
Software and Hardware



Outline

1 Representing Information

2 Boolean Functions

3 Logic Circuits

4 Von Neumann Architecture



Representing Information

Decimal (base 10) system

Binary (base 2) system

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = · 102 + · 101 + · 100

Binary (base 2) system

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = · 27 + · 26 + · 25 + · 24 + · 23 + · 22 + · 21 + · 20

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

135 = · 82 + · 81 + · 80

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

135 = 2 · 82 + 0 · 81 + 7 · 80

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

135 = 2 · 82 + 0 · 81 + 7 · 80

Hexadecimal (base 16) system



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

135 = 2 · 82 + 0 · 81 + 7 · 80

Hexadecimal (base 16) system

135 = · 161 + · 160



Representing Information

Decimal (base 10) system

135 = 1 · 102 + 3 · 101 + 5 · 100

Binary (base 2) system

135 = 1 · 27 + 0 · 26 + 0 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20

Octal (base 8) system

135 = 2 · 82 + 0 · 81 + 7 · 80

Hexadecimal (base 16) system

135 = 8 · 161 + 7 · 160



Representing Information

Dec Bin Oct Hex

0 00000 00 00

1 00001 01 01

2 00010 02 02

3 00011 03 03

4 00100 04 04

5 00101 05 05

6 00110 06 06

7 00111 07 07

8 01000 10 08

9 01001 11 09

10 01010 12 0A

11 01011 13 0B

12 01100 14 0C

13 01101 15 0D

14 01110 16 0E

15 01111 17 0F

Dec Bin Oct Hex

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

21 10101 25 15

22 10110 26 16

23 10111 27 17

24 11000 30 18

25 11001 31 19

26 11010 32 1A

27 11011 33 1B

28 11100 34 1C

29 11101 35 1D

30 11110 36 1E

31 11111 37 1F



Representing Information

Dec Bin Oct Hex

0 00000 00 00

1 00001 01 01

2 00010 02 02

3 00011 03 03

4 00100 04 04

5 00101 05 05

6 00110 06 06

7 00111 07 07

8 01000 10 08

9 01001 11 09

10 01010 12 0A

11 01011 13 0B

12 01100 14 0C

13 01101 15 0D

14 01110 16 0E

15 01111 17 0F

Dec Bin Oct Hex

16 10000 20 10

17 10001 21 11

18 10010 22 12

19 10011 23 13

20 10100 24 14

21 10101 25 15

22 10110 26 16

23 10111 27 17

24 11000 30 18

25 11001 31 19

26 11010 32 1A

27 11011 33 1B

28 11100 34 1C

29 11101 35 1D

30 11110 36 1E

31 11111 37 1F



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1 1 1

+ 1 1 0



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1 1 1

+ 1 1 0

1



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1

1 1 1

+ 1 1 0

0 1



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1 1

1 1 1

+ 1 1 0

1 0 1



Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1 1

1 1 1

+ 1 1 0

1 1 0 1



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Two’s complement method to compute −x :

1 Represent x in binary

2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

• Represent 3 in binary as 00000011

• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part

• The next six digits for the fractional part

• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159



Representing Information

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English,
and a select set of special characters

Example: the numbers 65–90 encode upper-case letters A–Z, numbers 97–122 encode lower-case letters a–z, and
numbers 48–57 encode digits 0–9

The 16-bit Unicode system can represent every character in every known language, with room for more



Representing Information

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English,
and a select set of special characters

Example: the numbers 65–90 encode upper-case letters A–Z, numbers 97–122 encode lower-case letters a–z, and
numbers 48–57 encode digits 0–9

The 16-bit Unicode system can represent every character in every known language, with room for more



Representing Information

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English,
and a select set of special characters

Example: the numbers 65–90 encode upper-case letters A–Z, numbers 97–122 encode lower-case letters a–z, and
numbers 48–57 encode digits 0–9

The 16-bit Unicode system can represent every character in every known language, with room for more



Representing Information

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English,
and a select set of special characters

Example: the numbers 65–90 encode upper-case letters A–Z, numbers 97–122 encode lower-case letters a–z, and
numbers 48–57 encode digits 0–9

The 16-bit Unicode system can represent every character in every known language, with room for more



Representing Information

A string is represented as a sequence of numbers, with a “length field” at the very beginning specifying the length of
the string

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

or in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110



Representing Information

A string is represented as a sequence of numbers, with a “length field” at the very beginning specifying the length of
the string

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

or in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110



Representing Information

A string is represented as a sequence of numbers, with a “length field” at the very beginning specifying the length of
the string

Example: the string “Python” is represented in decimal as the sequence

006 080 121 116 104 111 110

or in binary as the sequence

00000110 01010000 01111001 01110100 01101000 01101111 01101110



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Representing Information

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1

0 1 1

1 0 0

1 1 1

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1

0 1 1

1 0 0

1 1 1

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1 x̄ · ȳ
0 1 1

1 0 0

1 1 1

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1 x̄ · ȳ
0 1 1 x̄ · y
1 0 0

1 1 1

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1 x̄ · ȳ
0 1 1 x̄ · y
1 0 0

1 1 1 x · y

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

x y x =⇒ y minterm

0 0 1 x̄ · ȳ
0 1 1 x̄ · y
1 0 0

1 1 1 x · y

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y



Logic Circuits

The logic gates that implement the not, or, and and functions

not or and

Logic circuit for the implication function x̄ · ȳ + x̄ · y + x · y

x y

x =⇒ y



Logic Circuits

The logic gates that implement the not, or, and and functions

not or and

Logic circuit for the implication function x̄ · ȳ + x̄ · y + x · y

x y

x =⇒ y



Logic Circuits

The logic gates that implement the not, or, and and functions

not or and

Logic circuit for the implication function x̄ · ȳ + x̄ · y + x · y

x y

x =⇒ y



Logic Circuits

A full adder (FA) circuit can add two 1-bit numbers (with carry) to produce a 2-bit result

cout

z

cin

yx

x y cin z cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1



Logic Circuits

A full adder (FA) circuit can add two 1-bit numbers (with carry) to produce a 2-bit result

cout

z

cin

yx

x y cin z cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1



Logic Circuits

An n-bit ripple-carry adder is n FA circuits chained together to add two n-bit numbers

A 2-bit ripple-carry adder

cout

z

cin

yx

cout

z

cin

yx

x1 y1 x0 y0

0c

z1 z0



Logic Circuits

An n-bit ripple-carry adder is n FA circuits chained together to add two n-bit numbers

A 2-bit ripple-carry adder

cout

z

cin

yx

cout

z

cin

yx

x1 y1 x0 y0

0c

z1 z0



Logic Circuits

An n-bit ripple-carry adder is n FA circuits chained together to add two n-bit numbers

A 2-bit ripple-carry adder

cout

z

cin

yx

cout

z

cin

yx

x1 y1 x0 y0

0c

z1 z0



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R

S

Q

Q̄

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 0

Q̄

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 1

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 1

Q 1

Q̄ 0

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 1

Q̄ 0

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 1

Q̄ 0

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 1

S 0

Q 1

Q̄ 0

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 1

S 0

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Logic Circuits

Truth table for a nor gate (or followed by not)

x y x + y

0 0 1

0 1 0

1 0 0

1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

R 0

S 0

Q 0

Q̄ 1

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution



Von Neumann Architecture

Example: an 8-bit computer with four operations (add, subtract, multiply, and divide), four registers (0 through 3), and
256 8-bit memory cells

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Example: an 8-bit computer with four operations (add, subtract, multiply, and divide), four registers (0 through 3), and
256 8-bit memory cells

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Program execution



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 10111010

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 10111010

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3 01111001

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255


	Outline
	Representing Information
	Boolean Functions
	Logic Circuits
	Von Neumann Architecture

