
Assignment 4 (Collections)

Goal: Implement a double-ended queue (deque) using a doubly-linked list and a random queue using a resizing array.

Problem 1. (Deque) A double-ended queue or deque (pronounced “deck”) is a generalization of a stack and a queue that
supports adding and removing items from either the front or the back of the data structure. Create a generic, iterable data
type called LinkedDeque that uses a doubly-linked list to implement the following deque API:

LinkedDeque() constructs an empty deque

boolean isEmpty() returns true if this deque empty, and false otherwise

int size() returns the number of items on this deque

void addFirst(T item) adds item to the front of this deque

void addLast(T item) adds item to the back of this deque

T peekFirst() returns the item at the front of this deque

T removeFirst() removes and returns the item at the front of this deque

T peekLast() returns the item at the back of this deque

T removeLast() removes and returns the item at the back of this deque

Iterator<T> iterator() returns an iterator to iterate over the items in this deque from front to back

String toString() returns a string representation of this deque

Corner Cases

• The add*() methods should throw a NullPointerException("item is null") if item is null.

• The peek*() and remove*() methods should throw a NoSuchElementException("Deque is empty") if the deque is
empty.

• The next() method in the deque iterator shoud throw a NoSuchElementException("Iterator is empty") if there
are no more items to iterate.

Performance Requirements

• The constructor and methods in LinkedDeque and DequeIterator should run in time T (n) ∼ 1.

× ~/workspace/collections

$ javac -d out src/LinkedDeque.java

$ java LinkedDeque

Filling the deque ...

The deque (364 characters ): There is grandeur in this view of life , with its several

powers , having been originally breathed into a few forms or into one; and that ,

whilst this planet has gone cycling on according to the fixed law of gravity , from

so simple a beginning endless forms most beautiful and most wonderful have been , and

are being , evolved. ~ Charles Darwin , The Origin of Species

Emptying the deque ...

deque.isEmpty ()? true

Problem 2. (Random Queue) A random queue is similar to a stack or queue, except that the item removed is chosen
uniformly at random from items in the data structure. Create a generic, iterable data type called ResizingArrayRandomQueue

that uses a resizing array to implement the following random queue API:

1/3



Assignment 4 (Collections)

ResizingArrayRandomQueue() constructs an empty random queue

boolean isEmpty() returns true if this queue is empty, and false otherwise

int size() returns the number of items in this queue

void enqueue(T item) adds item to the end of this queue

T sample() returns a random item from this queue

T dequeue() removes and returns a random item from this queue

Iterator<T> iterator() returns an independent† iterator to iterate over the items in this queue in random order

String toString() returns a string representation of this queue

† The order of two or more iterators on the same randomized queue must be mutually independent, ie, each iterator must
maintain its own random order.

Corner Cases

• The enqueue() method should throw a NullPointerException("item is null") if item is null.

• The sample() and dequeue() methods should throw a NoSuchElementException("Random queue is empty") if the
random queue is empty.

• The next() method in the random queue iterator shoud throw a NoSuchElementException("Iterator is empty")

if there are no more items to iterate.

Performance Requirements

• The constructor and methods in ResizingArrayRandomQueue should run in time T (n) ∼ 1.

• The constructor in RandomQueueIterator should run in time T (n) ∼ n.

• The methods in RandomQueueIterator should run in time T (n) ∼ 1.

× ~/workspace/collections

$ javac -d out src/ResizingArrayRandomQueue.java

$ java ResizingArrayRandomQueue

sum = 5081434

iterSumQ = 5081434

dequeSumQ = 5081434

iterSumQ + dequeSumQ == 2 * sum? true

Files to Submit:

1. LinkedDeque.java

2. ResizingArrayRandomQueue.java

3. notes.txt

Before you submit your files, make sure:

• You do not use concepts from sections beyond Basic Data Structures.

• Your code is clean, well-organized, uses meaningful variable names, includes useful comments, and is efficient.

2/3



Assignment 4 (Collections)

• You edit the sections (#1mandatory, #2 if applicable, and #3 optional) in the given notes.txt file as appropriate.
In section #1, for each problem, state its goal in your own words and describe your approach to solve the problem
along with any issues you encountered and if/how you managed to solve those issues.

Acknowledgement: This assignment is an adaptation of the Deques and Randomized Queues assignment developed at
Princeton University by Kevin Wayne.

3/3


