## 1 Exercises

Exercise 1. If s is a string, s.upper() returns a copy of s converted to uppercase.
a. What does the following code fragment write?

```
s = 'Hello World'
s.upper()
stdio.writeln(s [6:11])
```

b. What does the following code fragment write?

```
s = 'Hello World'
s = s.upper()
stdio.writeln(s[6:11])
```

Exercise 2. Suppose we have a user-defined data type called circle that represents a circle of radius $r$ centered at $(h, k)$ and supports the following API:

## E Circle

| $\operatorname{Circle}(\mathrm{h}, \mathrm{k}, \mathrm{r})$ | constructs a circle $c$ of radius $r$ centered at $(h, k) ;$ when no arguments are given, $c$ is a unit circle centered <br> at the origin |
| :--- | :--- |
| $\mathrm{c} . \operatorname{area()}$ | returns the area of $c$ |
| $\mathrm{c.contains(x,y)}$ | returns True if $c$ contains $^{\dagger}(x, y)$ and False otherwise |
| $\mathrm{c}<\mathrm{d}$ | returns True if $c$ is area-wise smaller than $d$, and False otherwise |
| $\mathrm{c==}$ | returns True if $c$ and $d$ represent the same circle, and False otherwise |
| $\operatorname{str}(c)$ | returns a string representation of $c$, as $(\mathrm{h}, \mathrm{k}, \mathrm{r})$ |

${ }^{\dagger}$ A point $(x, y)$ is contained in a circle of radius $r$ centered at $(h, k)$ if $(x-h)^{2}+(y-k)^{2} \leq r^{2}$
a. Is the Circle data type immutable?
b. How do you create a circle object c1 representing a circle centered at $(1,1)$ and having radius 2 ?
c. How do you create a circle object c2 representing a unit circle centered at the origin?
d. How do you obtain the area of $c 1$ ?
e. How do you check if the point $(1.2,2.2)$ is contained in $\mathrm{c}_{1}$ ?
f. How do you compare the areas of two circles represented by circle objects c and d without invoking the area() method explicitly? What does the code translate to internally?
g. How do you check if two Circle objects c and a represent the same circle? What does the code translate to internally?
h. How do you obtain the string representation of c1? What does the code translate to internally?
i. Provide code that creates a list a of 100 circle objects, each representing a circle centered at the origin and having a random radius from the interval $[0,1)$.
j. Provide an expression that uses map and reduce to calculate the sum of the areas of the circles stored in the list a from the previous part.

Exercise 3. Write a program called filter.py that accepts three floats $h, k$, and $r$ as command-line arguments, creates a Circle object c representing a circle centered at $(h, k)$ and having radius $r$, reads in pairs $(x, y)$ of floats from standard input representing points on a 2D plane, and writes the fraction of points that fall inside the circle c. For example

```
>_ ~/workspace/programs
$ python3 filter.py 0 0 3
12
3}
15
```

```
1 3
<ctrl-d>
0.25
```


## 2 Solutions to Exercises

## Solution 1.

a. World
b. WORLD

## Solution 2.

a. Yes
b. $c 1=\operatorname{Circle}(1,1,2)$
c. $\mathrm{c} 2=\operatorname{Circle}()$ or $\mathrm{c} 2=\operatorname{Circle}(0,0,1)$
d. c1.area()
e. c1.contains(1.2, 2.2)
f. c < d which translates to c.__lt__(d) internally
g. $c==d$ which translates to c.__eq_( $(\mathrm{d})$ internally
h. $\operatorname{str}(c 1)$ which translates to c1.__str__() internally
i.
circles = []
for $i$ in range (100):
$c=C i r c l e(r=s t d r a n d o m . u n i f o r m(0,1))$
circles.append (c)


## Solution 3.

```
[8 filter.py
import stdio
import sys
from circle import Circle
def main():
    h = float(sys.argv[1])
    k = float(sys.argv[2])
    r = float(sys.argv[3])
    c = Circle(h, k, r)
    total, inside = 0, 0
    while not stdio.isEmpty():
        x = stdio.readFloat()
        y = stdio.readFloat()
        total += 1
        inside += 1 if c.contains(x, y) else 0
    stdio.writeln(1.0 * inside / total)
if __name__ == ',_main__':
    main()
```

