Problem 1. (Quadratic Equation) Write a program called quadratic.py (a variant of the program we discussed in class) that accepts a (float), b (float), and c (float) as command-line arguments, and writes to standard output the roots of the quadratic equation $a x^{2}+b x+c=0$. Your program should report the message "Value of a must not be 0 " if $a=0$, and the message "Value of discriminant must not be negative" if $b^{2}-4 a c<0$.

```
>_ //workspace/exercise2
$ python3 quadratic.py 1 -5 6
3.0 2.0
$ python3 quadratic.py 1 -1 -1
1.618033988749895 -0.6180339887498949
```

Problem 2. (Six-sided Die) Write a program called die.py that simulates the roll of a six-sided die, and writes to standard output the pattern on the top face.

```
>- %/workspace/exercise2
$ python3 die.py
*
* *
$ python3 die.py
    *
```

Problem 3. (Primality Test) Write a program called primality_test.py that accepts n (int) as command-line argument, and writes to standard output if n is a prime number or not.

```
>- %/workspace/exercise2
$ python3 primality_test.py 31
True
$ python3 primality_test.py 42
False
```

Problem 4. Write a program called factorial.py that accepts n (int) as command-line argument, and writes to standard output the value of $n!$, which is defined as $n!=1 \times 2 \times \ldots(n-1) \times n$. Note that $0!=1$.
\square

Problem 5. (Counting Primes) Write a program called prime_counter.py that accepts n (int) as command-line argument, and writes to standard output the number of primes less than or equal to n.

```
>_ ~/workspace/exercise2
$ python3 prime_counter.py 10
$ python3 prime_counter.py 100
25
```


Files to Submit

1. quadratic.py
2. die.py

Exercise 2 (Control Flow)

3. primality_test.py
4. factorial.py
5. prime_counter.py

Before you submit your files, make sure:

- You do not use concepts from sections beyond "Control Flow".
- Your code is adequately commented, follows good programming principles, and meets any specific requirements such as corner cases and running times.

