1 Exercises

Exercise 1. Consider the following code fragment:

```python
if m >= 1 and m <= 5:
    stdio.write("Spring ")
elif m >= 6 and m <= 8:
    stdio.write("Summer ")
else:
    stdio.write("Fall ")
stdio.writeln(y)
```

What does the program write when m and y take on the following values?

a. m = 10 and y = 2020
b. m = 5 and y = 2021
c. m = 6 and y = 2022

Exercise 2. What does the following code fragment write?

```python
i = 9
while i >= 0:
    stdio.writeln(str(i) + " " + str(2 ** i))
i -= 2
```

Exercise 3. What are the arithmetic progressions returned by the following calles to range()?

a. range(-5)
b. range(5)
c. range(3, 10)
d. range(3, 10, 2)
e. range(5, -5, -1)

Exercise 4. What does the following code fragment write?

```python
for i in range(3, 40, 4):
    if i % 5 == 0:
        stdio.writeln(i)
```

Exercise 5. What does the following code fragment write?

```python
i = 1
for c in "hello":
    stdio.writeln(c * i)
    i += 1
```

Exercise 6. What does the following code fragment write?

```python
for i in range(5):
    for j in range(6):
        if j == 5:
            stdio.writeln(i + j)
        else:
            stdio.write(str(i + j) + "+")
```
Exercise 7. Implement a program called `generalizedharmonic.py` that accepts \(n \) (int) and \(r \) (int) as command-line arguments and writes the value of the generalized harmonic number \(H(n, r) \) to standard output, computed using the formula
\[
H(n, r) = \frac{1}{1^r} + \frac{1}{2^r} + \frac{1}{3^r} + \cdots + \frac{1}{n^r}.
\]

Exercise 8. Implement a program called `matrix.py` that accepts \(n \) (int) and \(k \) (int) as command-line arguments and writes an \(n \times n \) matrix in which the elements below the main diagonal are all zeros and the rest of the elements have the value \(k \). The elements of the matrix must be separated by a single space and each row must end with a newline character at the end.

```
> /workspace/ipp/programs
$ python matrix.py 5 2
 2 2 2 2
 0 2 2 2
 0 0 2 2
 0 0 0 2
 0 0 0 2
$
```

Exercise 9. Consider the program `gambler.py`.

a. How many variables does the program define?

b. Write down the names of the variables and the scope of each variable.

2 Solutions

Solution 1.

a. Fall 2020

b. Spring 2021

C. Summer 2022

Solution 2.

```
9 512
7 128
5 32
3 8
1 2
$
```

Solution 3.

a. \([] \)

b. \([0, 1, 2, 3, 4] \)

c. \([3, 4, 5, 6, 7, 8, 9] \)

d. \([3, 5, 7, 9] \)

e. \([5, 4, 3, 2, 1, 0, -1, -2, -3, -4] \)
Solution 4.

15
35

Solution 5.

h
 ee
 lll
 llll
 ooooo

Solution 6.

0-1-2-3-4-5
1-2-3-4-5-6-6
2-3-4-5-6-7
3-4-5-6-7-8
4-5-6-7-8-9

Solution 7.

```python
import stdio
import sys

n = int(sys.argv[1])
r = int(sys.argv[2])
total = 0
for i in range(1, n + 1):
    total += 1 / i ** r
stdio.writeln(total)
```

Solution 8.

```python
import stdio
import sys

n = int(sys.argv[1])
k = int(sys.argv[2])
for i in range(n):
    for j in range(n):
        e = 0 if i > j else k
        if j == n - 1:
            stdio.writeln(e)
        else:
            stdio.write(str(e) + " ")
```

Solution 9.

a. There are seven variables defined in gambler.py.

b. Here are their names and scopes:

<table>
<thead>
<tr>
<th>Variable</th>
<th>Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>stake</td>
<td>lines 9 — 25</td>
</tr>
<tr>
<td>goal</td>
<td>lines 10 — 25</td>
</tr>
<tr>
<td>trials</td>
<td>lines 11 — 25</td>
</tr>
<tr>
<td>bets</td>
<td>lines 12 — 25</td>
</tr>
<tr>
<td>wins</td>
<td>lines 13 — 25</td>
</tr>
<tr>
<td>t</td>
<td>lines 14 — 23</td>
</tr>
<tr>
<td>cash</td>
<td>lines 15 — 23</td>
</tr>
</tbody>
</table>