
Creating Data Types



Outline

1 Basic Elements of a Data Type

2 Examples of Data Types



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

We implement a data type as a class — the keyword class, followed by the class name, followed by a colon, and then a
list of method definitions

A class typically defines a constructor, instance variables (aka attributes of the class), and methods

A constructor creates an object of the specified type and returns a reference to that object

When a client calls a constructor, Python calls the __init__() method of the data type to define and initialize the instance
variables, and returns a reference to the new object

A method definition consists of its signature — the def keyword followed by its name, a list of parameter variables, and a
colon — and its body

By convention, the first parameter of a method is named self

When a client calls a method, the self parameter variable references the object to be manipulated, ie, the object that
was used to invoke the method; in the case of __init__(), it is a reference to the newly created object



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Basic Elements of a Data Type

Instance variables implement the values of a data type

An instance variable belongs to a particular instance of a class, ie, to a particular object

By convention, instance variable names begin with an underscore

A method typically uses three kinds of variables

• The self object’s instance variables

• The method’s parameter variables

• Local variables

The key difference between functions and methods is that a method is associated with a specified object, with direct
access to its instance variables

To support the operation str(o), where o is an object of data type T, we must implement the method __str()__ in T

A client should access a data type only through the methods in its API



Examples of Data Types

² Stopwatch

Stopwatch() Constructs a new stopwatch

elapsedTime() Returns the elapsed time (in seconds) since creation



Examples of Data Types

² Stopwatch

Stopwatch() Constructs a new stopwatch

elapsedTime() Returns the elapsed time (in seconds) since creation



Examples of Data Types

Program: timeops.py

• Command-line input: n (int)

• Standard output: computes the sum 10.5 + 20.5 + ... + n0.5 using math.sqrt(x) and math.pow(x) to calculate the
√
x , and

writes a comparison of the performance characteristics of the two functions

& ~/workspace/ipp/programs

$ python3 timeops.py 10000000

math.sqrt() is 2.05 times faster than math.pow()

$



Examples of Data Types

Program: timeops.py

• Command-line input: n (int)

• Standard output: computes the sum 10.5 + 20.5 + ... + n0.5 using math.sqrt(x) and math.pow(x) to calculate the
√
x , and

writes a comparison of the performance characteristics of the two functions

& ~/workspace/ipp/programs

$ python3 timeops.py 10000000

math.sqrt() is 2.05 times faster than math.pow()

$



Examples of Data Types

Program: timeops.py

• Command-line input: n (int)

• Standard output: computes the sum 10.5 + 20.5 + ... + n0.5 using math.sqrt(x) and math.pow(x) to calculate the
√
x , and

writes a comparison of the performance characteristics of the two functions

& ~/workspace/ipp/programs

$ python3 timeops.py 10000000

math.sqrt() is 2.05 times faster than math.pow()

$



Examples of Data Types

Program: timeops.py

• Command-line input: n (int)

• Standard output: computes the sum 10.5 + 20.5 + ... + n0.5 using math.sqrt(x) and math.pow(x) to calculate the
√
x , and

writes a comparison of the performance characteristics of the two functions

& ~/workspace/ipp/programs

$ python3 timeops.py 10000000

math.sqrt() is 2.05 times faster than math.pow()

$



Examples of Data Types

Program: timeops.py

• Command-line input: n (int)

• Standard output: computes the sum 10.5 + 20.5 + ... + n0.5 using math.sqrt(x) and math.pow(x) to calculate the
√
x , and

writes a comparison of the performance characteristics of the two functions

& ~/workspace/ipp/programs

$ python3 timeops.py 10000000

math.sqrt() is 2.05 times faster than math.pow()

$



Examples of Data Types

L timeops.py

from stopwatch import Stopwatch

import math

import stdio

import sys

def main ():

n = int(sys.argv [1])

watch1 = Stopwatch ()

total = 0.0

for i in range(1, n + 1):

total += math.sqrt(i)

time1 = watch1.elapsedTime ()

watch2 = Stopwatch ()

total = 0.0

for i in range(1, n + 1):

total += math.pow(i, 0.5)

time2 = watch2.elapsedTime ()

stdio.writef(’math.sqrt() is %.2f times faster than math.pow()\n’, time2 / time1)

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L timeops.py

from stopwatch import Stopwatch

import math

import stdio

import sys

def main ():

n = int(sys.argv [1])

watch1 = Stopwatch ()

total = 0.0

for i in range(1, n + 1):

total += math.sqrt(i)

time1 = watch1.elapsedTime ()

watch2 = Stopwatch ()

total = 0.0

for i in range(1, n + 1):

total += math.pow(i, 0.5)

time2 = watch2.elapsedTime ()

stdio.writef(’math.sqrt() is %.2f times faster than math.pow()\n’, time2 / time1)

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L stopwatch.py

import stdio

import sys

import time

class Stopwatch:

def __init__(self):

self.creationTime = time.time()

def elapsedTime(self):

return time.time() - self.creationTime

def _main ():

n = int(sys.argv [1])

watch = Stopwatch ()

primes = 0

for i in range(2, n + 1):

j = 2

while j <= i / j:

if i % j == 0:

break

j += 1

if j > i / j:

primes += 1

time = watch.elapsedTime ()

stdio.writef(’pi(%d) = %d computed in %.5f seconds\n’, n, primes , time)

if __name__ == ’__main__ ’:

_main()



Examples of Data Types

L stopwatch.py

import stdio

import sys

import time

class Stopwatch:

def __init__(self):

self.creationTime = time.time()

def elapsedTime(self):

return time.time() - self.creationTime

def _main ():

n = int(sys.argv [1])

watch = Stopwatch ()

primes = 0

for i in range(2, n + 1):

j = 2

while j <= i / j:

if i % j == 0:

break

j += 1

if j > i / j:

primes += 1

time = watch.elapsedTime ()

stdio.writef(’pi(%d) = %d computed in %.5f seconds\n’, n, primes , time)

if __name__ == ’__main__ ’:

_main()



Examples of Data Types

² Histogram

Histogram(n) constructs a new histogram from the integer values in 0, 1, . . . , n − 1

addDataPoint(i) adds an occurrence of integer i to the histogram

draw() draw the histogram to standard draw



Examples of Data Types

² Histogram

Histogram(n) constructs a new histogram from the integer values in 0, 1, . . . , n − 1

addDataPoint(i) adds an occurrence of integer i to the histogram

draw() draw the histogram to standard draw



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

Program: bernoulli.py

• Command-line input: n (int), p (float), and trials (int)

• Standard draw output: performs trials experiments, each of which counts the number of heads found when a coin
with bias p is flipped n times, and draws the results

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.5 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.2 1000000

& ~/workspace/ipp/programs

$ python3 bernoulli.py 50 0.8 1000000



Examples of Data Types

L bernoulli.py

from histogram import Histogram

import stddraw

import stdrandom

import sys

def main ():

n = int(sys.argv [1])

p = float(sys.argv [2])

trials = int(sys.argv [3])

histogram = Histogram(n + 1)

for t in range(trials ):

heads = stdrandom.binomial(n, p)

histogram.addDataPoint(heads)

stddraw.setCanvasSize (500, 200)

histogram.draw()

stddraw.show()

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L bernoulli.py

from histogram import Histogram

import stddraw

import stdrandom

import sys

def main ():

n = int(sys.argv [1])

p = float(sys.argv [2])

trials = int(sys.argv [3])

histogram = Histogram(n + 1)

for t in range(trials ):

heads = stdrandom.binomial(n, p)

histogram.addDataPoint(heads)

stddraw.setCanvasSize (500, 200)

histogram.draw()

stddraw.show()

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L histogram.py

import stdarray

import stddraw

import stdrandom

import stdstats

import sys

class Histogram:

def __init__(self , n):

self.freq = stdarray.create1D(n, 0)

def addDataPoint(self , i):

self.freq[i] += 1

def draw(self):

stddraw.setYscale(-1, max(self.freq) + 1)

stdstats.plotBars(self.freq)

def _main ():

trials = int(sys.argv [1])

histogram = Histogram (6)

for t in range(trials ):

roll = stdrandom.uniformInt (0, 6)

histogram.addDataPoint(roll)

stddraw.setCanvasSize (500, 200)

histogram.draw()

stddraw.show()

if __name__ == ’__main__ ’:

_main()



Examples of Data Types

L histogram.py

import stdarray

import stddraw

import stdrandom

import stdstats

import sys

class Histogram:

def __init__(self , n):

self.freq = stdarray.create1D(n, 0)

def addDataPoint(self , i):

self.freq[i] += 1

def draw(self):

stddraw.setYscale(-1, max(self.freq) + 1)

stdstats.plotBars(self.freq)

def _main ():

trials = int(sys.argv [1])

histogram = Histogram (6)

for t in range(trials ):

roll = stdrandom.uniformInt (0, 6)

histogram.addDataPoint(roll)

stddraw.setCanvasSize (500, 200)

histogram.draw()

stddraw.show()

if __name__ == ’__main__ ’:

_main()



Examples of Data Types

A data type Turtle for producing turtle graphics1

² Turtle

Turtle(x0, y0, a0) constructs a new turtle at (x0, y0) facing a0 degrees from the x-axis

turnLeft(delta) instructs the turtle to turn left (conterclockwise) by delta degrees

goForward(step) instructs the turtle to move forward distance step, drawing a line

1Turtle graphics was part of the original Logo programming language developed by Wally Feurzig and Seymour Papert in 1966 for introducing programming
to kids



Examples of Data Types

A data type Turtle for producing turtle graphics1

² Turtle

Turtle(x0, y0, a0) constructs a new turtle at (x0, y0) facing a0 degrees from the x-axis

turnLeft(delta) instructs the turtle to turn left (conterclockwise) by delta degrees

goForward(step) instructs the turtle to move forward distance step, drawing a line

1Turtle graphics was part of the original Logo programming language developed by Wally Feurzig and Seymour Papert in 1966 for introducing programming
to kids



Examples of Data Types

Program: drunks.py

• Command-line input: n (int), steps (int), and stepSize (float)

• Standard draw output: creates n Turtle objects and has them take steps random steps, each of size stepSize

& ~/workspace/ipp/programs

$ python3 drunks.py 20 5000 .005



Examples of Data Types

Program: drunks.py

• Command-line input: n (int), steps (int), and stepSize (float)

• Standard draw output: creates n Turtle objects and has them take steps random steps, each of size stepSize

& ~/workspace/ipp/programs

$ python3 drunks.py 20 5000 .005



Examples of Data Types

Program: drunks.py

• Command-line input: n (int), steps (int), and stepSize (float)

• Standard draw output: creates n Turtle objects and has them take steps random steps, each of size stepSize

& ~/workspace/ipp/programs

$ python3 drunks.py 20 5000 .005



Examples of Data Types

Program: drunks.py

• Command-line input: n (int), steps (int), and stepSize (float)

• Standard draw output: creates n Turtle objects and has them take steps random steps, each of size stepSize

& ~/workspace/ipp/programs

$ python3 drunks.py 20 5000 .005



Examples of Data Types

Program: drunks.py

• Command-line input: n (int), steps (int), and stepSize (float)

• Standard draw output: creates n Turtle objects and has them take steps random steps, each of size stepSize

& ~/workspace/ipp/programs

$ python3 drunks.py 20 5000 .005



Examples of Data Types

L drunks.py

from turtle import Turtle

import stdarray

import stddraw

import stdrandom

import sys

def main ():

n = int(sys.argv [1])

steps = int(sys.argv [2])

stepSize = float(sys.argv [3])

turtles = stdarray.create1D(n, None)

for i in range(n):

x = stdrandom.uniformFloat (0.0, 1.0)

y = stdrandom.uniformFloat (0.0, 1.0)

theta = stdrandom.uniformFloat (0.0, 360.0)

turtles[i] = Turtle(x, y, theta)

stddraw.setPenRadius (0.0)

for i in range(steps):

for turtle in turtles:

theta = stdrandom.uniformFloat (0.0, 360.0)

turtle.turnLeft(theta)

turtle.goForward(stepSize)

stddraw.show (0.0)

stddraw.show()

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L drunks.py

from turtle import Turtle

import stdarray

import stddraw

import stdrandom

import sys

def main ():

n = int(sys.argv [1])

steps = int(sys.argv [2])

stepSize = float(sys.argv [3])

turtles = stdarray.create1D(n, None)

for i in range(n):

x = stdrandom.uniformFloat (0.0, 1.0)

y = stdrandom.uniformFloat (0.0, 1.0)

theta = stdrandom.uniformFloat (0.0, 360.0)

turtles[i] = Turtle(x, y, theta)

stddraw.setPenRadius (0.0)

for i in range(steps):

for turtle in turtles:

theta = stdrandom.uniformFloat (0.0, 360.0)

turtle.turnLeft(theta)

turtle.goForward(stepSize)

stddraw.show (0.0)

stddraw.show()

if __name__ == ’__main__ ’:

main()



Examples of Data Types

L turtle.py

import math

import stddraw

import sys

class Turtle:

def __init__(self , x, y, theta):

self.x = x

self.y = y

self.theta = theta

def turnLeft(self , theta):

self.theta += theta

def goForward(self , stepSize ):

xOld = self.x

yOld = self.y

self.x += stepSize * math.cos(math.radians(self.theta ))

self.y += stepSize * math.sin(math.radians(self.theta ))

stddraw.line(xOld , yOld , self.x, self.y)

def _main ():

n = int(sys.argv [1])

turtle = Turtle (0.5, 0.0, 180.0 / n)

stepSize = math.sin(math.radians (180.0 / n))

stddraw.setPenRadius (0.0)

for i in range(n):

turtle.goForward(stepSize)

turtle.turnLeft (360.0 / n)

stddraw.show()

if __name__ == ’__main__ ’:

_main()



Examples of Data Types

L turtle.py

import math

import stddraw

import sys

class Turtle:

def __init__(self , x, y, theta):

self.x = x

self.y = y

self.theta = theta

def turnLeft(self , theta):

self.theta += theta

def goForward(self , stepSize ):

xOld = self.x

yOld = self.y

self.x += stepSize * math.cos(math.radians(self.theta ))

self.y += stepSize * math.sin(math.radians(self.theta ))

stddraw.line(xOld , yOld , self.x, self.y)

def _main ():

n = int(sys.argv [1])

turtle = Turtle (0.5, 0.0, 180.0 / n)

stepSize = math.sin(math.radians (180.0 / n))

stddraw.setPenRadius (0.0)

for i in range(n):

turtle.goForward(stepSize)

turtle.turnLeft (360.0 / n)

stddraw.show()

if __name__ == ’__main__ ’:

_main()


	Outline
	Basic Elements of a Data Type
	Examples of Data Types

