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Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y
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Boolean Functions

The truth table for a boolean function is a listing of all possible input values, together with the output value

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x+ y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1
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Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions using the Minterm Expansion Algorithm

The algorithm

1. Write down the truth table for the boolean function

2. Delete all rows from the truth table where the value of the function is 0

3. For each remaining row, create a “minterm” as follows

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄
b. Combine all of the variables using ·

4. Combine all of the minterms using +
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Boolean Functions

Example: consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

Therefore, implication(x , y) = x̄ · ȳ + x̄ · y + x · y
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Logic Circuits

The circuits (called gates) that implement the not, or, and and functions

not or and

The circuit for the implication function x̄ · ȳ + x̄ · y + x · y

x y

x =⇒ y
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Logic Circuits

A full adder (FA) circuit can add two 1-bit numbers (with carry) to produce a 2-bit result

cout

z

cin

yx

x y cin z cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1
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Logic Circuits

An n-bit ripple-carry adder for adding two n-bit numbers is n FA circuits chained together

Example (2-bit ripple-carry adder for adding two 2-bit numbers)
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Logic Circuits

Truth table for a nor gate (or followed by not)

x y x+ y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R

S

Q

Q̄

S R Q Q̄

0 0 0 1

1 0 1 0

0 0 1 0

0 1 0 1

0 0 0 1

Billion latches can be combined to produce a 1GB Random Access Memory (RAM) module
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