2 2.0 4.0

3 6.0 4.0

2 6.0 6.0

3 12.0 6.0

4 12.0 4.0

Lists

Lists can also be iterated by value

Example (averaging the numbers in a list a)

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total v average

1 0.0

2 0.0 2.0

3 2.0 2.0

2 2.0 4.0

3 6.0 4.0

2 6.0 6.0

3 12.0 6.0

4 12.0 4.0

Lists

Lists can also be iterated by value

Example (averaging the numbers in a list a)

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total v average

1 0.0

2 0.0 2.0

3 2.0 2.0

2 2.0 4.0

3 6.0 4.0

2 6.0 6.0

3 12.0 6.0

4 12.0 4.0

Lists

Lists can also be iterated by value

Example (averaging the numbers in a list a)

1 total = 0.0

2 for v in a:

3 total += v

4 average = total / len(a)

Variable trace (a = [2.0, 4.0, 6.0])

line # total v average

1 0.0

2 0.0 2.0

3 2.0 2.0

2 2.0 4.0

3 6.0 4.0

2 6.0 6.0

3 12.0 6.0

4 12.0 4.0

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Python has several built-in functions that operate on lists

For example, given a list a:

• len(a) returns the number of elements in the list

• sum(a) returns the sum of the elements in the list

• min(a) returns the minimum element in the list

• max(a) returns the maximum element in the list

The stdarray library provides functions for creating lists

² stdarray

create1D(n, value = None) creates and returns a 1D list of size n, with each element initialized to value

create2D(m, n, value = None) creates and returns a 2D list of size m x n, with each element initialized to value

Lists

Aliasing refers to the situation where two variables refer to the same object

Example

x = [1, 3, 7]

y = x

x[1] = 42

stdio.writeln(x)

stdio.writeln(y)

[1, 42, 7]

[1, 42, 7]

Lists

Aliasing refers to the situation where two variables refer to the same object

Example

x = [1, 3, 7]

y = x

x[1] = 42

stdio.writeln(x)

stdio.writeln(y)

[1, 42, 7]

[1, 42, 7]

Lists

Aliasing refers to the situation where two variables refer to the same object

Example

x = [1, 3, 7]

y = x

x[1] = 42

stdio.writeln(x)

stdio.writeln(y)

[1, 42, 7]

[1, 42, 7]

Lists

Creating a list y as a copy (not an alias) of x, using a loop

y = []

for v in x:

y += [v]

Creating a list y as a copy (not an alias) of x, using slicing

y = x[:]

In general, x[i:j] returns a sublist [x[i], ..., x[j - 1]], with i = 0 and j = len(x) if either is unspecified

Lists

Creating a list y as a copy (not an alias) of x, using a loop

y = []

for v in x:

y += [v]

Creating a list y as a copy (not an alias) of x, using slicing

y = x[:]

In general, x[i:j] returns a sublist [x[i], ..., x[j - 1]], with i = 0 and j = len(x) if either is unspecified

Lists

Creating a list y as a copy (not an alias) of x, using a loop

y = []

for v in x:

y += [v]

Creating a list y as a copy (not an alias) of x, using slicing

y = x[:]

In general, x[i:j] returns a sublist [x[i], ..., x[j - 1]], with i = 0 and j = len(x) if either is unspecified

Lists

Creating a list y as a copy (not an alias) of x, using a loop

y = []

for v in x:

y += [v]

Creating a list y as a copy (not an alias) of x, using slicing

y = x[:]

In general, x[i:j] returns a sublist [x[i], ..., x[j - 1]], with i = 0 and j = len(x) if either is unspecified

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Example (playing cards)

Represent ranks and suits.

RANKS = ["2", "3", "4", "5", "6", "7", "8", "9", "10", "Jack", "Queen", "King", "Ace"]

SUITS = ["Clubs", "Diamonds", "Hearts", "Spades"]

Create a deck.

deck = []

for rank in RANKS:

for suit in SUITS:

card = rank + " of " + suit

deck += [card]

Shuffle the deck.

n = len(deck)

for i in range(n):

r = stdrandom.uniformInt(i, n)

temp = deck[r]

deck[r] = deck[i]

deck[i] = temp

Draw a random card from the deck and write it to standard output.

rank = stdrandom.uniformInt (0, len(RANKS))

suit = stdrandom.uniformInt (0, len(SUITS))

stdio.writeln(RANKS[rank] + " of " + SUITS[suit])

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ _

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ _

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ _

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ python3 sample.py 20 20

Lists

Program: sample.py

• Command-line input: m (int) and n (int)

• Standard output: a random sample (without replacement) of m integers from the interval [0, n)

& ~/workspace/ipp/programs

$ python3 sample.py 6 16

10 7 11 1 8 5

$ python3 sample.py 10 1000

258 802 440 28 244 256 564 11 515 24

$ python3 sample.py 20 20

15 11 13 1 5 8 16 7 0 4 10 18 19 14 3 12 2 6 9 17

$ _

Lists

L sample.py

import stdarray

import stdio

import stdrandom

import sys

m = int(sys.argv [1])

n = int(sys.argv [2])

perm = stdarray.create1D(n, 0)

for i in range(n):

perm[i] = i

for i in range(m):

r = stdrandom.uniformInt(i, n)

temp = perm[r]

perm[r] = perm[i]

perm[i] = temp

for i in range(m):

stdio.write(str(perm[i]) + " ")

stdio.writeln ()

Lists

L sample.py

import stdarray

import stdio

import stdrandom

import sys

m = int(sys.argv [1])

n = int(sys.argv [2])

perm = stdarray.create1D(n, 0)

for i in range(n):

perm[i] = i

for i in range(m):

r = stdrandom.uniformInt(i, n)

temp = perm[r]

perm[r] = perm[i]

perm[i] = temp

for i in range(m):

stdio.write(str(perm[i]) + " ")

stdio.writeln ()

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ _

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ _

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ _

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ python3 couponcollector.py 1000000

Lists

Program: couponcollector.py

• Command-line input: n (int)

• Standard output: number of coupons one must collect before obtaining one of each of n types

& ~/workspace/ipp/programs

$ python3 couponcollector.py 1000

6276

$ python3 couponcollector.py 1000

7038

$ python3 couponcollector.py 1000000

13401736

$ _

Lists

L couponcollector.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

count = 0

collectedCount = 0

isCollected = stdarray.create1D(n, False)

while collectedCount < n:

value = stdrandom.uniformInt (0, n)

count += 1

if not isCollected[value]:

collectedCount += 1

isCollected[value] = True

stdio.writeln(count)

Lists

L couponcollector.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

count = 0

collectedCount = 0

isCollected = stdarray.create1D(n, False)

while collectedCount < n:

value = stdrandom.uniformInt (0, n)

count += 1

if not isCollected[value]:

collectedCount += 1

isCollected[value] = True

stdio.writeln(count)

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ _

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ _

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ _

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ python3 primesieve.py 1000000

Lists

Program: primesieve.py

• Command-line input: n (int)

• Standard output: number of primes that are less than or equal to n

& ~/workspace/ipp/programs

$ python3 primesieve.py 100

25

$ python3 primesieve.py 1000

168

$ python3 primesieve.py 1000000

78498

$ _

Lists

L primesieve.py

import stdarray

import stdio

import sys

n = int(sys.argv [1])

isPrime = stdarray.create1D(n + 1, True)

for i in range(2, n):

if isPrime[i]:

for j in range(2, n // i + 1):

isPrime[i * j] = False

count = 0

for i in range(2, n + 1):

if isPrime[i]:

count += 1

stdio.writeln(count)

Lists

L primesieve.py

import stdarray

import stdio

import sys

n = int(sys.argv [1])

isPrime = stdarray.create1D(n + 1, True)

for i in range(2, n):

if isPrime[i]:

for j in range(2, n // i + 1):

isPrime[i * j] = False

count = 0

for i in range(2, n + 1):

if isPrime[i]:

count += 1

stdio.writeln(count)

Lists

Creating a 2D list

<name > = [[<expression >, <expression >, ..., <expression >],

[<expression >, <expression >, ..., <expression >],

...

[<expression >, <expression >, ..., <expression >]]

Example

a = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]]

i = [[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]

Lists

Creating a 2D list

<name > = [[<expression >, <expression >, ..., <expression >],

[<expression >, <expression >, ..., <expression >],

...

[<expression >, <expression >, ..., <expression >]]

Example

a = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]]

i = [[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]

Lists

Creating a 2D list

<name > = [[<expression >, <expression >, ..., <expression >],

[<expression >, <expression >, ..., <expression >],

...

[<expression >, <expression >, ..., <expression >]]

Example

a = [[1, 2, 3, 4],

[5, 6, 7, 8],

[9, 10, 11, 12]]

i = [[1, 0, 0],

[0, 1, 0],

[0, 0, 1]]

Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

Lists

Appending to a 2D list

<name > += [<expression >]

Example (creating a 2D list a with m x n zeros)

1 a = []

2 for i in range(m):

3 row = stdarray.create1D(n, 0.0)

4 a += [row]

Variable trace (m = 2, n = 3)

line # a i row

1 []

2 [] 0

3 [] 0 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0]] 0 [0.0, 0.0, 0.0]

2 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

3 [[0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

4 [[0.0, 0.0, 0.0], [0.0, 0.0, 0.0]] 1 [0.0, 0.0, 0.0]

Lists

The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):

4 c[i][j] = a[i][j] + b[i][j]

Variable trace (a = [[1.0, 2.0], [3.0, 4.0]], b = [[2.0, 3.0], [4.0, 5.0]], n = 2)

line # c i j

1 [[0.0, 0.0], [0.0, 0.0]]

2 [[0.0, 0.0], [0.0, 0.0]] 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 0

4 [[3.0, 0.0], [0.0, 0.0]] 0 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 1

4 [[3.0, 5.0], [0.0, 0.0]] 0 1

2 [[3.0, 5.0], [0.0, 0.0]] 1

3 [[3.0, 5.0], [0.0, 0.0]] 1 0

4 [[3.0, 5.0], [7.0, 0.0]] 1 0

3 [[3.0, 5.0], [7.0, 0.0]] 1 1

4 [[3.0, 5.0], [7.0, 9.0]] 1 1

Lists

The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):

4 c[i][j] = a[i][j] + b[i][j]

Variable trace (a = [[1.0, 2.0], [3.0, 4.0]], b = [[2.0, 3.0], [4.0, 5.0]], n = 2)

line # c i j

1 [[0.0, 0.0], [0.0, 0.0]]

2 [[0.0, 0.0], [0.0, 0.0]] 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 0

4 [[3.0, 0.0], [0.0, 0.0]] 0 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 1

4 [[3.0, 5.0], [0.0, 0.0]] 0 1

2 [[3.0, 5.0], [0.0, 0.0]] 1

3 [[3.0, 5.0], [0.0, 0.0]] 1 0

4 [[3.0, 5.0], [7.0, 0.0]] 1 0

3 [[3.0, 5.0], [7.0, 0.0]] 1 1

4 [[3.0, 5.0], [7.0, 9.0]] 1 1

Lists

The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):

4 c[i][j] = a[i][j] + b[i][j]

Variable trace (a = [[1.0, 2.0], [3.0, 4.0]], b = [[2.0, 3.0], [4.0, 5.0]], n = 2)

line # c i j

1 [[0.0, 0.0], [0.0, 0.0]]

2 [[0.0, 0.0], [0.0, 0.0]] 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 0

4 [[3.0, 0.0], [0.0, 0.0]] 0 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 1

4 [[3.0, 5.0], [0.0, 0.0]] 0 1

2 [[3.0, 5.0], [0.0, 0.0]] 1

3 [[3.0, 5.0], [0.0, 0.0]] 1 0

4 [[3.0, 5.0], [7.0, 0.0]] 1 0

3 [[3.0, 5.0], [7.0, 0.0]] 1 1

4 [[3.0, 5.0], [7.0, 9.0]] 1 1

Lists

The object at row i and column j in a 2D list <name> with m rows and n columns is referred to as <name>[i][j] where 0 <= i < m

and 0 <= j < n

Example (adding two n x n matrices a and b)

1 c = stdarray.create2D(n, n, 0.0)

2 for i in range(n):

3 for j in range(n):

4 c[i][j] = a[i][j] + b[i][j]

Variable trace (a = [[1.0, 2.0], [3.0, 4.0]], b = [[2.0, 3.0], [4.0, 5.0]], n = 2)

line # c i j

1 [[0.0, 0.0], [0.0, 0.0]]

2 [[0.0, 0.0], [0.0, 0.0]] 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 0

4 [[3.0, 0.0], [0.0, 0.0]] 0 0

3 [[0.0, 0.0], [0.0, 0.0]] 0 1

4 [[3.0, 5.0], [0.0, 0.0]] 0 1

2 [[3.0, 5.0], [0.0, 0.0]] 1

3 [[3.0, 5.0], [0.0, 0.0]] 1 0

4 [[3.0, 5.0], [7.0, 0.0]] 1 0

3 [[3.0, 5.0], [7.0, 0.0]] 1 1

4 [[3.0, 5.0], [7.0, 9.0]] 1 1

Lists

Memory model for a 2D list <name> with m rows and n columns

0

−→
0

...

1

...

2

...

· · ·

n - 1

...

1

−→
0

...

1

...

2

...

· · ·

n - 1

...

2

−→
0

...

1

...

2

...

· · ·

n - 1

...

· · ·
m - 1

−→
0

...

1

...

2

...

· · ·

n - 1

...

Note: m can be obtained as len(<name>) and n as len(<name>[0])

Index to row-major order: k = n * i + j

Row-major order to index: i = k // n and j = k % n

Lists

Memory model for a 2D list <name> with m rows and n columns

0

−→
0

...

1

...

2

...

· · ·

n - 1

...

1

−→
0

...

1

...

2

...

· · ·

n - 1

...

2

−→
0

...

1

...

2

...

· · ·

n - 1

...

· · ·
m - 1

−→
0

...

1

...

2

...

· · ·

n - 1

...

Note: m can be obtained as len(<name>) and n as len(<name>[0])

Index to row-major order: k = n * i + j

Row-major order to index: i = k // n and j = k % n

Lists

Memory model for a 2D list <name> with m rows and n columns

0

−→
0

...

1

...

2

...

· · ·

n - 1

...

1

−→
0

...

1

...

2

...

· · ·

n - 1

...

2

−→
0

...

1

...

2

...

· · ·

n - 1

...

· · ·
m - 1

−→
0

...

1

...

2

...

· · ·

n - 1

...

Note: m can be obtained as len(<name>) and n as len(<name>[0])

Index to row-major order: k = n * i + j

Row-major order to index: i = k // n and j = k % n

Lists

Memory model for a 2D list <name> with m rows and n columns

0

−→
0

...

1

...

2

...

· · ·

n - 1

...

1

−→
0

...

1

...

2

...

· · ·

n - 1

...

2

−→
0

...

1

...

2

...

· · ·

n - 1

...

· · ·
m - 1

−→
0

...

1

...

2

...

· · ·

n - 1

...

Note: m can be obtained as len(<name>) and n as len(<name>[0])

Index to row-major order: k = n * i + j

Row-major order to index: i = k // n and j = k % n

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ _

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ _

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ _

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ python3 selfavoid.py 80 1000

Lists

Program: selfavoid.py

• Command-line input: n (int) and trials (int)

• Standard output: percentage of dead ends encountered in trials self-avoiding random walks on an n × n lattice

& ~/workspace/ipp/programs

$ python3 selfavoid.py 20 1000

33% dead ends

$ python3 selfavoid.py 40 1000

78% dead ends

$ python3 selfavoid.py 80 1000

98% dead ends

$ _

Lists

Escape

→ ↑ ↑ ← ← ← ↑ ↑

Dead End

→ ↓ ↓ ← ← ↑ →

Lists

Escape

→ ↑ ↑ ← ← ← ↑ ↑

Dead End

→ ↓ ↓ ← ← ↑ →

Lists

L selfavoid.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

trials = int(sys.argv [2])

deadEnds = 0

for t in range(trials):

a = stdarray.create2D(n, n, False)

x = n // 2

y = n // 2

while x > 0 and x < n - 1 and y > 0 and y < n - 1:

a[x][y] = True

if a[x - 1][y] and a[x + 1][y] and a[x][y - 1] and a[x][y + 1]:

deadEnds += 1

break

r = stdrandom.uniformInt (1, 5)

if r == 1 and not a[x + 1][y]:

x += 1

elif r == 2 and not a[x - 1][y]:

x -= 1

elif r == 3 and not a[x][y + 1]:

y += 1

elif r == 4 and not a[x][y - 1]:

y -= 1

stdio.writeln(str (100 * deadEnds // trials) + "% dead ends")

Lists

L selfavoid.py

import stdarray

import stdio

import stdrandom

import sys

n = int(sys.argv [1])

trials = int(sys.argv [2])

deadEnds = 0

for t in range(trials):

a = stdarray.create2D(n, n, False)

x = n // 2

y = n // 2

while x > 0 and x < n - 1 and y > 0 and y < n - 1:

a[x][y] = True

if a[x - 1][y] and a[x + 1][y] and a[x][y - 1] and a[x][y + 1]:

deadEnds += 1

break

r = stdrandom.uniformInt (1, 5)

if r == 1 and not a[x + 1][y]:

x += 1

elif r == 2 and not a[x - 1][y]:

x -= 1

elif r == 3 and not a[x][y + 1]:

y += 1

elif r == 4 and not a[x][y - 1]:

y -= 1

stdio.writeln(str (100 * deadEnds // trials) + "% dead ends")

Lists

A 2D list with rows of nonuniform length is called a ragged list

Example (writing a ragged list a)

for i in range(len(a)):

for j in range(len(a[i])):

stdio.write(a[i][j])

stdio.write(" ")

stdio.writeln ()

Output when a = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Lists

A 2D list with rows of nonuniform length is called a ragged list

Example (writing a ragged list a)

for i in range(len(a)):

for j in range(len(a[i])):

stdio.write(a[i][j])

stdio.write(" ")

stdio.writeln ()

Output when a = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Lists

A 2D list with rows of nonuniform length is called a ragged list

Example (writing a ragged list a)

for i in range(len(a)):

for j in range(len(a[i])):

stdio.write(a[i][j])

stdio.write(" ")

stdio.writeln ()

Output when a = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Lists

A 2D list with rows of nonuniform length is called a ragged list

Example (writing a ragged list a)

for i in range(len(a)):

for j in range(len(a[i])):

stdio.write(a[i][j])

stdio.write(" ")

stdio.writeln ()

Output when a = [[1], [1, 1], [1, 2, 1], [1, 3, 3, 1], [1, 4, 6, 4, 1]]

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

0

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

0

>>> singleton = "Hello",

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

0

>>> singleton = "Hello",

>>> _

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

0

>>> singleton = "Hello",

>>> len(singleton)

Tuples

A tuple (object of type tuple) is an immutable, ordered collection of objects

& ~/workspace/ipp/programs

>>> t = 42, 1729, "Hello"

>>> t

(42, 1729, "Hello")

>>> 1729 in t

True

>>> t[1]

1729

>>> t[2] = "Hello , World"

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

TypeError: ’tuple ’ object does not support item assignment

>>> empty = ()

>>> len(empty)

0

>>> singleton = "Hello",

>>> len(singleton)

1

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

{"l", "c", "d", "z", "a", "r", "m", "b"}

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

{"l", "c", "d", "z", "a", "r", "m", "b"}

>>> a & b

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

{"l", "c", "d", "z", "a", "r", "m", "b"}

>>> a & b

{"c", "a"}

>>> _

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

{"l", "c", "d", "z", "a", "r", "m", "b"}

>>> a & b

{"c", "a"}

>>> a ^ b

Sets

A set (object of type set) is an unordered collection of objects with no duplicates

& ~/workspace/ipp/programs

>>> basket = [" orange", "apple", "pear", "orange", "banana", "apple"]

>>> fruit = set(basket)

>>> fruit

{" banana", "pear", "orange", "apple "}

>>> "orange" in fruit

True

>>> a = set(" abracadabra ")

>>> b = set(" alacazam ")

>>> a - b

{"b", "d", "r"}

>>> a | b

{"l", "c", "d", "z", "a", "r", "m", "b"}

>>> a & b

{"c", "a"}

>>> a ^ b

{"l", "r", "d", "m", "b", "z"}

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

>>> tel

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127, "irv": 4127}

>>> _

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127, "irv": 4127}

>>> "guido" in tel

Dictionaries

A dictionary (object of type dict) is an unordered collection of key-value pairs (each an object), with the keys being
unique

& ~/workspace/ipp/programs

>>> tel = {"jack" : 4098, "sape" : 4139}

>>> tel[" guido"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127}

>>> tel["jack"]

4098

>>> tel["irv"] = 4127

>>> tel

{"jack": 4098, "sape": 4139, "guido": 4127, "irv": 4127}

>>> "guido" in tel

True

>>> _

Advanced Looping Techniques

You can loop over a sequence with access to both index and value using enumerate()

Example

for i, v in enumerate (["tic", "tac", "toe"]):

stdio.writeln(str(i) + " " + v)

0 tic

1 tac

2 toe

Advanced Looping Techniques

You can loop over a sequence with access to both index and value using enumerate()

Example

for i, v in enumerate (["tic", "tac", "toe"]):

stdio.writeln(str(i) + " " + v)

0 tic

1 tac

2 toe

Advanced Looping Techniques

You can loop over a sequence with access to both index and value using enumerate()

Example

for i, v in enumerate (["tic", "tac", "toe"]):

stdio.writeln(str(i) + " " + v)

0 tic

1 tac

2 toe

Advanced Looping Techniques

You can loop over a sequence with access to both index and value using enumerate()

Example

for i, v in enumerate (["tic", "tac", "toe"]):

stdio.writeln(str(i) + " " + v)

0 tic

1 tac

2 toe

Advanced Looping Techniques

You can loop over two or more equal-length sequences at the same time using zip()

Example

questions = ["name", "quest", "favorite color"]

answers = ["lancelot", "the holy grail", "blue"]

for q, a in zip(questions , answers):

stdio.writeln("What is your " + q + "? It is " + a + ".")

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.

Advanced Looping Techniques

You can loop over two or more equal-length sequences at the same time using zip()

Example

questions = ["name", "quest", "favorite color"]

answers = ["lancelot", "the holy grail", "blue"]

for q, a in zip(questions , answers):

stdio.writeln("What is your " + q + "? It is " + a + ".")

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.

Advanced Looping Techniques

You can loop over two or more equal-length sequences at the same time using zip()

Example

questions = ["name", "quest", "favorite color"]

answers = ["lancelot", "the holy grail", "blue"]

for q, a in zip(questions , answers):

stdio.writeln("What is your " + q + "? It is " + a + ".")

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.

Advanced Looping Techniques

You can loop over two or more equal-length sequences at the same time using zip()

Example

questions = ["name", "quest", "favorite color"]

answers = ["lancelot", "the holy grail", "blue"]

for q, a in zip(questions , answers):

stdio.writeln("What is your " + q + "? It is " + a + ".")

What is your name? It is lancelot.

What is your quest? It is the holy grail.

What is your favorite color? It is blue.

Advanced Looping Techniques

You can loop over a sequence in reverse using reversed()

Example

for i in reversed(range(1, 10, 2)):

stdio.writeln(i)

9

7

5

3

1

Advanced Looping Techniques

You can loop over a sequence in reverse using reversed()

Example

for i in reversed(range(1, 10, 2)):

stdio.writeln(i)

9

7

5

3

1

Advanced Looping Techniques

You can loop over a sequence in reverse using reversed()

Example

for i in reversed(range(1, 10, 2)):

stdio.writeln(i)

9

7

5

3

1

Advanced Looping Techniques

You can loop over a sequence in reverse using reversed()

Example

for i in reversed(range(1, 10, 2)):

stdio.writeln(i)

9

7

5

3

1

Advanced Looping Techniques

You can loop over a sequence in sorted order using sorted()

Example

basket = ["orange", "apple", "pear", "orange", "banana", "apple"]

for fruit in sorted(basket):

stdio.writeln(fruit)

apple

apple

banana

orange

orange

pear

Advanced Looping Techniques

You can loop over a sequence in sorted order using sorted()

Example

basket = ["orange", "apple", "pear", "orange", "banana", "apple"]

for fruit in sorted(basket):

stdio.writeln(fruit)

apple

apple

banana

orange

orange

pear

Advanced Looping Techniques

You can loop over a sequence in sorted order using sorted()

Example

basket = ["orange", "apple", "pear", "orange", "banana", "apple"]

for fruit in sorted(basket):

stdio.writeln(fruit)

apple

apple

banana

orange

orange

pear

Advanced Looping Techniques

You can loop over a sequence in sorted order using sorted()

Example

basket = ["orange", "apple", "pear", "orange", "banana", "apple"]

for fruit in sorted(basket):

stdio.writeln(fruit)

apple

apple

banana

orange

orange

pear

	Outline
	Lists
	Tuples
	Sets
	Dictionaries
	Advanced Looping Techniques

