
Assignment 5 (Autocomplete)

Goal: Implement autocomplete feature for a given set of strings and nonnegative weights, ie, given a prefix, find and list all
strings in the set that start with the prefix, in descending order of weights.

Background: Autocomplete is an important feature of many modern applications. As the user types, the program predicts
the complete query (typically a word or phrase) that the user intends to type. Autocomplete is most effective when there
are a limited number of likely queries. For example, the Internet Movie Database uses it to display the names of movies
as the user types; search engines use it to display suggestions as the user enters web search queries; and cell phones use it to
speed up text input.

In these examples, the application predicts how likely it is that the user is typing each query and presents to the user a list of
the top-matching queries, in descending order of weight. These weights are determined by historical data, such as box office
revenue for movies, frequencies of search queries from other Google users, or the typing history of a cell phone user. For the
purposes of this assignment, you will have access to a set of all possible queries and associated weights (and these queries
and weights will not change).

The performance of autocomplete functionality is critical in many systems. For example, consider a search engine which runs
an autocomplete application on a server farm. According to one study, the application has only about 50ms to return a list
of suggestions for it to be useful to the user. Moreover, in principle, it must perform this computation for every keystroke
typed into the search bar and for every user !

In this assignment, you will implement the Autocomplete feature by sorting the queries in lexicographic order; using binary
search to find the set of queries that start with a given prefix; and sorting the matching queries in descending order by weight.

Problem 1. (Autocomplete Term) Implement an immutable comparable data type called window that represents an auto-
complete term: a string query and an associated real-valued weight. You must implement the following API, which supports
comparing terms by three different orders: lexicographic order by query; in descending order by weight; and lexicographic
order by query but using only the first r characters. The last order may seem a bit odd, but you will use it in Problem 5 to
find all terms that start with a given prefix (of length r).

Term(String query) constructs a term given the associated query string, having
weight 0

Term(String query, long weight) constructs a term given the associated query string and weight

String toString() returns a string representation of this term

int compareTo(Term that) returns a comparison of this term and other by query

static Comparator<Term> reverseWeightOrder() returns a comparator for comparing two terms in reverse order
of their weights

static Comparator<Term> prefixOrder(int r) returns a comparator for comparing two terms by their prefixes
of length r

Corner Cases:

1/5

http://www.imdb.com/

Assignment 5 (Autocomplete)

• The constructor should throw a NullPointerException("query is null") if query is null and an IllegalArgumentException("Illegal weight")

if weight < 0.

• The prefixOrder() method should throw an IllegalArgumentException("Illegal r") if r < 0.

Performance Requirements:

• The string comparison methods should run in time T (n) ∼ n, where n is number of characters needed to resolve the
comparison.

× ~/workspace/autocomplete

$ javac -d out src/Term.java

$ java Term data/baby -names.txt 5

Top 5 by lexicographic order:

11 Aaban

5 Aabha

11 Aadam

11 Aadan

12 Aadarsh

Top 5 by reverse -weight order:

22175 Sophia

20811 Emma

18949 Isabella

18936 Mason

18925 Jacob

Problem 2. (Binary Search Deluxe) When binary searching a sorted array that contains more than one key equal to the
search key, the calling program may want to know the index of either the first or the last such key. Accordingly, implement
a library called BinarySearchDeluxe with the following API:

static int firstIndexOf(T[] a, T key, Comparator<T> c) returns the index of the first key in a that equals the
search key, or -1, according to the order induced by
the comparator c

static int lastIndexOf(T[] a, T key, Comparator<T> c) returns the index of the last key in a that equals the
search key, or -1, according to the order induced by
the comparator c

Corner Cases:

• Each method should throw a NullPointerException("a, key, or c is null") if any of the arguments is null. You
may assume that the array a is sorted (with respect to the comparator c).

Performance Requirements:

• Each method should should run in time T (n) ∼ log n, where n is the length of the array a.

× ~/workspace/autocomplete

$ javac -d out src/BinarySearchDeluxe.java

$ java BinarySearchDeluxe data/wiktionary.txt love

firstIndexOf(love) = 5318

lastIndexOf(love) = 5324

frequency(love) = 7

$ java BinarySearchDeluxe data/wiktionary.txt coffee

firstIndexOf(coffee) = 1628

2/5

Assignment 5 (Autocomplete)

lastIndexOf(coffee) = 1628

frequency(coffee) = 1

$ java BinarySearchDeluxe data/wiktionary.txt java

firstIndexOf(java) = -1

lastIndexOf(java) = -1

frequency(java) = 0

Problem 3. (Autocomplete) In this problem, you will implement a data type that provides autocomplete functionality for
a given set of string and weights, using window and BinarySearchDeluxe. To do so, sort the terms in lexicographic order;
use binary search to find the set of terms that start with a given prefix; and sort the matching terms in descending order by
weight. Organize your program by creating an immutable data type called Autocomplete with the following API:

Autocomplete(Term[] terms) constructs an autocomplete data structure from an array of terms

Term[] allMatches(String prefix) returns all terms that start with prefix, in descending order of their weights

int numberOfMatches(String prefix) returns the number of terms that start with prefix

Corner Cases:

• The constructor should throw a NullPointerException("terms is null") if terms is null.

• Each method should throw a NullPointerException("prefix is null)" if prefix is null.

Performance Requirements:

• The constructor should run in time T (n) ∼ n log n, where n is the number of terms.

• The allMatches() method should run in time T (n) ∼ log n+m logm, where m is the number of matching terms.

• The numberOfMatches() method should run in time T (n) ∼ log n.

× ~/workspace/autocomplete

$ javac -d out src/Autocomplete.java

$ java Autocomplete data/wiktionary.txt 5

Enter a prefix (or ctrl -d to quit): love

First 5 matches for "love", in descending order by weight:

49649600 love

12014500 loved

5367370 lovely

4406690 lover

3641430 loves

Enter a prefix (or ctrl -d to quit): coffee

All matches for "coffee", in descending order by weight:

2979170 coffee

Enter a prefix (or ctrl -d to quit): java

No matches

Enter a prefix (or ctrl -d to quit):

Data: The data directory contains sample input files for testing. The first line specifies the number of terms and the
following lines specify the weight and query string for each of those terms. For example, here is an input file:

3/5

Assignment 5 (Autocomplete)

× ~/workspace/autocomplete

$ cat data/wiktionary.txt

10000

5627187200 the

3395006400 of

... ...

392402 wench

392323 calves

Visualization Programs: The program AutocompleteVisualizer accepts the name of a terms file and an integer k as
command-line arguments, provides a GUI for the user to enter queries, and presents the top k matching terms from the file
in real time.

× ~/workspace/autocomplete

$ javac -d out src/AutocompleteVisualizer.java

$ java AutocompleteVisualizer data/wiktionary.txt 5

Files to Submit:

1. Term.java

2. BinarySearchDeluxe.java

3. Autocomplete.java

4. notes.txt

Before you submit your files, make sure:

• You do not use concepts from sections beyond Quick Sort.

• Your code is clean, well-organized, uses meaningful variable names, includes useful comments, and is efficient.

• You edit the sections (#1mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.

4/5

Assignment 5 (Autocomplete)

In section #1, for each problem, state its goal in your own words and describe your approach to solve the problem
along with any issues you encountered and if/how you managed to solve those issues.

Acknowledgement: This assignment is an adaptation of the Autocomplete assignment developed at Princeton University
by Matthew Drabick and Kevin Wayne.

5/5

