Problem 1. (Palindrome) Implement the function _isPalindrome() in palindrome.py that returns True if the argument s is a palindrome (ie, reads the same forwards and backwards), and false otherwise. You may assume that s is all lower case and doesn't contain any whitespace characters.

```
>_ ~/workspace/exercise4
$ python3 palindrome.py bolton
False
$ python3 palindrome.py amanaplanacanalpanama
True
```

Problem 2. (Sine Function) Implement the function _sin() in \sin. py that calculates the sine of the argument x in radians, using the formula

$$
\sin (x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

Note: to test for convergence, use the condition similar to the one in the _cdf() function from the gaussian.py library we discussed in class.

>_ ${ }^{\sim} /$ workspace/exercise4
\$ python3 sin.py 60 0.8660254037844385

Problem 3. (Euclidean Distance) Implement the function _distance() in distance.py that returns the Euclidean distance between the vectors x and y represented as one-dimensional lists of floats. The Euclidean distance is calculated as the square root of the sums of the squares of the differences between the corresponding entries. You may assume that x and y have the same length.

```
>_ ~/workspace/exercise4
$ python3 distance.py
-9 11 10 -1 1
5
-5
13.0
```

Problem 4. (Reverse) Implement the function _reverse() in reverse.py that reverses the one-dimensional list a in place, ie, without creating a new list.

```
>_ %/workspace/exercise4
$ python3 reverse.py
to be or not to be that is the question
<ctrl-d>
question the is that be to not or be to
```

Problem 5. (Transpose) Implement the function _transpose() in transpose.py that creates and returns a new matrix that is the transpose of the matrix represented by the argument a. Note that a need not have the same number rows and columns. Recall that the transpose of an m-by- n matrix A is an n-by- m matrix B such that $B_{i j}=A_{j i}$, where $0 \leq i<n$ and $0 \leq j<m$.

```
>- %/workspace/exercise4
    python3 transpose.py
2 3
1 2 3
4 5 6
1.0 4.0
2.0 5.0
3.0 6.0
```


Files to Submit

1. palindrome.py
2. sin.py
3. distance.py
4. reverse.py
5. transpose.py

Before you submit your files, make sure:

- You do not use concepts from sections beyond "Libraries and Applications".
- Your code is adequately commented, follows good programming principles, and meets any specific requirements such as corner cases and running times.

