
Balanced Search Trees

Outline

1 2-3 Search Trees

2 Red-Black BSTs

3 Elementary Red-black BST Operations

4 Implementation of the Ordered Symbol Table API Using a Red-Black BST

5 Performance Characteristics

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

A 2-3 search tree is a tree that is either empty (null link) or

• A 2-node with one key (and associated value) and two links, a left link to a 2-3 search tree with smaller keys, and a
right link to a 2-3 search tree with larger keys

• A 3-node with two keys (and associated values) and three links, a left link to a 2-3 search tree with smaller keys, a
middle link to a 2-3 search tree with keys between the node’s keys, and a right link to a 2-3 search tree with larger
keys

M

E J R

A C S XH L P

2-node3-node

null link

A 2-3 search tree has symmetric order — inorder traversal yields keys in ascending order

A perfectly balanced 2-3 search tree is one whose null links are all the same distance from the root

2-3 Search Trees

Searching for a key in a 2-3 tree

M

E J R

A C S XH L P

H is less than M so
look to the left

successful search for H

M

E J R

A C S XH L P

H is between E and J so
look in the middle

M

E J R

A C S XH L P

Found H so return value (search hit)

M

E J R

A C S XH L P

B is less than M so
look to the left

unsuccessful search for B

M

E J R

A C S XH L P

B is less than E so
look to the left

M

E J R

A C S XH L P

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

2-3 Search Trees

Searching for a key in a 2-3 tree

M

E J R

A C S XH L P

H is less than M so
look to the left

successful search for H

M

E J R

A C S XH L P

H is between E and J so
look in the middle

M

E J R

A C S XH L P

Found H so return value (search hit)

M

E J R

A C S XH L P

B is less than M so
look to the left

unsuccessful search for B

M

E J R

A C S XH L P

B is less than E so
look to the left

M

E J R

A C S XH L P

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

2-3 Search Trees

Searching for a key in a 2-3 tree

M

E J R

A C S XH L P

H is less than M so
look to the left

successful search for H

M

E J R

A C S XH L P

H is between E and J so
look in the middle

M

E J R

A C S XH L P

Found H so return value (search hit)

M

E J R

A C S XH L P

B is less than M so
look to the left

unsuccessful search for B

M

E J R

A C S XH L P

B is less than E so
look to the left

M

E J R

A C S XH L P

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

2-3 Search Trees

Searching for a key in a 2-3 tree

M

E J R

A C S XH L P

H is less than M so
look to the left

successful search for H

M

E J R

A C S XH L P

H is between E and J so
look in the middle

M

E J R

A C S XH L P

Found H so return value (search hit)

M

E J R

A C S XH L P

B is less than M so
look to the left

unsuccessful search for B

M

E J R

A C S XH L P

B is less than E so
look to the left

M

E J R

A C S XH L P

B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

2-3 Search Trees

Inserting a key into a 2-node

M

E J R

A C S XH L P

search for K ends here

inserting K

M

E J R

A C S XH P

replace 2-node with
new 3-node containing K

K L

2-3 Search Trees

Inserting a key into a 2-node

M

E J R

A C S XH L P

search for K ends here

inserting K

M

E J R

A C S XH P

replace 2-node with
new 3-node containing K

K L

2-3 Search Trees

Inserting a key into a single 3-node

A E

inserting S

A E S

E

A S

no room for S

make a 4-node

split 4-node into
this 2-3 tree

2-3 Search Trees

Inserting a key into a single 3-node

A E

inserting S

A E S

E

A S

no room for S

make a 4-node

split 4-node into
this 2-3 tree

2-3 Search Trees
Inserting a key into a 3-node whose parent is a 2-node

M

E J R

A C S XH L P

search for Z ends
at this 3-node

inserting Z

M

E J R

A C H L P

replace 3-node with
temporary 4-node

containing Z

S X Z

M

E J

A C H L P

replace 2-node
with new 3-node

containing
middle key

R X

S Z

split 4-node into two 2-nodes
pass middle key to parent

2-3 Search Trees
Inserting a key into a 3-node whose parent is a 2-node

M

E J R

A C S XH L P

search for Z ends
at this 3-node

inserting Z

M

E J R

A C H L P

replace 3-node with
temporary 4-node

containing Z

S X Z

M

E J

A C H L P

replace 2-node
with new 3-node

containing
middle key

R X

S Z

split 4-node into two 2-nodes
pass middle key to parent

2-3 Search Trees
Inserting a key into a 3-node whose parent is a 3-node

M

E J R

A C S XH L P

search for D ends
at this 3-node

inserting D

M

E J R

S XH L P

add new key D to 3-node
to make temporary 4-node

A C D

M

R

S XH L P

add middle key C to 3-node
to make a temporary 4-node

C E J

A D

split 4-node into two 2-nodes
pass middle key to parent

R

S XH L P

add middle key E to 2-node
to make a new 3-node

A D

split 4-node into two 2-nodes
pass middle key to parent

E M

C J

2-3 Search Trees
Inserting a key into a 3-node whose parent is a 3-node

M

E J R

A C S XH L P

search for D ends
at this 3-node

inserting D

M

E J R

S XH L P

add new key D to 3-node
to make temporary 4-node

A C D

M

R

S XH L P

add middle key C to 3-node
to make a temporary 4-node

C E J

A D

split 4-node into two 2-nodes
pass middle key to parent

R

S XH L P

add middle key E to 2-node
to make a new 3-node

A D

split 4-node into two 2-nodes
pass middle key to parent

E M

C J

2-3 Search Trees
Splitting the root

E J

A C H L

search for D ends
at this 3-node

inserting D

E J

H L

add new key D to 3-node
to make temporary 4-node

A C D

H L

add middle key C to 3-node
to make a temporary 4-node

C E J

A D

split 4-node into two 2-nodes
pass middle key to parent

H LA D

split 4-node into
three 2-nodes
increasing tree

height by 1 C J

E

2-3 Search Trees
Splitting the root

E J

A C H L

search for D ends
at this 3-node

inserting D

E J

H L

add new key D to 3-node
to make temporary 4-node

A C D

H L

add middle key C to 3-node
to make a temporary 4-node

C E J

A D

split 4-node into two 2-nodes
pass middle key to parent

H LA D

split 4-node into
three 2-nodes
increasing tree

height by 1 C J

E

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

2-3 Search Trees

Splitting a 4-node is a local transformation, and thus involves constant number of operations

Insert operation maintains symmetric order and perfect balance

Tree height

• Worst case: lg n (all 2-nodes)

• Best case: log3 n ≈ 0.631 lg n (all 3-nodes)

• Between 12 and 20 for a million nodes

• Between 18 and 30 for a billion nodes

Guaranteed logarithmic performance for search and insert

Red-Black BSTs

We represent a 2-3 tree as a BST, using “internal” left-leaning links as “glue” for 3-nodes

.

less
than a

between
a and b

greater
than b

a b

3-node

. . .

. . .

. . .

less
than a

between
a and b

greater
than b

. . .

a

b

Red-Black BSTs

We represent a 2-3 tree as a BST, using “internal” left-leaning links as “glue” for 3-nodes

.

less
than a

between
a and b

greater
than b

a b

3-node

. . .

. . .

. . .

less
than a

between
a and b

greater
than b

. . .

a

b

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs

A red-black tree is a BST such that

• No node has two red links connected to it

• Every path from root to null link has the same number of black links (perfect black balance)

• Red links lean left

M

RJ

P X

S

E L

C H

A

Red-Black BSTs
One-to-one correspondence between red-black BSTs and 2-3 trees

M

R

red-black BST

J

P X

S

E L

C H

A

M

R

horizontal red links

J

P XS

E

LC HA

M

E J R

A C S XH L P

2-3 tree

Red-Black BSTs
One-to-one correspondence between red-black BSTs and 2-3 trees

M

R

red-black BST

J

P X

S

E L

C H

A

M

R

horizontal red links

J

P XS

E

LC HA

M

E J R

A C S XH L P

2-3 tree

Red-Black BSTs

Red-black BST representation: each node is pointed to by precisely one link (from its parent) =⇒ can encode color of
links in nodes

private static boolean RED = true;

private static boolean BLACK = false;

private class Node {

private Key key;

private Value val;

private int size;

private boolean color;

private Node left , right;

public Node(Key key , Value value) {

this.key = key;

this.val = value;

this.color = RED;

this.size = 1;

}

}

private boolean isRed(Node x) {

return x != null && x.color == RED;

}

E

JC

A D G

h.left.color
is RED

h

h.right.color
is BLACK

Red-Black BSTs

Red-black BST representation: each node is pointed to by precisely one link (from its parent) =⇒ can encode color of
links in nodes

private static boolean RED = true;

private static boolean BLACK = false;

private class Node {

private Key key;

private Value val;

private int size;

private boolean color;

private Node left , right;

public Node(Key key , Value value) {

this.key = key;

this.val = value;

this.color = RED;

this.size = 1;

}

}

private boolean isRed(Node x) {

return x != null && x.color == RED;

}

E

JC

A D G

h.left.color
is RED

h

h.right.color
is BLACK

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations
Elementary red-black BST operations (left/right rotation and color flip) maintain symmetric order and perfect black
balance

Left rotation: orient a (temporarily) right-leaning red link to lean left

E

S

less
than E

between
E and S

greater
than S

h

x

could be right or left,
red or black

rotate E left (before)

S

E

less
than E

between
E and S

greater
than S

h

x

rotate E left (after)

Implementation of left rotation

private Node rotateLeft(Node h) {

Node x = h.right;

h.right = x.left;

x.left = h;

x.color = x.left.color;

x.left.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Right rotation: orient a left-leaning red link to (temporarily) lean right

S

E

less
than E

between
E and S

greater
than S

x

h

rotate S right (before)

E

S

less
than E

between
E and S

greater
than S

x

h

rotate S right (after)

Implementation of right rotation

private Node rotateRight(Node h) {

Node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Right rotation: orient a left-leaning red link to (temporarily) lean right

S

E

less
than E

between
E and S

greater
than S

x

h

rotate S right (before)

E

S

less
than E

between
E and S

greater
than S

x

h

rotate S right (after)

Implementation of right rotation

private Node rotateRight(Node h) {

Node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Right rotation: orient a left-leaning red link to (temporarily) lean right

S

E

less
than E

between
E and S

greater
than S

x

h

rotate S right (before)

E

S

less
than E

between
E and S

greater
than S

x

h

rotate S right (after)

Implementation of right rotation

private Node rotateRight(Node h) {

Node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Right rotation: orient a left-leaning red link to (temporarily) lean right

S

E

less
than E

between
E and S

greater
than S

x

h

rotate S right (before)

E

S

less
than E

between
E and S

greater
than S

x

h

rotate S right (after)

Implementation of right rotation

private Node rotateRight(Node h) {

Node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Right rotation: orient a left-leaning red link to (temporarily) lean right

S

E

less
than E

between
E and S

greater
than S

x

h

rotate S right (before)

E

S

less
than E

between
E and S

greater
than S

x

h

rotate S right (after)

Implementation of right rotation

private Node rotateRight(Node h) {

Node x = h.left;

h.left = x.right;

x.right = h;

x.color = x.right.color;

x.right.color = RED;

x.size = h.size;

h.size = size(h.left) + size(h.right) + 1;

return x;

}

Elementary Red-black BST Operations

Color flip: recolor to split a (temporary) 4-node

E

S

between
E and S

greater
than S

h

flip E (before)

A

less
than A

between
A and E

could be left
or right link

E

S

between
E and S

greater
than S

h

flip E (after)

A

less
than A

between
A and E

red link attaches
middle node

to parent

black links split
to 2-nodes

Implementation of color flip

private void flipColors(Node h) {

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

Elementary Red-black BST Operations

Color flip: recolor to split a (temporary) 4-node

E

S

between
E and S

greater
than S

h

flip E (before)

A

less
than A

between
A and E

could be left
or right link

E

S

between
E and S

greater
than S

h

flip E (after)

A

less
than A

between
A and E

red link attaches
middle node

to parent

black links split
to 2-nodes

Implementation of color flip

private void flipColors(Node h) {

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

Elementary Red-black BST Operations

Color flip: recolor to split a (temporary) 4-node

E

S

between
E and S

greater
than S

h

flip E (before)

A

less
than A

between
A and E

could be left
or right link

E

S

between
E and S

greater
than S

h

flip E (after)

A

less
than A

between
A and E

red link attaches
middle node

to parent

black links split
to 2-nodes

Implementation of color flip

private void flipColors(Node h) {

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

Elementary Red-black BST Operations

Color flip: recolor to split a (temporary) 4-node

E

S

between
E and S

greater
than S

h

flip E (before)

A

less
than A

between
A and E

could be left
or right link

E

S

between
E and S

greater
than S

h

flip E (after)

A

less
than A

between
A and E

red link attaches
middle node

to parent

black links split
to 2-nodes

Implementation of color flip

private void flipColors(Node h) {

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

Elementary Red-black BST Operations

Color flip: recolor to split a (temporary) 4-node

E

S

between
E and S

greater
than S

h

flip E (before)

A

less
than A

between
A and E

could be left
or right link

E

S

between
E and S

greater
than S

h

flip E (after)

A

less
than A

between
A and E

red link attaches
middle node

to parent

black links split
to 2-nodes

Implementation of color flip

private void flipColors(Node h) {

h.color = !h.color;

h.left.color = !h.left.color;

h.right.color = !h.right.color;

}

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Most operations are the same as for BST-based implementation — ignore color

Insertion: the basic strategy is to maintain 1-1 correspondence with 2-3 trees, using the elementary red-black BST
operations (left/right rotation and color flip) to maintain symmetric order and perfect balance, but not necessarily color
invariants

Case 1 (insert into a 2-node at the bottom): do standard BST insert; color new link red; if new red link is a right link,
rotate left

insert C

E

A S

Radd new
node here

E

A S

R

right link red
so rotate left

C

E

C S

RA

E

R S

E

A C R S

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Most operations are the same as for BST-based implementation — ignore color

Insertion: the basic strategy is to maintain 1-1 correspondence with 2-3 trees, using the elementary red-black BST
operations (left/right rotation and color flip) to maintain symmetric order and perfect balance, but not necessarily color
invariants

Case 1 (insert into a 2-node at the bottom): do standard BST insert; color new link red; if new red link is a right link,
rotate left

insert C

E

A S

Radd new
node here

E

A S

R

right link red
so rotate left

C

E

C S

RA

E

R S

E

A C R S

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Most operations are the same as for BST-based implementation — ignore color

Insertion: the basic strategy is to maintain 1-1 correspondence with 2-3 trees, using the elementary red-black BST
operations (left/right rotation and color flip) to maintain symmetric order and perfect balance, but not necessarily color
invariants

Case 1 (insert into a 2-node at the bottom): do standard BST insert; color new link red; if new red link is a right link,
rotate left

insert C

E

A S

Radd new
node here

E

A S

R

right link red
so rotate left

C

E

C S

RA

E

R S

E

A C R S

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Most operations are the same as for BST-based implementation — ignore color

Insertion: the basic strategy is to maintain 1-1 correspondence with 2-3 trees, using the elementary red-black BST
operations (left/right rotation and color flip) to maintain symmetric order and perfect balance, but not necessarily color
invariants

Case 1 (insert into a 2-node at the bottom): do standard BST insert; color new link red; if new red link is a right link,
rotate left

insert C

E

A S

Radd new
node here

E

A S

R

right link red
so rotate left

C

E

C S

RA

E

R S

E

A C R S

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Case 2 (insert into a 3-node at the bottom): do standard BST insert; color new link red; rotate to balance the 4-node
(if needed); flip colors to pass red link up one level; rotate to make lean left (if needed); repeat case 1 or case 2 up the
tree (if needed)

insert H

E

C S

RA

add new
node here

E

A C R S

E

C S

RA

two lefts in a row
so rotate right

H

E

A C H SR

E

C R

HA S

both children red
so flip colors

E

C R

HA S

right link red
so rotate left

A C

E R

H S

R

E S

HC

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Case 2 (insert into a 3-node at the bottom): do standard BST insert; color new link red; rotate to balance the 4-node
(if needed); flip colors to pass red link up one level; rotate to make lean left (if needed); repeat case 1 or case 2 up the
tree (if needed)

insert H

E

C S

RA

add new
node here

E

A C R S

E

C S

RA

two lefts in a row
so rotate right

H

E

A C H SR

E

C R

HA S

both children red
so flip colors

E

C R

HA S

right link red
so rotate left

A C

E R

H S

R

E S

HC

A

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

Implementation (same code for all cases)

• Right child red, left child black:
rotate left

• Left child, left-left grandchild red:
rotate right

• Both children red: flip colors

h

h

h

rotate right

rotate le
ft

fli
p

co
lo

rs

Implementation of the Ordered Symbol Table API Using a Red-Black BST

L RedBlackBinarySearchTreeST.java

package dsa;

import java.util.NoSuchElementException;

import stdlib.StdIn;

import stdlib.StdOut;

public class RedBlackBinarySearchTreeST <Key extends Comparable <Key >, Value >

implements OrderedST <Key , Value > {

private Node root;

public void put(Key key , Value value) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

if (value == null) {

throw new IllegalArgumentException("value is null");

}

root = put(root , key , value);

root.color = BLACK;

}

private Node put(Node x, Key key , Value value) {

if (x == null) {

return new Node(key , value);

}

int cmp = key.compareTo(x.key);

if (cmp < 0) {

x.left = put(x.left , key , value);

} else if (cmp > 0) {

x.right = put(x.right , key , value);

} else {

x.val = value;

}

return balance(x);

}

Implementation of the Ordered Symbol Table API Using a Red-Black BST

L RedBlackBinarySearchTreeST.java

package dsa;

import java.util.NoSuchElementException;

import stdlib.StdIn;

import stdlib.StdOut;

public class RedBlackBinarySearchTreeST <Key extends Comparable <Key >, Value >

implements OrderedST <Key , Value > {

private Node root;

public void put(Key key , Value value) {

if (key == null) {

throw new IllegalArgumentException("key is null");

}

if (value == null) {

throw new IllegalArgumentException("value is null");

}

root = put(root , key , value);

root.color = BLACK;

}

private Node put(Node x, Key key , Value value) {

if (x == null) {

return new Node(key , value);

}

int cmp = key.compareTo(x.key);

if (cmp < 0) {

x.left = put(x.left , key , value);

} else if (cmp > 0) {

x.right = put(x.right , key , value);

} else {

x.val = value;

}

return balance(x);

}

Implementation of the Ordered Symbol Table API Using a Red-Black BST

L RedBlackBinarySearchTreeST.java

private Node balance(Node h) {

if (!isRed(h.left) && isRed(h.right)) {

h = rotateLeft(h);

}

if (isRed(h.left) && isRed(h.left.left)) {

h = rotateRight(h);

}

if (isRed(h.left) && isRed(h.right)) {

flipColors(h);

}

h.size = size(h.left) + size(h.right) + 1;

return h;

}

}

Implementation of the Ordered Symbol Table API Using a Red-Black BST

L RedBlackBinarySearchTreeST.java

private Node balance(Node h) {

if (!isRed(h.left) && isRed(h.right)) {

h = rotateLeft(h);

}

if (isRed(h.left) && isRed(h.left.left)) {

h = rotateRight(h);

}

if (isRed(h.left) && isRed(h.right)) {

flipColors(h);

}

h.size = size(h.left) + size(h.right) + 1;

return h;

}

}

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Deletion: see exercises 3.3.39 – 3.3.41

The average length of a path from the root to a node in a red-black BST with n nodes is ∼ lg n

Typical red-black BST built from random keys (null links omitted)

Red-black BST built from ascending keys (null links omitted)

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Deletion: see exercises 3.3.39 – 3.3.41

The average length of a path from the root to a node in a red-black BST with n nodes is ∼ lg n

Typical red-black BST built from random keys (null links omitted)

Red-black BST built from ascending keys (null links omitted)

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Deletion: see exercises 3.3.39 – 3.3.41

The average length of a path from the root to a node in a red-black BST with n nodes is ∼ lg n

Typical red-black BST built from random keys (null links omitted)

Red-black BST built from ascending keys (null links omitted)

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Deletion: see exercises 3.3.39 – 3.3.41

The average length of a path from the root to a node in a red-black BST with n nodes is ∼ lg n

Typical red-black BST built from random keys (null links omitted)

Red-black BST built from ascending keys (null links omitted)

Implementation of the Ordered Symbol Table API Using a Red-Black BST
Deletion: see exercises 3.3.39 – 3.3.41

The average length of a path from the root to a node in a red-black BST with n nodes is ∼ lg n

Typical red-black BST built from random keys (null links omitted)

Red-black BST built from ascending keys (null links omitted)

Performance Characteristics

Symbol table operations summary

operation BST red-black BST

search h† lg n

insert h lg n

delete
√
n
††

lg n

min/max h lg n

floor/ceiling h lg n

rank h lg n

select h lg n

ordered iteration n n

† h is the height of BST, proportional to lg n if keys inserted in random order
††

√
n other operations also become

√
n if deletions are allowed

Performance Characteristics

Symbol table operations summary

operation BST red-black BST

search h† lg n

insert h lg n

delete
√
n
††

lg n

min/max h lg n

floor/ceiling h lg n

rank h lg n

select h lg n

ordered iteration n n

† h is the height of BST, proportional to lg n if keys inserted in random order
††

√
n other operations also become

√
n if deletions are allowed

	Outline
	2-3 Search Trees
	Red-Black BSTs
	Elementary Red-black BST Operations
	Implementation of the Ordered Symbol Table API Using a Red-Black BST
	Performance Characteristics

