
Exercise 5 (Recursion and Object-oriented Programming)

Problem 1. (Sum of Integers) Implement the function _sumOfInts() in sum_of_ints.py that takes an integer n as argument and
returns the sum S(n) = 1 + 2 + 3 + · · ·+ n, computed recursively using the recurrence equation

S(n) =

{
1 if n = 1,

n+ S(n− 1) if n > 1.

& ~/workspace/exercise5

$ python3 sum_of_ints.py 100
5050

Problem 2. (Bit Counts) Implement the functions _zeros() and _ones() in bits.py that take a bit string (ie, a string of zeros
and ones) s as argument and return the number of zeros and ones in s, each computed recursively. The number of zeros in
a bit string is 1 or 0 (if the first character is ’0’ or ’1’) plus the number of zeros in the rest of the string; number of zeros in
an empty string is 0 (base case). The number of ones in a bit string can be defined analogously.

& ~/workspace/exercise5

$ python3 bits.py 1010010010011110001011111
zeros = 11, ones = 14, total = 25

Problem 3. (String Reversal) Implement the function _reverse() in reverse.py that takes a string s as argument and returns
the reverse of the string, computed recursively. The reverse of a string is the last character concatenated with the reverse of
the string up to the last character; the reverse of an empty string is an empty string (base case).

& ~/workspace/exercise5

$ python3 reverse.py bolton
notlob

Problem 4. (Palindrome) Implement the function _isPalindrome() in palindrome.py, using recursion, such that it returns True if
the argument s is a palindrome (ie, reads the same forwards and backwards), and False otherwise. You may assume that s
is all lower case and doesn’t include any whitespace characters. A string is a palindrome if the first character is the same as
the last and the rest of the string is a palindrome; an empty string is a palindrome (base case).

& ~/workspace/exercise5

$ python3 palindrome.py bolton
False
$ python3 palindrome.py madam
True

Problem 5. (Password Checker) Implement the function _isValid() in password_checker.py that returns True if the given password
string meets the following requirements, and False otherwise:

� Is at least eight characters long

� Contains at least one digit (0-9)

� Contains at least one uppercase letter

� Contains at least one lowercase letter

� Contains at least one character that is neither a letter nor a number

1 / 3



Exercise 5 (Recursion and Object-oriented Programming)

& ~/workspace/exercise5

$ python3 password_checker.py Abcde1fg
False
$ python3 password_checker.py Abcde1@g
True

Hint: use the str methods isdigit(), isupper(), islower(), and isalnum().

Problem 6. (2D Point) Define a data type called Point in point.py that represents a point in 2D. The data type must support
the following API:

² point.Point

Point(x, y) constructs a point p from the given x and y values
p.distanceTo(q) returns the Euclidean distance between p and q

str(p) returns a string representation of p as ’(x, y)’

& ~/workspace/exercise5

$ python3 point.py 0 1 1 0
p1 = (0.0, 1.0)
p2 = (1.0, 0.0)
d(p1 , p2) = 1.4142135623730951

Problem 7. (1D Interval) Define a data type called Interval in interval.py that represents a closed 1D interval. The data type
must support the following API:

² interval.Interval

Interval(lbound, rbound) constructs an interval i given its lower and upper bounds
i.lower() returns the lower bound of i

i.upper() returns the upper bound of i

i.contains(x) returns True if i contains the value x, and False otherwise
i.intersects(j) returns True if i intersects interval j, and False otherwise
str(i) returns a string representation of i as ’[lbound, rbound]’

& ~/workspace/exercise5

$ python3 interval.py 3.14
0 1 0.5 1.5 1 2 1.5 2.5 2.5 3.5 3 4
[2.5, 3.5] contains 3.140000
[3.0, 4.0] contains 3.140000
[0.0, 1.0] intersects [0.5, 1.5]
[0.0, 1.0] intersects [1.0, 2.0]
[0.5, 1.5] intersects [1.0, 2.0]
[0.5, 1.5] intersects [1.5, 2.5]
[1.0, 2.0] intersects [1.5, 2.5]
[1.5, 2.5] intersects [2.5, 3.5]
[2.5, 3.5] intersects [3.0, 4.0]

Problem 8. (Rectangle) Define a data type called Rectangle in rectangle.py that represents a rectangle using 1D intervals (ie,
Interval objects) to represent its x (width) and y (height) segments. The data type must support the following API:

² rectangle.Rectangle

Rectangle(xint, yint) constructs a rectangle r given its x and y segments, each an Interval object
r.area() returns the area of rectangle r

r.perimeter() returns the perimeter of rectangle r

r.contains(x, y) returns True if r contains the point (x, y), and False otherwise
r.intersects(s) returns True if r intersects rectangle s, and False otherwise
str(r) returns a string representation of r as ’[x1, x2] x [y1, y2]’

2 / 3



Exercise 5 (Recursion and Object-oriented Programming)

& ~/workspace/exercise5

$ python3 rectangle.py 1.01 1.34
0 1 0 1 0.7 1.2 .9 1.5
Area ([0.0 , 1.0] x [0.0, 1.0]) = 1.000000
Perimeter ([0.0, 1.0] x [0.0, 1.0]) = 4.000000
Area ([0.7 , 1.2] x [0.9, 1.5]) = 0.300000
Perimeter ([0.7, 1.2] x [0.9, 1.5]) = 2.200000
[0.7, 1.2] x [0.9, 1.5] contains (1.010000 , 1.340000)
[0.0, 1.0] x [0.0, 1.0] intersects [0.7, 1.2] x [0.9, 1.5]

Files to Submit

1. sum_of_ints.py

2. bits.py

3. reverse.py

4. palindrome.py

5. password_checker.py

6. point.py

7. interval.py

8. rectangle.py

Before you submit your files, make sure:

� You do not use concepts from sections beyond “Designing Data Types”.

� Your code is adequately commented, follows good programming principles, and meets any specific requirements
such as corner cases and running times.

3 / 3


