YOU MAY READ THIS PAGE BEFORE THE EXAM BEGINS

1. You have 75 minutes to create and submit the 3 programs in this exam.

2. When instructed to start, download the following PyCharm project containing the starter files for the exam problems (use student for username and enigma for password):

 https://www.cs.umb.edu/~siyer/teaching/restricted/cs110_sample_programming_exam1.zip

3. You may use the text, your notes, your code from the projects, and the code on the CS110 course website. No form of communication is permitted (eg, talking, texting, etc.) during the exam, except with the course staff.

4. Submit your work on Gradescope under the assignment named "Programming Exam 1 (Section XYZ)", where XYZ denotes your discussion section number.

5. Return this exam sheet to the course staff with your name written at the top. Failing to do so will void your exam submission on Gradescope.

6. You are not allowed to leave the exam hall before the official end time even if you are done early.

7. Your programs will be graded based on correctness, clarity (including comments), design, and efficiency.

8. Discussing the exam contents with anyone who has not taken the exam is a violation of the academic honesty code.

DO NOT READ FURTHER OR DOWNLOAD THE STARTER FILES UNTIL SO INSTRUCTED
Problem 1. (5 Points) Write a program called \texttt{distance.py} that takes four floats x_1, y_1, x_2, and y_2 as command-line arguments representing the Cartesian coordinates of two points (x_1, y_1) and (x_2, y_2) on a plane, and writes the Euclidean distance between the points, calculated as $\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$.

```
$ python3 distance.py 1.0 2.0 4.0 6.0
5.0
```

Problem 2. (10 Points) Write a program called \texttt{minmax.py} that accepts integers from standard input and writes their minimum and maximum values to standard output.

```
$ python3 minmax.py
22 21 -6 -95 -70 -48 -19 -76 73 -31
<ctrl-d>
Minimum = -95
Maximum = 73
```

Relevant standard input functions: \texttt{stdio.isEmpty()}, \texttt{stdio.readInt()}.

Problem 3. (10 Points) Implement a library called \texttt{listops.py} that supports the following API:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\texttt{find(a, k)}</td>
<td>returns the index of the first occurrence of the element k within the list a, and -1 if the element does not exist in the list</td>
</tr>
<tr>
<td>\texttt{rfind(a, k)}</td>
<td>returns the index of the last occurrence of the element k within the list a, and -1 if the element does not exist in the list</td>
</tr>
<tr>
<td>\texttt{count(a, k)}</td>
<td>returns the number of occurrences of the element k within the list a</td>
</tr>
<tr>
<td>\texttt{contains(a, k)}</td>
<td>returns True if the list a contains the element k, and False otherwise</td>
</tr>
</tbody>
</table>

```
$ python3 listops.py
a = [5, -1, 3, 4, 3, -2, 3, 5]
find(a, 3) = 2
rfind(a, 3) = 6
count(a, 3) = 3
contains(a, 6) = False
```

Files to Submit

1. distance.py
2. minmax.py
3. listops.py
Answers

Problem 1.

```python
import math
import stdio
import sys

# Accept x1 (float), y1 (float), x2 (float), and y2 (float) as command-line arguments.
x1 = float(sys.argv[1])
y1 = float(sys.argv[2])
x2 = float(sys.argv[3])
y2 = float(sys.argv[4])

# Set distance to the Euclidean distance between points (x1, y1) and (x2, y2).
distance = math.sqrt((x1 - x2) ** 2 + (y1 - y2) ** 2)

# Write distance to standard output.
stdio.writeln(distance)
```

Problem 2.

```python
import stdio

# Set minValue and maxValue to None.
minValue = None
maxValue = None

# Until standard input is not empty...
while not stdio.isEmpty():
    # Read an integer x.
    x = stdio.readInt()

    # Update minValue to x if x is smaller and leave it unchanged otherwise.
    minValue = x if minValue == None or x < minValue else minValue

    # Update maxValue to x if x is bigger and leave it unchanged otherwise.
    maxValue = x if maxValue == None or x > maxValue else maxValue

# Write minValue and maxValue to standard output.
stdio.writeln('Minimum = ' + str(minValue))
stdio.writeln('Maximum = ' + str(maxValue))
```

Problem 3.

```python
# Returns the index of the first occurrence of the element k within the list a, and -1 if the
# element does not exist in the list.
def find(a, k):
    # For each index i of a...
    for i in range(len(a)):
        # If the ith value in a equals k, return its index i.
        if a[i] == k:
            return i
    # k does not exist in a, so return -1.
    return -1

# Returns the index of the last occurrence of the element k within the list a, and -1 if the
# element does not exist in the list.
def rfind(a, k):
    # For each index i of a in reverse...
    for i in reversed(range(len(a))):
        # If the ith value in a equals k, return its index i.
        if a[i] == k:
            return i
    # k does not exist in a, so return -1.
    return -1
```
Returns the number of occurrences of the element k within the list a.
def count(a, k):
 # Set count (number of occurrences of k in a) to 0.
 count = 0

 # For each value v in a...
 for v in a:
 # If v equals k, increment count by 1.
 if v == k:
 count += 1

 # Return count.
 return count

Returns True if the list a contains the element k, and False otherwise.
def contains(a, k):
 # For each value v in a...
 for v in a:
 # If v equals k, return true.
 if v == k:
 return True

 # k does not exist in a, so return False.
 return False

Unit tests the library.
def _main():
 import stdio

 a = [5, -1, 3, 4, 3, -2, 3, 5]
 stdio.writeln('a = ' + str(a))
 stdio.writeln('find(a, 3) = ' + str(find(a, 3)))
 stdio.writeln('rfind(a, 3) = ' + str(rfind(a, 3)))
 stdio.writeln('count(a, 3) = ' + str(count(a, 3)))
 stdio.writeln('contains(a, 6) = ' + str(contains(a, 6)))

 if __name__ == '__main__':
 _main()