
Assignment 4 (RSA Crpytosystem)

Goal: The goal of this assignment is to implement the RSA public-key cryptosystem.

Background: RSA (Rivest-Shamir-Adleman) cryptosystem is widely used for secure communication in browsers, bank ATM
machines, credit card machines, mobile phones, smart cards, and operating systems. It works by manipulating integers. To
thwart eavesdroppers, the RSA cryptosystem must manipulate huge integers (hundreds of digits), which is naturally supported
by the int data type in Python. Your task is to implement a library that supports core functions needed for developing the
RSA cryptosystem, and implement programs for encrypting and decrypting messages using RSA.

The Math Behind: The RSA cryptosystem involves three integers n, e, and d that satisfy certain mathematical properties.
The public key (n, e) is made public on the Internet, while the private key (n, d) is only known to Bob. If Alice wants to send
Bob a message x ∈ [0, n), she encrypts it using the function

E(x) = xe mod n,

where n = pq for two distinct large prime numbers p and q chosen at random, and e is a random prime number less than
m = (p− 1)(q − 1) such that e does not divide m.

For example, suppose p = 47 and q = 79. Then n = 3713 and m = 3588. Further suppose e = 7. If Alice wants to send the
message x = 2020 to Bob, she encrypts it as

E(2020) = 20207 mod 3713 = 516.

When Bob receives the encrypted message y, he decrypts it using the function

D(y) = yd mod n,

where d ∈ [1,m) is the multiplicative inverse of e mod m, ie, d is an integer that satisfies the equation ed mod m = 1.

Continuing the example above, if d = 2563, then when Bob receives the encrypted message y = 516 from Alice, he decrypts
it to recover the original message as

D(516) = 5162563 mod 3713 = 2020.

Problem 1. (RSA Library) Implement a library called rsa.py that provides functions needed for developing the RSA
cryptosystem. The library must support the following API:

keygen(lo, hi) generates and returns the public/private keys as a tuple (n, e, d), picking prime numbers p and q
needed to generate the keys from the interval [lo, hi)

encrypt(x, n, e) encrypts x (int) using the public key (n, e) and returns the encrypted value

decrypt(y, n, d) decrypts y (int) using the private key (n, d) and returns the decrypted value

bitLength(n) returns the least number of bits needed to represent n

dec2bin(n, width) returns the binary representation of n expressed in decimal, having the given width and padded
with leading zeros

bin2dec(n) returns the decimal representation of n expressed in binary

× ~/workspace/rsa cryptosystem

$ python3 rsa.py S

encrypt(S) = 1743

decrypt (1743) = S

bitLength (83) = 7

dec2bin (83) = 1010011

bin2dec (1010011) = 83

1/3



Assignment 4 (RSA Crpytosystem)

Problem 2. (Keygen Program) Write a program called keygen.py that receives lo (int) and hi (int) as command-line inputs,
generates public/private keys (n, e, d), and writes the keys as standard output, separated by a space. The interval [lo, hi)
specifies the interval from which prime numbers p and q needed to generate the keys are picked.

× ~/workspace/rsa cryptosystem

$ python3 keygen.py 50 100

3599 1759 2839

Problem 3. (Encryption Program) Write a program called encrypt.py that receives the public-key n (int) and e (int) as
command-line inputs and a message to encrypt as standard input, encrypts each character in the message, and writes its
fixed-width binary representation as standard output.

× ~/workspace/rsa cryptosystem

$ python3 encrypt.py 3599 1759

CS110

<ctrl -d>

000110000000010011010100001010100011001010100011001110000110010111100100

Problem 4. (Decryption Program) Write a program called decrypt.py that receives the private-key n (int) and d (int)
as command-line inputs and a message to decrypt (produced by encrypt.py) as standard input, decrypts each character
(represented as a fixed-width binary sequence) in the message, and writes the decrypted character as standard output.

× ~/workspace/rsa cryptosystem

$ python3 decrypt.py 3599 2839

000110000000010011010100001010100011001010100011001110000110010111100100

<ctrl -d>

CS110

$ python3 encrypt.py 3599 1759 | python3 decrypt.py 3599 2839

Python is the mother of all languages.

<ctrl -d>

Python is the mother of all languages.

Data: Be sure to test your programs thoroughly using files provided under the data folder. For example:

× ~/workspace/rsa cryptosystem

$ python3 keygen.py 50 100

5963 4447 367

$ python3 encrypt.py 5963 4447 < data/adams.txt | python3 decrypt.py 5963 367

The major difference between a thing that might go wrong and a thing that cannot

possibly go wrong is that when a thing that cannot possibly go wrong goes wrong

it usually turns out to be impossible to get at and repair.

Files to Submit:

1. rsa.py

2. keygen.py

2/3



Assignment 4 (RSA Crpytosystem)

3. encrypt.py

4. decrypt.py

5. notes.txt

Before you submit your files, make sure:

• You do not use concepts from sections beyond Libraries and Applications.

• Your code is clean, well-organized, uses meaningful variable names, includes useful comments, and is efficient.

• You edit the sections (#1mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
In section #1, for each problem, state its goal in your own words and describe your approach to solve the problem
along with any issues you encountered and if/how you managed to solve those issues.

Acknowledgement: This assignment is an adaptation of the RSA Public-key Cryptosystem assignment developed at
Princeton University by Robert Sedgewick and Kevin Wayne.

3/3


