
Data Structures and Algorithms in Java
Assignment 5 (Autocomplete) Discussion



Problem 1 (Autocomplete Term)

Implement an immutable comparable data type called window that represents an autocomplete term: a string query and
an associated real-valued weight

Term(String query) constructs a term given the associated query string, hav-
ing weight 0

Term(String query, long weight) constructs a term given the associated query string and
weight

String toString() returns a string representation of this term

int compareTo(Term that) returns a comparison of this term and other by query

static Comparator<Term> byReverseWeightOrder() returns a comparator for comparing two terms in reverse
order of their weights

static Comparator<Term> byPrefixOrder(int r) returns a comparator for comparing two terms by their
prefixes of length r



Problem 1 (Autocomplete Term)

× ~/workspace/autocomplete

$ java Term data/baby -names.txt 5

Top 5 by lexicographic order:

11 Aaban

5 Aabha

11 Aadam

11 Aadan

12 Aadarsh

Top 5 by reverse -weight order:

22175 Sophia

20811 Emma

18949 Isabella

18936 Mason

18925 Jacob



Problem 1 (Autocomplete Term)

Instance variables:

- Query string, String query

- Query weight, long weight

Term(String query) and Term(String query, long weight)

- Initialize instance variables to appropriate values

String toString()

- Return a string containing the weight and query separated by a tab

int compareTo(Term other)

- Return a negative, zero, or positive integer based on whether this.query is less than, equal to, or greater than
other.query

static Comparator<Term> byReverseWeightOrder()

- Return an object of type ReverseWeightOrder

static Comparator<Term> byPrefixOrder(int r)

- Return an object of type PrefixOrder



Problem 1 (Autocomplete Term)

window :: ReverseWeightOrder

- int compare(Term v, Term w)

- Return a negative, zero, or positive integer based on whether v.weight is less than, equal to, or greater than
w.weight

window :: PrefixOrder

- Instance variable:

- Prefix length, int r

PrefixOrder(int r)

- Initialize instance variable appropriately

int compare(Term v, Term w)

- Return a negative, zero, or positive integer based on whether a is less than, equal to, or greater than b, where
a is a substring of v of length min(r, v.query.length()) and b is a substring of w of length
min(r, w.query.length())



Problem 2 (Binary Search Deluxe)

Implement a library called BinarySearchDeluxe with the following API:

static int firstIndexOf(Key[] a, Key key, Comparator<Key> c) returns the index of the first key in a that
equals the search key, or -1, according
to the order induced by the comparator
c

static int lastIndexOf(Key[] a, Key key, Comparator<Key> c) returns the index of the last key in a that
equals the search key, or -1, according
to the order induced by the comparator
c



Problem 2 (Binary Search Deluxe)

× ~/workspace/autocomplete

$ java BinarySearchDeluxe data/wiktionary.txt love

firstIndexOf(love) = 5318

lastIndexOf(love) = 5324

frequency(love) = 7

$ java BinarySearchDeluxe data/wiktionary.txt coffee

firstIndexOf(coffee) = 1628

lastIndexOf(coffee) = 1628

frequency(coffee) = 1

$ java BinarySearchDeluxe data/wiktionary.txt java

firstIndexOf(java) = -1

lastIndexOf(java) = -1

frequency(java) = 0



Problem 2 (Binary Search Deluxe)

static int firstIndexOf(Key[] a, Key key, Comparator<Key> c)

- Modify the standard binary search such that when a[mid] matches key, instead of returning mid, remember it in,
say index (initialized to -1), and adjust hi appropriately

- Return index

static int lastIndexOf(Key[] a, Key key, Comparator<Key> c) can be implemented similarly



Problem 3 (Autocomplete)

Implement a data type that provides autocomplete functionality for a given set of string and weights, using window and
BinarySearchDeluxe. Organize your program by creating an immutable data type called Autocomplete with the
following API:

Autocomplete(Term[] terms) constructs an autocomplete data structure from an array of terms

Term[] allMatches(String prefix) returns all terms that start with prefix, in descending order of their
weights.

int numberOfMatches(String prefix) returns the number of terms that start with prefix



Problem 3 (Autocomplete)

× ~/workspace/autocomplete

$ java Autocomplete data/wiktionary.txt 5

Enter a prefix (or ctrl -d to quit): love

First 5 matches for "love", in descending order by weight:

49649600 love

12014500 loved

5367370 lovely

4406690 lover

3641430 loves

Enter a prefix (or ctrl -d to quit): coffee

All matches for "coffee", in descending order by weight:

2979170 coffee

Enter a prefix (or ctrl -d to quit):

First 5 matches for "", in descending order by weight:

5627187200 the

3395006400 of

2994418400 and

2595609600 to

1742063600 in

Enter a prefix (or ctrl -d to quit): <ctrl -d>



Problem 3 (Autocomplete)

Instance variable:

- Array of terms, Term[] terms

Autocomplete(Term[] terms)

- Initialize this.terms to a defensive copy (ie, a fresh copy and not an alias) of terms

- Sort this.terms in lexicographic order.

Term[] allMatches(String prefix)

- Find the index i of the first term in terms that starts with prefix

- Find the number of terms (say n) in terms that start with prefix

- Construct an array matches containing n elements from terms, starting at index i

- Sort matches in reverse order of weight and return the sorted array

int numberOfMatches(String prefix)

- Find the indices i and j of the first and last term in terms that start with prefix

- Using the indices, compute the number of terms that start with prefix, and return that value


	Problem 1 (Autocomplete Term)
	Problem 2 (Binary Search Deluxe)
	Problem 3 (Autocomplete)

