
Designing Data Types

Outline

1 APIs

2 Encapsulation

3 Immutability

4 Polymorphism

5 Overloading

6 Functions are Objects

7 Examples

8 Exceptions

APIs

Precisely specifying a data type using an API improves design because it leads to client code that can clearly express its
computation

By using APIs to separate clients from implementations, we reap the benefits of standard interfaces for every program
that we compose

APIs should provide to clients just the methods they need and no others

APIs

Precisely specifying a data type using an API improves design because it leads to client code that can clearly express its
computation

By using APIs to separate clients from implementations, we reap the benefits of standard interfaces for every program
that we compose

APIs should provide to clients just the methods they need and no others

APIs

Precisely specifying a data type using an API improves design because it leads to client code that can clearly express its
computation

By using APIs to separate clients from implementations, we reap the benefits of standard interfaces for every program
that we compose

APIs should provide to clients just the methods they need and no others

APIs

Precisely specifying a data type using an API improves design because it leads to client code that can clearly express its
computation

By using APIs to separate clients from implementations, we reap the benefits of standard interfaces for every program
that we compose

APIs should provide to clients just the methods they need and no others

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Encapsulation

The process of separating clients from implementations by hiding information is known as encapsulation

Encapsulation allows one implementation of an API to be substituted for another

Encapsulation helps programmers ensure that their code operates as intended

Python does not enforce encapsulation; instead, through a naming convention, clients are informed that they should not
directly access the instance variable, method, or function thus named

The API should be the only point of dependence between client and implementation — this is called modular
programming

Immutability

An object from a data type is immutable if its data-type value cannot change once created

The purpose of many data types (eg, Stopwatch) is to encapsulate values that do not change, while for many other data
types (eg, Turtle), the very purpose of the abstraction is to encapsulate values as they change

Generally, immutable data types are easier to use and harder to misuse because the scope of code that can change
object values is far smaller than for mutable types

In Python, lists are mutable, whereas and strings and tuples are immutable

Immutability

An object from a data type is immutable if its data-type value cannot change once created

The purpose of many data types (eg, Stopwatch) is to encapsulate values that do not change, while for many other data
types (eg, Turtle), the very purpose of the abstraction is to encapsulate values as they change

Generally, immutable data types are easier to use and harder to misuse because the scope of code that can change
object values is far smaller than for mutable types

In Python, lists are mutable, whereas and strings and tuples are immutable

Immutability

An object from a data type is immutable if its data-type value cannot change once created

The purpose of many data types (eg, Stopwatch) is to encapsulate values that do not change, while for many other data
types (eg, Turtle), the very purpose of the abstraction is to encapsulate values as they change

Generally, immutable data types are easier to use and harder to misuse because the scope of code that can change
object values is far smaller than for mutable types

In Python, lists are mutable, whereas and strings and tuples are immutable

Immutability

An object from a data type is immutable if its data-type value cannot change once created

The purpose of many data types (eg, Stopwatch) is to encapsulate values that do not change, while for many other data
types (eg, Turtle), the very purpose of the abstraction is to encapsulate values as they change

Generally, immutable data types are easier to use and harder to misuse because the scope of code that can change
object values is far smaller than for mutable types

In Python, lists are mutable, whereas and strings and tuples are immutable

Immutability

An object from a data type is immutable if its data-type value cannot change once created

The purpose of many data types (eg, Stopwatch) is to encapsulate values that do not change, while for many other data
types (eg, Turtle), the very purpose of the abstraction is to encapsulate values as they change

Generally, immutable data types are easier to use and harder to misuse because the scope of code that can change
object values is far smaller than for mutable types

In Python, lists are mutable, whereas and strings and tuples are immutable

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Polymorphism

A method (or function) that can take arguments with different types is said to be polymorphic

Duck typing is a programming style in which the language does not formally specify the requirements for a function’s
arguments

Python uses duck typing for all operations (function calls, method calls, and operators), and raises a TypeError at run time
if an operation cannot be applied to an object because it is of an inappropriate type

Duck typing leads to simpler and more flexible client code and puts the focus on operations rather than the type

A disadvantage of duck typing is that it is difficult to know precisely what the contract is between the client and the
implementation — the API simply does not carry this information

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

The ability to define a data type that provides its own definitions of operators is a form of polymorphism known as
operator overloading

In Python, we can overload almost every operator, including operators for arithmetic, comparisons, indexing, and slicing

We can also overload built-in functions, including absolute value, length, hashing, and type conversion

Overloading operators and built-in functions makes user-defined types behave more like built-in types

To perform an operation, Python internally converts the expression into a call on the corresponding special method

To call a built-in function, Python internally calls the corresponding special method instead

To overload an operator or built-in function, we include an implementation of the corresponding special method with
our own code

Overloading

Special methods for arithmetic operators

Client Operation Special Method Description

x + y __add__(self, y) sum of x and y

x - y __sub__(self, y) difference of x and y

x * y __mul__(self, y) product of x and y

x ** y __pow__(self, y) x to the power y

x / y __div__(self, y) quotient of x and y

x // y __floordiv__(self, y) floored quotient of x and y

x % y __mod__(self, y) remainder when dividing x by y

+x __pos__(self) x

-x __neg__(self) arithmetic negation of x

Overloading

Special methods for arithmetic operators

Client Operation Special Method Description

x + y __add__(self, y) sum of x and y

x - y __sub__(self, y) difference of x and y

x * y __mul__(self, y) product of x and y

x ** y __pow__(self, y) x to the power y

x / y __div__(self, y) quotient of x and y

x // y __floordiv__(self, y) floored quotient of x and y

x % y __mod__(self, y) remainder when dividing x by y

+x __pos__(self) x

-x __neg__(self) arithmetic negation of x

Overloading

Special methods for comparison operators

Client Operation Special Method Description

x == y __eq__(self, y) are x and y equal?

x != y __ne__(self, y) are x and y not equal?

x < y __lt__(self, y) is x less than y?

x <= y __le__(self, y) is x less than or equal to y?

x > y __gt__(self, y) is x greater than y?

x >= y __ge__(self, y) is x greater than or equal to y?

Overloading

Special methods for comparison operators

Client Operation Special Method Description

x == y __eq__(self, y) are x and y equal?

x != y __ne__(self, y) are x and y not equal?

x < y __lt__(self, y) is x less than y?

x <= y __le__(self, y) is x less than or equal to y?

x > y __gt__(self, y) is x greater than y?

x >= y __ge__(self, y) is x greater than or equal to y?

Overloading

Special methods for built-in functions

Client Operation Special Method Description

len(x) __len__(self) length of x

float(x) __float__(self) float equivalent of x

int(x) __int__(self) integer equivalent of x

str(x) __str__(self) string representation of x

abs(x) __abs__(self) absolute value of x

hash(x) __hash__(self) integer hash code for x

iter(x) __iter__(self) iterator for x

Overloading

Special methods for built-in functions

Client Operation Special Method Description

len(x) __len__(self) length of x

float(x) __float__(self) float equivalent of x

int(x) __int__(self) integer equivalent of x

str(x) __str__(self) string representation of x

abs(x) __abs__(self) absolute value of x

hash(x) __hash__(self) integer hash code for x

iter(x) __iter__(self) iterator for x

Functions are Objects

In Python, everything is an object, including functions, which means we can use them as arguments to functions and
return them as results

Defining higher-order functions that manipulate other functions is common both in mathematics and scientific
computing

For example, the following function evaluates the Riemann integral (ie, the area under the curve) of a real-valued
function f () in the interval (a, b), using the rectangle rule with n rectangles

def integrate(f, a, b, n = 1000):

total = 0.0

dt = 1.0 * (b - a) / n

for i in range(n):

total += dt * f(a + (i + 0.5) * dt)

return total

The following statement uses the above function to compute the area under the curve f (x) = x2 in the interval (0, 1)

area = integrate(lambda x : x * x, 0, 1)

Functions are Objects

In Python, everything is an object, including functions, which means we can use them as arguments to functions and
return them as results

Defining higher-order functions that manipulate other functions is common both in mathematics and scientific
computing

For example, the following function evaluates the Riemann integral (ie, the area under the curve) of a real-valued
function f () in the interval (a, b), using the rectangle rule with n rectangles

def integrate(f, a, b, n = 1000):

total = 0.0

dt = 1.0 * (b - a) / n

for i in range(n):

total += dt * f(a + (i + 0.5) * dt)

return total

The following statement uses the above function to compute the area under the curve f (x) = x2 in the interval (0, 1)

area = integrate(lambda x : x * x, 0, 1)

Functions are Objects

In Python, everything is an object, including functions, which means we can use them as arguments to functions and
return them as results

Defining higher-order functions that manipulate other functions is common both in mathematics and scientific
computing

For example, the following function evaluates the Riemann integral (ie, the area under the curve) of a real-valued
function f () in the interval (a, b), using the rectangle rule with n rectangles

def integrate(f, a, b, n = 1000):

total = 0.0

dt = 1.0 * (b - a) / n

for i in range(n):

total += dt * f(a + (i + 0.5) * dt)

return total

The following statement uses the above function to compute the area under the curve f (x) = x2 in the interval (0, 1)

area = integrate(lambda x : x * x, 0, 1)

Functions are Objects

In Python, everything is an object, including functions, which means we can use them as arguments to functions and
return them as results

Defining higher-order functions that manipulate other functions is common both in mathematics and scientific
computing

For example, the following function evaluates the Riemann integral (ie, the area under the curve) of a real-valued
function f () in the interval (a, b), using the rectangle rule with n rectangles

def integrate(f, a, b, n = 1000):

total = 0.0

dt = 1.0 * (b - a) / n

for i in range(n):

total += dt * f(a + (i + 0.5) * dt)

return total

The following statement uses the above function to compute the area under the curve f (x) = x2 in the interval (0, 1)

area = integrate(lambda x : x * x, 0, 1)

Functions are Objects

In Python, everything is an object, including functions, which means we can use them as arguments to functions and
return them as results

Defining higher-order functions that manipulate other functions is common both in mathematics and scientific
computing

For example, the following function evaluates the Riemann integral (ie, the area under the curve) of a real-valued
function f () in the interval (a, b), using the rectangle rule with n rectangles

def integrate(f, a, b, n = 1000):

total = 0.0

dt = 1.0 * (b - a) / n

for i in range(n):

total += dt * f(a + (i + 0.5) * dt)

return total

The following statement uses the above function to compute the area under the curve f (x) = x2 in the interval (0, 1)

area = integrate(lambda x : x * x, 0, 1)

Examples

A complex number z in the cartesian form is expressed as
z = x + yi , where x (the real part) and y (the imaginary
part) are real numbers and i =

√
−1

Complex arithmetic

• Conjugate: (x + yi)? = x − yi

• Addition: (x + yi) + (v + wi) = (x + v) + (y + w)i

• Multiplication: (x + yi)× (v + wi) = (xv − yw) + (yv + xw)i

• Magnitude: |x + yi | =
√

x2 + y2

Examples

A complex number z in the cartesian form is expressed as
z = x + yi , where x (the real part) and y (the imaginary
part) are real numbers and i =

√
−1

Complex arithmetic

• Conjugate: (x + yi)? = x − yi

• Addition: (x + yi) + (v + wi) = (x + v) + (y + w)i

• Multiplication: (x + yi)× (v + wi) = (xv − yw) + (yv + xw)i

• Magnitude: |x + yi | =
√

x2 + y2

Examples

A complex number z in the cartesian form is expressed as
z = x + yi , where x (the real part) and y (the imaginary
part) are real numbers and i =

√
−1

Complex arithmetic

• Conjugate: (x + yi)? = x − yi

• Addition: (x + yi) + (v + wi) = (x + v) + (y + w)i

• Multiplication: (x + yi)× (v + wi) = (xv − yw) + (yv + xw)i

• Magnitude: |x + yi | =
√

x2 + y2

Examples

A data type Complex for representing complex numbers

² Complex

Complex(x, y) a new complex object c with value x + yi

c.re() real part of c

c.im() imaginary part of c

c.conjugate() conjugate of c

c + d sum of c and d

c * d product of c and d

c == d are c and d equal?

abs(c) magnitude of c

str(c) string representation of c

Examples

A data type Complex for representing complex numbers

² Complex

Complex(x, y) a new complex object c with value x + yi

c.re() real part of c

c.im() imaginary part of c

c.conjugate() conjugate of c

c + d sum of c and d

c * d product of c and d

c == d are c and d equal?

abs(c) magnitude of c

str(c) string representation of c

Examples

L complex.py

import math

import stdio

class Complex:

def __init__(self , re=0.0, im =0.0):

self._re = re

self._im = im

def re(self):

return self._re

def im(self):

return self._im

def conjugate(self):

return Complex(self._re , -self._im)

def __add__(self , other):

re = self._re + other._re

im = self._im + other._im

return Complex(re, im)

def __mul__(self , other):

re = self._re * other._re - self._im * other._im

im = self._re * other._im + self._im * other._re

return Complex(re, im)

def __abs__(self):

return math.sqrt(self._re * self._re + self._im * self._im)

def __eq__(self , other):

return self._re == other._re and self._im == other._im

def __str__(self):

SUFFIX = ’i’

Examples

L complex.py

import math

import stdio

class Complex:

def __init__(self , re=0.0, im =0.0):

self._re = re

self._im = im

def re(self):

return self._re

def im(self):

return self._im

def conjugate(self):

return Complex(self._re , -self._im)

def __add__(self , other):

re = self._re + other._re

im = self._im + other._im

return Complex(re, im)

def __mul__(self , other):

re = self._re * other._re - self._im * other._im

im = self._re * other._im + self._im * other._re

return Complex(re, im)

def __abs__(self):

return math.sqrt(self._re * self._re + self._im * self._im)

def __eq__(self , other):

return self._re == other._re and self._im == other._im

def __str__(self):

SUFFIX = ’i’

Examples

L complex.py

if self._im == 0:

return str(self._re)

elif self._re == 0:

return str(self._im) + SUFFIX

elif self._im < 0:

return str(self._re) + ’ - ’ + str(-self._im) + SUFFIX

else:

return str(self._re) + ’ + ’ + str(self._im) + SUFFIX

def _main ():

a = Complex (5.0, -6.0)

b = Complex (3.0, 4.0)

stdio.writeln("a = " + str(a))

stdio.writeln("b = " + str(b))

stdio.writeln("conj(a) = " + str((a.conjugate ())))

stdio.writeln("a + b = " + str(a + b))

stdio.writeln("a * b = " + str(a * b))

stdio.writeln("|b| = " + str(abs(b)))

if __name__ == ’__main__ ’:

_main()

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

Program: mandelbrot.py

• Command-line input: xc (float), yc (float), and size (float)

• Standard draw output: size-by-size region of the Mandelbrot set, centered at (xc, yc)

& ~/workspace/ipp/programs

$ python3 mandelbrot.py -0.5 0 2

& ~/workspace/ipp/programs

$ python3 mandelbrot.py 0.1015 -0.633 .01

Examples

L mandelbrot.py

from color import Color

from complex import Complex

from picture import Picture

import stddraw

import sys

def main ():

xc = float(sys.argv [1])

yc = float(sys.argv [2])

size = float(sys.argv [3])

N = 512

ITERATIONS = 255

picture = Picture(N, N)

for col in range(N):

for row in range(N):

x0 = xc - size / 2 + size * col / N

y0 = yc - size / 2 + size * row / N

z0 = Complex(x0, y0)

gray = ITERATIONS - _mandel(z0, ITERATIONS)

color = Color(gray , gray , gray)

picture.set(col , N - 1 - row , color)

stddraw.setCanvasSize(N, N)

stddraw.picture(picture)

stddraw.show()

def _mandel(z0, iterations):

z = z0

for i in range(iterations):

if abs(z) > 2.0:

return i

z = z * z + z0

return iterations

if __name__ == ’__main__ ’:

main()

Examples

L mandelbrot.py

from color import Color

from complex import Complex

from picture import Picture

import stddraw

import sys

def main ():

xc = float(sys.argv [1])

yc = float(sys.argv [2])

size = float(sys.argv [3])

N = 512

ITERATIONS = 255

picture = Picture(N, N)

for col in range(N):

for row in range(N):

x0 = xc - size / 2 + size * col / N

y0 = yc - size / 2 + size * row / N

z0 = Complex(x0, y0)

gray = ITERATIONS - _mandel(z0, ITERATIONS)

color = Color(gray , gray , gray)

picture.set(col , N - 1 - row , color)

stddraw.setCanvasSize(N, N)

stddraw.picture(picture)

stddraw.show()

def _mandel(z0, iterations):

z = z0

for i in range(iterations):

if abs(z) > 2.0:

return i

z = z * z + z0

return iterations

if __name__ == ’__main__ ’:

main()

Examples

A spatial vector is an abstract entity that has a magnitude
and a direction

Vector operations, assuming x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and α ∈ R
• Addition: x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

• Subtraction: x− y = (x1 − y1, x2 − y2, . . . , xn − yn)

• Scalar product: αx = (αx1, αx2, . . . , αxn)

• Dot product: x · y = x1y1 + x2y2 + · · ·+ xnyn

• Magnitude: |x| = (x2
1 + x2

2 + · · ·+ x2
n)1/2

• Direction: x/|x| = (x1/|x|, x2/|x|, . . . , xn/|x|)

Examples

A spatial vector is an abstract entity that has a magnitude
and a direction

Vector operations, assuming x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and α ∈ R
• Addition: x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

• Subtraction: x− y = (x1 − y1, x2 − y2, . . . , xn − yn)

• Scalar product: αx = (αx1, αx2, . . . , αxn)

• Dot product: x · y = x1y1 + x2y2 + · · ·+ xnyn

• Magnitude: |x| = (x2
1 + x2

2 + · · ·+ x2
n)1/2

• Direction: x/|x| = (x1/|x|, x2/|x|, . . . , xn/|x|)

Examples

A spatial vector is an abstract entity that has a magnitude
and a direction

Vector operations, assuming x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn), and α ∈ R
• Addition: x + y = (x1 + y1, x2 + y2, . . . , xn + yn)

• Subtraction: x− y = (x1 − y1, x2 − y2, . . . , xn − yn)

• Scalar product: αx = (αx1, αx2, . . . , αxn)

• Dot product: x · y = x1y1 + x2y2 + · · ·+ xnyn

• Magnitude: |x| = (x2
1 + x2

2 + · · ·+ x2
n)1/2

• Direction: x/|x| = (x1/|x|, x2/|x|, . . . , xn/|x|)

Examples

A data type Vector for spatial vectors

² Vector

Vector(a) a new vector v with Cartesian coordinates taken from the list a

v[i] ith Cartesian coordinates of v

v + w sum of v and w

v - w difference of v and w

v.dot(w) dot product of v and w

v.scale(alpha) scalar product of float α and v

v.direction() unit vector in the same direction as v

abs(v) magnitude of v

len(v) length of v

str(v) string representation of v

Examples

A data type Vector for spatial vectors

² Vector

Vector(a) a new vector v with Cartesian coordinates taken from the list a

v[i] ith Cartesian coordinates of v

v + w sum of v and w

v - w difference of v and w

v.dot(w) dot product of v and w

v.scale(alpha) scalar product of float α and v

v.direction() unit vector in the same direction as v

abs(v) magnitude of v

len(v) length of v

str(v) string representation of v

Examples

L vector.py

import math

import stdarray

import stdio

class Vector:

def __init__(self , a):

self._n = len(a)

self._coords = a[:]

def __getitem__(self , i):

return self._coords[i]

def __add__(self , other):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = self._coords[i] + other._coords[i]

return Vector(result)

def __sub__(self , other):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = self._coords[i] - other._coords[i]

return Vector(result)

def dot(self , other):

result = 0

for i in range(self._n):

result += self._coords[i] * other._coords[i]

return result

def scale(self , alpha):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = alpha * self._coords[i]

return Vector(result)

Examples

L vector.py

import math

import stdarray

import stdio

class Vector:

def __init__(self , a):

self._n = len(a)

self._coords = a[:]

def __getitem__(self , i):

return self._coords[i]

def __add__(self , other):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = self._coords[i] + other._coords[i]

return Vector(result)

def __sub__(self , other):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = self._coords[i] - other._coords[i]

return Vector(result)

def dot(self , other):

result = 0

for i in range(self._n):

result += self._coords[i] * other._coords[i]

return result

def scale(self , alpha):

result = stdarray.create1D(self._n, 0)

for i in range(self._n):

result[i] = alpha * self._coords[i]

return Vector(result)

Examples

L vector.py

def direction(self):

return self.scale (1.0 / abs(self))

def __abs__(self):

return math.sqrt(self.dot(self))

def dimension(self):

return self._n

def __str__(self):

return str(self._coords)

def _main ():

xCoords = [1.0, 2.0, 3.0, 4.0]

yCoords = [5.0, 2.0, 4.0, 1.0]

x = Vector(xCoords)

y = Vector(yCoords)

stdio.writeln(’x = ’ + str(x))

stdio.writeln(’y = ’ + str(y))

stdio.writeln(’x + y = ’ + str(x + y))

stdio.writeln(’x - y = ’ + str(x - y))

stdio.writeln(’x dot y = ’ + str(x.dot(y)))

stdio.writeln(’10x = ’ + str(x.scale (10.0)))

stdio.writeln(’xhat = ’ + str(x.direction ()))

stdio.writeln(’|x| = ’ + str(abs(x)))

stdio.writeln(’ydim = ’ + str(y.dimension ()))

if __name__ == ’__main__ ’:

_main()

Examples

A data type Sketch for compactly representing the content of a document

² Sketch

Sketch(text, k, d) a new sketch s built from the string text using k-grams and dimension d

s.similarTo(t) similarity measure between sketches s and t (a float between 0.0 and 1.0)

str(s) string representation of s

Examples

A data type Sketch for compactly representing the content of a document

² Sketch

Sketch(text, k, d) a new sketch s built from the string text using k-grams and dimension d

s.similarTo(t) similarity measure between sketches s and t (a float between 0.0 and 1.0)

str(s) string representation of s

Examples

L sketch.py

from vector import Vector

import stdarray

import stdio

import sys

class Sketch:

def __init__(self , text , k, d):

freq = stdarray.create1D(d, 0)

for i in range(len(text) - k + 1):

kgram = text[i:i + k]

h = hash(kgram)

freq[abs(h % d)] += 1

vector = Vector(freq)

self._sketch = vector.direction ()

def similarTo(self , other):

return self._sketch.dot(other._sketch)

def __str__(self):

return str(self._sketch)

def _main ():

k = int(sys.argv [1])

d = int(sys.argv [2])

text = stdio.readAll ()

sketch = Sketch(text , k, d)

stdio.writeln(sketch)

if __name__ == ’__main__ ’:

_main()

Examples

L sketch.py

from vector import Vector

import stdarray

import stdio

import sys

class Sketch:

def __init__(self , text , k, d):

freq = stdarray.create1D(d, 0)

for i in range(len(text) - k + 1):

kgram = text[i:i + k]

h = hash(kgram)

freq[abs(h % d)] += 1

vector = Vector(freq)

self._sketch = vector.direction ()

def similarTo(self , other):

return self._sketch.dot(other._sketch)

def __str__(self):

return str(self._sketch)

def _main ():

k = int(sys.argv [1])

d = int(sys.argv [2])

text = stdio.readAll ()

sketch = Sketch(text , k, d)

stdio.writeln(sketch)

if __name__ == ’__main__ ’:

_main()

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

Program: comparedocuments.py

• Command-line input: k (int), d (int), and path (str)

• Standard input: a document list

• Standard output: computes d-dimensional profiles based on k-gram frequencies for all those documents under the
path directory, and writes a matrix of similarity measures between all pairs of documents

& ~/workspace/ipp/programs

$ cat ../ data/documents.txt

constitution.txt

tomsawyer.txt

huckfinn.txt

tale.txt

prejudice.txt

actg.txt

djia.csv

$ python3 comparedocuments.py 5 10000 ../ data < ../ data/documents.txt

cons toms huck tale prej actg djia

cons 1.00 0.66 0.60 0.67 0.64 0.11 0.18

toms 0.66 1.00 0.93 0.92 0.88 0.15 0.23

huck 0.60 0.93 1.00 0.84 0.81 0.13 0.21

tale 0.67 0.92 0.84 1.00 0.87 0.14 0.21

prej 0.64 0.88 0.81 0.87 1.00 0.15 0.24

actg 0.11 0.15 0.13 0.14 0.15 1.00 0.12

djia 0.18 0.23 0.21 0.21 0.24 0.12 1.00

Examples

L comparedocuments.py

from instream import InStream

from sketch import Sketch

import stdarray

import stdio

import sys

def main ():

k = int(sys.argv [1])

d = int(sys.argv [2])

path = sys.argv [3]

filenames = stdio.readAllStrings ()

n = len(filenames)

sketches = stdarray.create1D(n, None)

for i in range(n):

inStream = InStream(path + ’/’ + filenames[i])

text = inStream.readAll ()

sketches[i] = Sketch(text , k, d)

stdio.write(’ ’)

for filename in filenames:

stdio.writef(’%8.4s’, filename)

stdio.writeln ()

for i in range(n):

stdio.writef(’%.4s’, filenames[i])

for j in range(n):

stdio.writef(’%8.2f’, sketches[i]. similarTo(sketches[j]))

stdio.writeln ()

if __name__ == ’__main__ ’:

main()

Examples

L comparedocuments.py

from instream import InStream

from sketch import Sketch

import stdarray

import stdio

import sys

def main ():

k = int(sys.argv [1])

d = int(sys.argv [2])

path = sys.argv [3]

filenames = stdio.readAllStrings ()

n = len(filenames)

sketches = stdarray.create1D(n, None)

for i in range(n):

inStream = InStream(path + ’/’ + filenames[i])

text = inStream.readAll ()

sketches[i] = Sketch(text , k, d)

stdio.write(’ ’)

for filename in filenames:

stdio.writef(’%8.4s’, filename)

stdio.writeln ()

for i in range(n):

stdio.writef(’%.4s’, filenames[i])

for j in range(n):

stdio.writef(’%8.2f’, sketches[i]. similarTo(sketches[j]))

stdio.writeln ()

if __name__ == ’__main__ ’:

main()

Examples

A data type Counter for counting

² Counter

Counter(id, maxCount) a new counter c named id , with maximum value maxCount

c.increment() increment c, unless its value is maxCount

c.tally() value of c

c.reset() reset value of c

c < d is c less than d?

c == d are c and d equal?

str(c) string representation of c

Examples

A data type Counter for counting

² Counter

Counter(id, maxCount) a new counter c named id , with maximum value maxCount

c.increment() increment c, unless its value is maxCount

c.tally() value of c

c.reset() reset value of c

c < d is c less than d?

c == d are c and d equal?

str(c) string representation of c

Examples

L counter.py

import stdarray

import stdio

import stdrandom

import sys

class Counter:

def __init__(self , id):

self._id = id

self._count = 0

def increment(self):

self._count += 1

def tally(self):

return self._count

def reset(self):

self._count = 0

def __lt__(self , other):

return self._count < other._count

def __eq__(self , other):

return self._count == other._count

def __str__(self):

return str(self._count) + ’ ’ + self._id

def _main ():

n = int(sys.argv [1])

trials = int(sys.argv [2])

counters = stdarray.create1D(n, None)

for i in range(n):

counters[i] = Counter(’counter ’ + str(i))

for i in range(trials):

Examples

L counter.py

import stdarray

import stdio

import stdrandom

import sys

class Counter:

def __init__(self , id):

self._id = id

self._count = 0

def increment(self):

self._count += 1

def tally(self):

return self._count

def reset(self):

self._count = 0

def __lt__(self , other):

return self._count < other._count

def __eq__(self , other):

return self._count == other._count

def __str__(self):

return str(self._count) + ’ ’ + self._id

def _main ():

n = int(sys.argv [1])

trials = int(sys.argv [2])

counters = stdarray.create1D(n, None)

for i in range(n):

counters[i] = Counter(’counter ’ + str(i))

for i in range(trials):

Examples

L counter.py

counters[stdrandom.uniformInt (0, n)]. increment ()

for counter in sorted(counters):

stdio.writeln(counter)

if __name__ == ’__main__ ’:

_main()

Examples

& ~/workspace/ipp/programs

$ python3 counter.py 6 10000

1620 counter 0

1629 counter 3

1653 counter 2

1686 counter 1

1686 counter 4

1726 counter 5

Examples

& ~/workspace/ipp/programs

$ python3 counter.py 6 10000

1620 counter 0

1629 counter 3

1653 counter 2

1686 counter 1

1686 counter 4

1726 counter 5

Examples

A comparable data type Country that represents a country by its name, capital, and population

² Country

Country(name, capital, population) constructs a country c given its name, capital, and population

c < d is the country c less than country d by name?

c == d is the country c equal to country d by population?

str(c) string representation of c

Examples

A comparable data type Country that represents a country by its name, capital, and population

² Country

Country(name, capital, population) constructs a country c given its name, capital, and population

c < d is the country c less than country d by name?

c == d is the country c equal to country d by population?

str(c) string representation of c

Examples

L country.py

import stdarray

import stdio

class Country:

def __init__(self , name , capital , population):

self._name = name

self._capital = capital

self._population = population

def __lt__(self , other):

return self._name < other._name

def __eq__(self , other):

return self._name == other._name

def __str__(self):

return self._name + ’ (’ + self._capital + ’): ’ + str(self._population)

def _main ():

countries = stdarray.create1D(5, None)

countries [0] = Country(’United States ’, ’Washington , D.C.’, 329334246)

countries [1] = Country(’Pakistan ’, ’Islamabad ’, 218719520)

countries [2] = Country(’India’, ’New Delhi ’, 1358989650)

countries [3] = Country(’China’, ’Beijing ’, 1401463880)

countries [4] = Country(’Indonesia ’, ’Jakarta ’, 266911900)

stdio.writeln(’Unsorted:’)

for country in countries:

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by name:’)

for country in sorted(countries):

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by capital:’)

for country in sorted(countries , key=lambda country: country._capital):

Examples

L country.py

import stdarray

import stdio

class Country:

def __init__(self , name , capital , population):

self._name = name

self._capital = capital

self._population = population

def __lt__(self , other):

return self._name < other._name

def __eq__(self , other):

return self._name == other._name

def __str__(self):

return self._name + ’ (’ + self._capital + ’): ’ + str(self._population)

def _main ():

countries = stdarray.create1D(5, None)

countries [0] = Country(’United States ’, ’Washington , D.C.’, 329334246)

countries [1] = Country(’Pakistan ’, ’Islamabad ’, 218719520)

countries [2] = Country(’India’, ’New Delhi ’, 1358989650)

countries [3] = Country(’China’, ’Beijing ’, 1401463880)

countries [4] = Country(’Indonesia ’, ’Jakarta ’, 266911900)

stdio.writeln(’Unsorted:’)

for country in countries:

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by name:’)

for country in sorted(countries):

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by capital:’)

for country in sorted(countries , key=lambda country: country._capital):

Examples

L country.py

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by population:’)

for country in sorted(countries , key=lambda country: country._population):

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Reverse sorted by population:’)

for country in sorted(countries , key=lambda country: country._population , reverse=True):

stdio.writeln(country)

if __name__ == ’__main__ ’:

_main()

Examples

L country.py

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Sorted by population:’)

for country in sorted(countries , key=lambda country: country._population):

stdio.writeln(country)

stdio.writeln ()

stdio.writeln(’Reverse sorted by population:’)

for country in sorted(countries , key=lambda country: country._population , reverse=True):

stdio.writeln(country)

if __name__ == ’__main__ ’:

_main()

Examples

& ~/workspace/ipp/programs

$ python3 country.py

Unsorted:

United States (Washington , D.C.): 329334246

Pakistan (Islamabad): 218719520

India (New Delhi): 1358989650

China (Beijing): 1401463880

Indonesia (Jakarta): 266911900

Sorted by name:

China (Beijing): 1401463880

India (New Delhi): 1358989650

Indonesia (Jakarta): 266911900

Pakistan (Islamabad): 218719520

United States (Washington , D.C.): 329334246

Sorted by capital:

China (Beijing): 1401463880

Pakistan (Islamabad): 218719520

Indonesia (Jakarta): 266911900

India (New Delhi): 1358989650

United States (Washington , D.C.): 329334246

Sorted by population:

Pakistan (Islamabad): 218719520

Indonesia (Jakarta): 266911900

United States (Washington , D.C.): 329334246

India (New Delhi): 1358989650

China (Beijing): 1401463880

Reverse sorted by population:

China (Beijing): 1401463880

India (New Delhi): 1358989650

United States (Washington , D.C.): 329334246

Indonesia (Jakarta): 266911900

Pakistan (Islamabad): 218719520

Examples

& ~/workspace/ipp/programs

$ python3 country.py

Unsorted:

United States (Washington , D.C.): 329334246

Pakistan (Islamabad): 218719520

India (New Delhi): 1358989650

China (Beijing): 1401463880

Indonesia (Jakarta): 266911900

Sorted by name:

China (Beijing): 1401463880

India (New Delhi): 1358989650

Indonesia (Jakarta): 266911900

Pakistan (Islamabad): 218719520

United States (Washington , D.C.): 329334246

Sorted by capital:

China (Beijing): 1401463880

Pakistan (Islamabad): 218719520

Indonesia (Jakarta): 266911900

India (New Delhi): 1358989650

United States (Washington , D.C.): 329334246

Sorted by population:

Pakistan (Islamabad): 218719520

Indonesia (Jakarta): 266911900

United States (Washington , D.C.): 329334246

India (New Delhi): 1358989650

China (Beijing): 1401463880

Reverse sorted by population:

China (Beijing): 1401463880

India (New Delhi): 1358989650

United States (Washington , D.C.): 329334246

Indonesia (Jakarta): 266911900

Pakistan (Islamabad): 218719520

Examples

An iterable FibonacciSequence data type for iterating over Fibonacci sequences

² FibonacciSequence

FibonacciSequence(n) a new object f for iterating over the first n Fibonacci numbers

iter(f) an iterable object fiter on f

next(fiter) the next number in the Fibonacci sequence fiter

Examples

An iterable FibonacciSequence data type for iterating over Fibonacci sequences

² FibonacciSequence

FibonacciSequence(n) a new object f for iterating over the first n Fibonacci numbers

iter(f) an iterable object fiter on f

next(fiter) the next number in the Fibonacci sequence fiter

Examples

L fibonaccisequence.py

import stdio

import sys

class FibonacciSequence:

def __init__(self , n):

self._n = n

self._a = 1

self._b = 1

self._count = 0

def __iter__(self):

return self

def __next__(self):

self._count += 1

if self._count > self._n:

raise StopIteration ()

if self._count <= 2:

return 1

temp = self._a

self._a = self._b

self._b += temp

return self._b

def _main ():

n = int(sys.argv [1])

for v in FibonacciSequence(n):

stdio.writeln(v)

if __name__ == ’__main__ ’:

_main()

Examples

L fibonaccisequence.py

import stdio

import sys

class FibonacciSequence:

def __init__(self , n):

self._n = n

self._a = 1

self._b = 1

self._count = 0

def __iter__(self):

return self

def __next__(self):

self._count += 1

if self._count > self._n:

raise StopIteration ()

if self._count <= 2:

return 1

temp = self._a

self._a = self._b

self._b += temp

return self._b

def _main ():

n = int(sys.argv [1])

for v in FibonacciSequence(n):

stdio.writeln(v)

if __name__ == ’__main__ ’:

_main()

Examples

& ~/workspace/ipp/programs

$ python3 fibonaccisequence.py 10

1

1

2

3

5

8

13

21

34

55

Examples

& ~/workspace/ipp/programs

$ python3 fibonaccisequence.py 10

1

1

2

3

5

8

13

21

34

55

Exceptions

An exception is a disruptive event that occurs while a program is running, often to signal an error

The action taken in response is known as raising an exception (or error)

We can raise our own exceptions as follows

raise Exception(’Error message here.’)

We can handle exceptions using a try-except block

Exceptions

An exception is a disruptive event that occurs while a program is running, often to signal an error

The action taken in response is known as raising an exception (or error)

We can raise our own exceptions as follows

raise Exception(’Error message here.’)

We can handle exceptions using a try-except block

Exceptions

An exception is a disruptive event that occurs while a program is running, often to signal an error

The action taken in response is known as raising an exception (or error)

We can raise our own exceptions as follows

raise Exception(’Error message here.’)

We can handle exceptions using a try-except block

Exceptions

An exception is a disruptive event that occurs while a program is running, often to signal an error

The action taken in response is known as raising an exception (or error)

We can raise our own exceptions as follows

raise Exception(’Error message here.’)

We can handle exceptions using a try-except block

Exceptions

An exception is a disruptive event that occurs while a program is running, often to signal an error

The action taken in response is known as raising an exception (or error)

We can raise our own exceptions as follows

raise Exception(’Error message here.’)

We can handle exceptions using a try-except block

Exceptions

Program: errorhandling.py

• Command-line input: x (float)

• Standard output: square root of x , reporting an error if x is not specified, is not a float, or is negative

& ~/workspace/ipp/programs

$ python3 errorhandling.py

x not specified

$ python3 errorhandling.py two

x must be a float

$ python3 errorhandling.py -2

x must be positive

$ python3 errorhandling.py 2

1.4142135623730951

Exceptions

Program: errorhandling.py

• Command-line input: x (float)

• Standard output: square root of x , reporting an error if x is not specified, is not a float, or is negative

& ~/workspace/ipp/programs

$ python3 errorhandling.py

x not specified

$ python3 errorhandling.py two

x must be a float

$ python3 errorhandling.py -2

x must be positive

$ python3 errorhandling.py 2

1.4142135623730951

Exceptions

Program: errorhandling.py

• Command-line input: x (float)

• Standard output: square root of x , reporting an error if x is not specified, is not a float, or is negative

& ~/workspace/ipp/programs

$ python3 errorhandling.py

x not specified

$ python3 errorhandling.py two

x must be a float

$ python3 errorhandling.py -2

x must be positive

$ python3 errorhandling.py 2

1.4142135623730951

Exceptions

Program: errorhandling.py

• Command-line input: x (float)

• Standard output: square root of x , reporting an error if x is not specified, is not a float, or is negative

& ~/workspace/ipp/programs

$ python3 errorhandling.py

x not specified

$ python3 errorhandling.py two

x must be a float

$ python3 errorhandling.py -2

x must be positive

$ python3 errorhandling.py 2

1.4142135623730951

Exceptions

Program: errorhandling.py

• Command-line input: x (float)

• Standard output: square root of x , reporting an error if x is not specified, is not a float, or is negative

& ~/workspace/ipp/programs

$ python3 errorhandling.py

x not specified

$ python3 errorhandling.py two

x must be a float

$ python3 errorhandling.py -2

x must be positive

$ python3 errorhandling.py 2

1.4142135623730951

Exceptions

L errorhandling.py

import math

import stdio

import sys

def main ():

try:

x = float(sys.argv [1])

result = _sqrt(x)

stdio.writeln(result)

except IndexError as e:

stdio.writeln(’x not specified ’)

except ValueError as e:

stdio.writeln(’x must be a float ’)

except Exception as e:

stdio.writeln(e)

finally:

stdio.writeln(’Done!’)

def _sqrt(x):

if x < 0:

raise Exception(’x must be positive ’)

return math.sqrt(x)

if __name__ == ’__main__ ’:

main()

Exceptions

L errorhandling.py

import math

import stdio

import sys

def main ():

try:

x = float(sys.argv [1])

result = _sqrt(x)

stdio.writeln(result)

except IndexError as e:

stdio.writeln(’x not specified ’)

except ValueError as e:

stdio.writeln(’x must be a float ’)

except Exception as e:

stdio.writeln(e)

finally:

stdio.writeln(’Done!’)

def _sqrt(x):

if x < 0:

raise Exception(’x must be positive ’)

return math.sqrt(x)

if __name__ == ’__main__ ’:

main()

	Outline
	APIs
	Encapsulation
	Immutability
	Polymorphism
	Overloading
	Functions are Objects
	Examples
	Exceptions

