Software and Hardware

(1) Representing Information

2 Boolean Functions
(3) Logic Circuits

4 Von Neumann Architecture

Representing Information

Representing Information

Decimal (base 10) system

$$
135=\cdot 10^{2}+\cdot 10^{1}+\cdot 10^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=\cdot 2^{7}+\cdot 2^{6}+\cdot 2^{5}+\cdot 2^{4}+\cdot 2^{3}+\cdot 2^{2}+\cdot 2^{1}+\cdot 2^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

$$
135=\cdot 8^{2}+\cdot 8^{1}+\cdot 8^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

$$
135=2 \cdot 8^{2}+0 \cdot 8^{1}+7 \cdot 8^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

$$
135=2 \cdot 8^{2}+0 \cdot 8^{1}+7 \cdot 8^{0}
$$

Hexadecimal (base 16) system

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

$$
135=2 \cdot 8^{2}+0 \cdot 8^{1}+7 \cdot 8^{0}
$$

Hexadecimal (base 16) system

$$
135=\cdot 16^{1}+\cdot 16^{0}
$$

Decimal (base 10) system

$$
135=1 \cdot 10^{2}+3 \cdot 10^{1}+5 \cdot 10^{0}
$$

Binary (base 2) system

$$
135=1 \cdot 2^{7}+0 \cdot 2^{6}+0 \cdot 2^{5}+0 \cdot 2^{4}+0 \cdot 2^{3}+1 \cdot 2^{2}+1 \cdot 2^{1}+1 \cdot 2^{0}
$$

Octal (base 8) system

$$
135=2 \cdot 8^{2}+0 \cdot 8^{1}+7 \cdot 8^{0}
$$

Hexadecimal (base 16) system

$$
135=8 \cdot 16^{1}+7 \cdot 16^{0}
$$

Representing Information

Dec	Bin	Oct	Hex
0	00000	00	00
1	00001	01	01
2	00010	02	02
3	00011	03	03
4	00100	04	04
5	00101	05	05
6	00110	06	06
7	00111	07	07
8	01000	10	08
9	01001	11	09
10	01010	12	$0 A$
11	01011	13	$0 B$
12	01100	14	$0 C$
13	01101	15	$0 D$
14	01110	16	0 E
15	01111	17	0 F

Dec	Bin	Oct	Hex
16	10000	20	10
17	10001	21	11
18	10010	22	12
19	10011	23	13
20	10100	24	14
21	10101	25	15
22	10110	26	16
23	10111	27	17
24	11000	30	18
25	11001	31	19
26	11010	32	1 A
27	11011	33	1 B
28	11100	34	1 C
29	11101	35	1 D
30	11110	36	1 E
31	11111	37	1 F

Representing Information

Arithmetic in any base is analogous to arithmetic in base 10

Arithmetic in any base is analogous to arithmetic in base 10

```
Example (addition in binary)
```

	1	1
+	1	1

Arithmetic in any base is analogous to arithmetic in base 10

```
Example (addition in binary)
```


Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

	1	
	1	1
1		
$+\quad 1$	1	0
		0

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1	1		
	1	1	1
+	1	1	0
		1	0

Arithmetic in any base is analogous to arithmetic in base 10

Example (addition in binary)

1	1		
	1	1	1
+		1	1

Representing Information

Representing Information

Two's complement method to compute $-x$:

Representing Information

Two's complement method to compute $-x$:
(1) Represent x in binary

Representing Information

Two's complement method to compute $-x$:
(1) Represent x in binary
(2) Flip the bits of the result

Representing Information

Two's complement method to compute $-x$:
(1) Represent x in binary

2 Flip the bits of the result
3 Add 1 to the result

Two's complement method to compute $-x$:
(1) Represent x in binary
2) Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

Two's complement method to compute $-x$:
(1) Represent x in binary
2) Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

- Represent 3 in binary as 00000011

Two's complement method to compute $-x$:
(1) Represent x in binary
2) Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

- Represent 3 in binary as 00000011
- Flip the bits of the result to obtain 11111100

Two's complement method to compute $-x$:
(1) Represent x in binary
2) Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

- Represent 3 in binary as 00000011
- Flip the bits of the result to obtain 11111100
- Add 1 to the result to obtain 11111101

Two's complement method to compute $-x$:
(1) Represent x in binary
(2) Flip the bits of the result

3 Add 1 to the result

Example (-3 on an 8-bit computer):

- Represent 3 in binary as 00000011
- Flip the bits of the result to obtain 11111100
- Add 1 to the result to obtain 11111101

Note: just like how $3+(-3)=0$, we have $00000011+11111101=100000000$

Representing Information

Assuming we only have 10 decimal digits to represent a real number, we might use:

Assuming we only have 10 decimal digits to represent a real number, we might use:

- The first digit for the sign (0 for + and 1 for -) of the fractional part

Assuming we only have 10 decimal digits to represent a real number, we might use:

- The first digit for the sign (0 for + and 1 for -) of the fractional part
- The next six digits for the fractional part

Assuming we only have 10 decimal digits to represent a real number, we might use:

- The first digit for the sign (0 for + and 1 for -) of the fractional part
- The next six digits for the fractional part
- The eigth digit for the sign (0 for + and 1 for -) of the exponent

Assuming we only have 10 decimal digits to represent a real number, we might use:

- The first digit for the sign (0 for + and 1 for -) of the fractional part
- The next six digits for the fractional part
- The eigth digit for the sign (0 for + and 1 for -) of the exponent
- The last two digits for the exponent

Assuming we only have 10 decimal digits to represent a real number, we might use:

- The first digit for the sign (0 for + and 1 for -) of the fractional part
- The next six digits for the fractional part
- The eigth digit for the sign (0 for + and 1 for -) of the exponent
- The last two digits for the exponent

Example: the 10-digit number 0314159001 represents $0.314159 \times 10^{1}=3.14159$

Representing Information

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English, and a select set of special characters

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English, and a select set of special characters

Example: the numbers 65-90 encode upper-case letters A-Z, numbers $97-122$ encode lower-case letters a-z, and numbers 48-57 encode digits 0-9

ASCII (American Standard Code for Information Interchange) defines 8-bit encodings for letters and numbers in English, and a select set of special characters

Example: the numbers 65-90 encode upper-case letters A-Z, numbers $97-122$ encode lower-case letters a-z, and numbers 48-57 encode digits 0-9

The 16-bit Unicode system can represent every character in every known language, with room for more

Representing Information

A string is represented as a sequence of numbers, with a "length field" at the very beginning specifying the length of the string

A string is represented as a sequence of numbers, with a "length field" at the very beginning specifying the length of the string

Example: the string "Python" is represented in decimal as the sequence

$$
006080121116104111110
$$

or in binary as the sequence
00000110010100000111100101110100011010000110111101101110

Representing Information

Representing Information

We can represent any structured information as a sequence of numbers

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel
- A sound as a temporal sequence of "sound pressure levels"

We can represent any structured information as a sequence of numbers

Example (encoding pictures, sounds, and movies):

- A picture as a sequence of triples, each containing the amount of red, green, and blue at a pixel
- A sound as a temporal sequence of "sound pressure levels"
- A movie as a temporal sequence of pictures (usually 30 per second), along with a matching sound sequence

Boolean Functions

研

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean variable is a variable that has the value 1 (True) or 0 (False)
A boolean function is an algebraic expression consisting of boolean variables and logical operations

A boolean variable is a variable that has the value 1 (True) or 0 (False)

A boolean function is an algebraic expression consisting of boolean variables and logical operations
The three basic boolean functions: $\operatorname{not}(x)=\bar{x}, o r(x, y)=x+y$, and $\operatorname{and}(x, y)=x \cdot y$

A boolean variable is a variable that has the value 1 (True) or 0 (False)
A boolean function is an algebraic expression consisting of boolean variables and logical operations
The three basic boolean functions: $\operatorname{not}(x)=\bar{x}, o r(x, y)=x+y$, and $\operatorname{and}(x, y)=x \cdot y$
The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together with the result produced by the function

A boolean variable is a variable that has the value 1 (True) or 0 (False)
A boolean function is an algebraic expression consisting of boolean variables and logical operations
The three basic boolean functions: $\operatorname{not}(x)=\bar{x}, o r(x, y)=x+y$, and $\operatorname{and}(x, y)=x \cdot y$
The truth table for a boolean function is a listing of all possible combinations of values of the input variables, together with the result produced by the function

Truth tables for not, or, and and functions

x	\bar{x}
0	1
1	0

x	y	$x+y$
0	0	0
0	1	1
1	0	1
1	1	1

x	y	$x \cdot y$
0	0	0
0	1	0
1	0	0
1	1	1

Boolean Functions

研

Any boolean function can be expressed in terms of the basic boolean functions

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0
3 For each remaining row, create a "minterm" as follows:

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0
3 For each remaining row, create a "minterm" as follows:
a. For each variable x : if its value in that row is 1 , write x; otherwise, write \bar{x}

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0
3 For each remaining row, create a "minterm" as follows:
a. For each variable x : if its value in that row is 1 , write x; otherwise, write \bar{x}
b. Combine all of the variables using .

Any boolean function can be expressed in terms of the basic boolean functions

Minterm expansion algorithm:
(1) Write down the truth table for the boolean function

2 Delete all rows from the truth table where the value of the function is 0
3 For each remaining row, create a "minterm" as follows:
a. For each variable x : if its value in that row is 1 , write x; otherwise, write \bar{x}
b. Combine all of the variables using .
4) Combine all of the minterms using +

Boolean Functions

研

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	
0	1	1	
1	0	0	
1	1	1	

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x} \cdot \bar{y}$
0	1	1	
1	0	0	
1	1	1	

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x} \cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
1	0	0	
1	1	1	

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x} \cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
1	0	0	
1	1	1	$x \cdot y$

Example (implication function): consider the proposition "if you score over 93% in this course, then you will get an A"
The proposition is described by the implication function $(x \Longrightarrow y)$

x	y	$x \Longrightarrow y$	minterm
0	0	1	$\bar{x} \cdot \bar{y}$
0	1	1	$\bar{x} \cdot y$
1	0	0	
1	1	1	$x \cdot y$

Ergo, $\operatorname{implication}(x, y)=\bar{x} \cdot \bar{y}+\bar{x} \cdot y+x \cdot y$
Logi

Logic Circuits
 Logic
 ，

 $\square$$\square$
\square
\qquad ？
\qquad
\square
\square
 \square
都都
都 \square
 \square
 \square \square （ \square \square
 （
 \square

Logic Circuits

The logic gates that implement the not, or, and and functions

Logic Circuits

The logic gates that implement the not, or, and and functions

Logic circuit for the implication function $\bar{x} \cdot \bar{y}+\bar{x} \cdot y+x \cdot y$

Logi

Logic Circuits
 Logic
 ，

 $\square$$\square$
\square
\qquad ？
\qquad
\square
\square
 \square
都都
都 \square
 \square
 \square \square （ \square \square
 （
 \square

A full adder (FA) circuit can add two 1-bit numbers (with carry) to produce a 2-bit result

x	y	$c_{\text {in }}$	z	$c_{\text {out }}$
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Logi

Logic Circuits
 Logic
 ，

 $\square$$\square$
\square
\qquad ？
\qquad
\square
\square
 \square
都都
都 \square
 \square
 \square \square （ \square \square
 （
 \square

An n-bit ripple-carry adder is n FA circuits chained together to add two n-bit numbers

An n-bit ripple-carry adder is n FA circuits chained together to add two n-bit numbers

A 2-bit ripple-carry adder

Logi

Logic Circuits
 Logic
 ，

 $\square$$\square$
\square
\qquad ？
\qquad
\square
\square
 \square
都都
都 \square
 \square
 \square \square （ \square \square
 （
 \square

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

Logic Circuits

Truth table for a nor gate (or followed by not)

x	y	$\overline{x+y}$
0	0	1
0	1	0
1	0	0
1	1	0

A 1-bit memory circuit, called a latch, built using two nor gates

A billion latches can be combined together to produce a 1GB Random Access Memory (RAM) module

Von Neumann Architecture

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

The computer's main memory is separate from the CPU but connected to it by wires

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

The computer's main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a time

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

The computer's main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a time

The CPU has two special registers:

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

The computer's main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a time

The CPU has two special registers:
(1) A program counter to track the next instruction to execute

In a modern computer, the Central Processing Unit (CPU) is where all computation takes place

The CPU has devices such as ripple-carry adders for doing arithmetic, and a small amount of (scratch) memory called registers

The computer's main memory is separate from the CPU but connected to it by wires

A program, which is a long list of instructions, is stored in main memory and executed in the CPU, one instruction at a time

The CPU has two special registers:
(1) A program counter to track the next instruction to execute
2. An instruction register to store the next instruction for execution

Von Neumann Architecture

Example: an 8-bit computer with four operations (add, subtract, multiply, and divide), four registers (0 through 3), and 256 8-bit memory cells

Memory

00000000	0	\square
00000001	1	\square
00000010	2	\square
00000011	3	\square
00000100	4	\square
	\ldots	\square
11111110	254	\square
	$\square 111111$	255

Von Neumann Architecture

Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Von Neumann Architecture

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

- 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

- 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)
- 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

- 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)
- 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)
- 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the two input registers

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

- 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)
- 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)
- 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the two input registers
- An assembly language program for computing the square of the sum of the values in registers 0 and 1 , and storing the result in register 3

```
add 2 0 1
mul 3 2 2
```

Instructions, like data, can be encoded as numbers

Example (our 8-bit computer revisited):

- 2-bit operation encodings: add (00); subtract (01); multiply (10); divide (11)
- 2-bit register encodings: register 0 (00); register 1 (01); register 2 (10); register 3 (11)
- 8-bit instruction encoding: first two bits for the operation; next two bits for the result register; last four bits for the two input registers
- An assembly language program for computing the square of the sum of the values in registers 0 and 1 , and storing the result in register 3

```
add 2 0 1
mul 3 2 2
```

and the equivalent machine language program

```
00 10 00 01
10}1011\quad10\quad1
```


Von Neumann Architecture

Program execution

CPU

Memory

00000000	0
00000001	1
00000010	2
00000011	3
00000100	4
\ldots	...
11111110	254
11111111	255

Program execution

CPU

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Program Counter Instruction Register	00000000
	00100001
Register 0	00000100
Register 1	00000111
Register 2	
Register 3	
$\oplus \odot \odot \odot$	

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Program Counter Instruction Register	00000000
	00100001
Register 0	00000100
Register 1	00000111
Register 2	00001011
Register 3	
$\oplus \odot \odot$	

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Program Counter Instruction Register	00000001
	00100001
Register 0	00000100
Register 1	00000111
Register 2	00001011
Register 3	
$\oplus \odot \odot$	

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Program Counter Instruction Register	00000001
	10111010
Register 0	00000100
Register 1	00000111
Register 2	00001011
Register 3	
$\oplus \odot \odot \odot$	

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

CPU

Program Counter Instruction Register	00000001
	10111010
Register 0	00000100
Register 1	00000111
Register 2	00001011
Register 3	01111001
$\oplus \odot \odot \odot$	

Memory

00000000	0	00100001
00000001	1	10111010
00000010	2	
00000011	3	
00000100	4	
\ldots	\ldots	
11111110	254	
11111111	255	

