Introduction to Programming in Python
Assignment 4 (RSA Cryptosystem) Discussion

Introduction

The RSA cryptosystem involves three integers n, e, and d that satisfy certain mathematical properties
The public key (n, e) is made public on the Internet, while the private key (n, d) is only known to Bob

If Alice wants to send Bob a message x € [0, n), she encrypts it using the function E(x) = x® mod n, where n = pq for
two distinct large prime numbers p and g chosen at random, and e is a random prime number less than
m = (p—1)(g — 1) such that e does not divide m

Example: suppose p = 47 and g = 79; then n = 3713 and m = 3588; further suppose e = 7; if Alice wants to send the
message x = 2020 to Bob, she encrypts it as £(2020) = 2020”7 mod 3713 = 516

When Bob receives the encrypted message y, he decrypts it using the function D(y) = y? mod n, where d € [1,m) is
an integer that satisfies the equation ed mod m =1

Continuing the example above, if d = 2563, then when Bob receives the encrypted message y = 516 from Alice, he
decrypts it to recover the original message as D(516) = 516263 mod 3713 = 2020

Problem 1 (RSA Library)

Implement a library called rsa.py that provides functions needed for developing the RSA cryptosystem and supports the
following API

keygen(lo, hi) generates and returns the public/private keys as a tuple (n, e, d), picking prime numbers p
and g needed to generate the keys from the interval [lo, hi)

encrypt(x, n, e) encrypts x (int) using the public key (n, e) and returns the encrypted value

decrypt(y, n, d4) decrypts y (int) using the private key (n, d) and returns the decrypted value

bitLength(n) returns the least number of bits needed to represent n

dec2bin(n, width) returns the binary representation of n expressed in decimal, having the given width and
padded with leading zeros

bin2dec(n) returns the decimal representation of n expressed in binary

X ~/workspace/rsa_cryptosystem

$ python3 rsa.py S
encrypt (S) = 1743
decrypt (1743) = S
bitLength(83) = 7
dec2bin (83) = 1010011
bin2dec (1010011) = 83

Problem 1 (RSA Library)

keygen(lo, hi)
- Get a list of primes from the interval [lo, hi)
- Sample two distinct random primes p and g from that list
- Set n and m to pq and (p — 1)(g — 1), respectively
- Get a list primes from the interval [2, m)
- Choose a random prime e from the list such that e does not divide m (you will need a loop for this)
- Find a d € [1, m) such that ed mod m =1 (you will need a loop for this)
- Return the tuple! (n, e, d)
encrypt(x, n, e)
- Implement the function E(x) = x° mod n
decrypt(y, n, d)
- Implement the function D(y) = y¢ mod n

A tuple is like a list, but is immutable. You create a tuple by enclosing comma-separated values within matched parentheses, eg, a = (1, 2, 3). Ifa
is a tuple, @a[i] is the ith element in it

Problem 1 (RSA Library)

_primes(lo, hi)
- Create an empty list
- For each p € [lo, hi), if p is a prime, add p to the list
- Return the list
_sample(a, k)
- Create a list b that is a copy (not an alias) of a
- Shuffle the first k elements of b
- Return a list containing the first k elements of b
_choice(a)
- Get a random number r € [0, /), where [is the number of elements in a

- Return the element in a at the index r

Problem 2 (Keygen Program)

Write a program called keygen.py that receives lo (int) and hi (int) as command-line inputs, generates public/private
keys (n, e, d), and writes the keys as standard output, separated by a space

‘ X ~/workspace/rsa_cryptosystem

$ python3 keygen.py 50 100
3599 1759 2839

Problem 2 (Keygen Program)

Receive /o (int) and hi (int) as command-line inputs
Get public/private keys as a tuple

Write the three values in the tuple, separated by a space

Problem 3 (Encryption Program)

Write a program called encrypt.py that receives the public-key n (int) and e (int) as command-line inputs and a
message to encrypt as standard input, encrypts each character in the message, and writes its fixed-width binary
representation as standard output

X ~/workspace/rsa_cryptosystem

$ python3 encrypt.py 3599 1759
CS110
<ctrl-d>

000110000000010011010100001010100011001010100011001110000110010111100100

Problem 3 (Encryption Program)

Receive public-key n (int) and e (int) as command-line inputs
Get the number of bits per character (call it width) needed for encryption, ie, number of bits needed to encode n
Receive message to encrypt as standard input

For each character ¢ in message
- Use the built-in function ord() to turn c into an integer x
- Encrypt x
- Write the encrypted value as a width-long binary string

Write a newline character

Problem 4 (Decrpytion Program)

Write a program called decrypt.py that receives the private-key n (int) and d (int) as command-line arguments and a
message to decrypt (produced by encrypt.py) as standard input, decrypts each character (represented as a fixed-width
binary sequence) in the message, and writes the decrypted character as standard output

X ~/workspace/rsa_cryptosystem

$ python3 decrypt.py 3599 2839
000110000000010011010100001010100011001010100011001110000110010111100100
<ctrl-d>

Cs110

$ python3 encrypt.py 3599 1759 | python3 decrypt.py 3599 2839

Python is the mother of all languages.

<ctrl-d4d>

Python is the mother of all languages.

Problem 4 (Decrpytion Program)

Receive private-key n (int) and d (int) as command-line inputs
Get the number of bits per character (call it width)
Accept message (binary string generated by encrypt.py) as standard input

Assuming | is the length of message, for i € [0,/ — 1) and in increments of width
- Set s to substring of message from i to i 4+ width (exclusive)
- Set y to decimal representation of the binary string s

- Decrypt y
- Write the character corresponding to the decrypted value, obtained using the built-in function chr ()

	Introduction
	Problem 1 (RSA Library)
	Problem 2 (Keygen Program)
	Problem 3 (Encryption Program)
	Problem 4 (Decrpytion Program)

