1 Exercises

Exercise 1. Consider an array a with $n=10^{4}$ integers.
a. Roughly how many comparisons are involved if one performs $m=10^{6}$ linear search operations on a?
b. Roughly how many comparisons (sorting and searching included) are involved if one performs $m=10^{6}$ binary search operations on a?

Exercise 2. Consider the following table, which gives the running time $T(n)$ for a program for various input sizes n :

n	$T(n)$
100	3 s
200	25 s
400	200 s
800	$1,599 \mathrm{~s}$

What is the functional form of $T(n)$?

Exercise 3. What is the running time classification (constant, logarithmic, linear, linearithmic, quadratic, cubic, or exponential) for each of the following tasks:
a. Adding two $n \times n$ matrices.
b. Enumerating the subsets of a set of n items.
c. Finding the average of n numbers.
d. Counting the unordered triples (a, b, c) in an array of n positive integers such that $a^{2}+b^{2}=c^{2}$.
e. Searching for a key in a sorted array of n keys.
f. Printing the i th element in an array of size n.
g. Adding up the diagonal elements of an $n \times n$ matrix.
h. Counting the unordered doubles (a, b) in an array of n integers such that $a+b=0$.

Exercise 4. What is the running time $T(n)$ for each of the following code fragments:
a.

```
int sum = 0;
for (int i = n; i > 0; i /= 2) {
    for (int j = 0; j< i; j++) {
        sum++;
    }
}
```

b.

```
int sum = 0;
for (int i = 1; i < n; i *= 2) {
    for(int j = 0; j < i; j++) {
        sum++;
    }
}
```

c.

```
int sum = 0;
for (int i = 1; i < n; i *= 2) {
    for (int j=0; j < n; j++) {
        sum++;
    }
}
```

Exercise 5. Consider a data type planet with the attributes String name and int moons. What is the memory footprint (in bytes) of the array planets, created and initialized in the following manner?

```
Planet[] planets = new Planet [8];
planets[0] = new Planet("Mercury", 0);
planets[1] = new Planet("Venus", 0);
planets[2] = new Planet("Earth", 1);
planets[3] = new Planet("Mars", 2);
planets[4] = new Planet("Jupiter", 67);
planets[5] = new Planet("Saturn", 62);
planets[6] = new Planet("Uranus", 27);
planets[7] = new Planet("Neptune", 14);
```


2 Solutions

Solution 1.

a. $10^{6} \cdot 10^{4}=10^{10}$
b. $10^{4} \log 10^{4}$ (sorting) $+10^{6} \log 10^{4}$ (searching)

Solution 2. $T(n)=n^{3}$ (cubic)

Solution 3.

a. Quadratic
b. Exponential
c. Linear
d. Cubic
e. Logarithmic
f. Constant
g. Linear
h. Quadratic

Solution 4.

a. $T(n)=n$ (linear)
b. $T(n)=n($ linear $)$
c. $T(n)=n \log n$ (linearithmic)

Solution 5. $8 \times 12+2 \times(7+5+5+4+7+6+6+7)=190$ bytes

