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Two’s complement method to compute −x :
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2 Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):
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• Flip the bits of the result to obtain 11111100

• Add 1 to the result to obtain 11111101

Note: just like how 3 + (−3) = 0, we have 00000011 + 11111101 = 100000000
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Assuming we only have 10 decimal digits to represent a real number, we might use:

• The first digit for the sign (0 for + and 1 for −) of the fractional part
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• The eigth digit for the sign (0 for + and 1 for −) of the exponent

• The last two digits for the exponent

Example: the 10-digit number 0314159001 represents 0.314159× 101 = 3.14159
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ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English,
and a select set of special characters

Example: the numbers 65–90 encode upper-case letters A–Z, numbers 97–122 encode lower-case letters a–z, and
numbers 48–57 encode digits 0–9

The 16-bit Unicode system can represent every character in every known language, with room for more
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A string is represented as a sequence of numbers, with a “length field” at the very beginning specifying the length of
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Example: the string “Python” is represented in decimal as the sequence
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Example (encoding pictures, sounds, and movies):

• A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

• A sound as a temporal sequence of “sound pressure levels”

• A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence
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Boolean Functions

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations

The three basic boolean functions: not(x) = x̄ , or(x , y) = x + y , and and(x , y) = x · y

The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together
with the result produced by the function

Truth tables for not, or, and and functions

x x̄

0 1

1 0

x y x + y

0 0 0

0 1 1

1 0 1

1 1 1

x y x · y
0 0 0

0 1 0

1 0 0

1 1 1
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Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

1 Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

3 For each remaining row, create a “minterm” as follows:

a. For each variable x : if its value in that row is 1, write x ; otherwise, write x̄

b. Combine all of the variables using ·

4 Combine all of the minterms using +



Boolean Functions

Example (implication function): consider the proposition “if you score over 93% in this course, then you will get an A”

The proposition is described by the implication function (x =⇒ y)

Ergo, implication(x , y) = x̄ · ȳ + x̄ · y + x · y
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Truth table for a nor gate (or followed by not)
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1 1 0

A 1-bit memory circuit, called a latch, built using two nor gates

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module
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Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called
registers

The computer’s main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a
time

The CPU has two special registers:

1 A program counter to track the next instruction to execute

2 An instruction register to store the next instruction for execution
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Example: an 8-bit computer with four operations (add, subtract, multiply, and divide), four registers (0 through 3), and
256 8-bit memory cells
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Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

• 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

• 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

• 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the
two input registers

• An assembly language program for computing the square of the sum of the values in registers 0 and 1, and storing
the result in register 3

add 2 0 1

mul 3 2 2

and the equivalent machine language program

00 10 00 01

10 11 10 10



Von Neumann Architecture

Program execution



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0

00000001 1

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0

Register 1

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter

Instruction Register

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000000

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 00100001

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 10111010

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255



Von Neumann Architecture

Program execution

CPU

Program Counter 00000001

Instruction Register 10111010

Register 0 00000100

Register 1 00000111

Register 2 00001011

Register 3 01111001

+ − × ÷

Memory

00000000 0 00100001

00000001 1 10111010

00000010 2

00000011 3

00000100 4

... ...

11111110 254

11111111 255


	Outline
	Representing Information
	Boolean Functions
	Logic Circuits
	Von Neumann Architecture

