
Directed Graphs



Outline

1 Directed Graphs

2 Depth-First Search (DFS)

3 Breadth-First Search (BFS)

4 Topological Sort



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

A directed graph (digraph) is a set of vertices and
a collection of directed edges, each connecting
an ordered pair of vertices

The outdegree of a vertex in a digraph is the
number of edges going from it; the indegree of
a vertex is the number of edges going to it

A directed path in a digraph is a sequence of ver-
tices in which there is a (directed) edge pointing
from each vertex in the sequence to its successor
in the sequence

A directed cycle is a directed path with at least
one edge whose first and last vertices are the
same

The length of a path or a cycle is its number of
edges

directed
edge

vertex

directed
path of
length 4

directed
cycle of
length 3

vertex of
indegree 3 and

outdegree 2



Directed Graphs

Digraph applications

Digraph Vertex Edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump



Directed Graphs

Digraph applications

Digraph Vertex Edge

transportation street intersection one-way street

web web page hyperlink

food web species predator-prey relationship

WordNet synset hypernym

scheduling task precedence constraint

financial bank transaction

cell phone person placed call

infectious disease person infection

game board position legal move

citation journal article citation

object graph object pointer

inheritance hierarchy class inherits from

control flow code block jump



Directed Graphs

Some digraph problems

Problem Description

s → t path is there a path from s to t?

shortest s → t path what is the shortest path from s to t?

directed cycle is there a directed cycle in the graph?

topological sort can the digraph be drawn so that all edges point in a single direction?



Directed Graphs

Some digraph problems

Problem Description

s → t path is there a path from s to t?

shortest s → t path what is the shortest path from s to t?

directed cycle is there a directed cycle in the graph?

topological sort can the digraph be drawn so that all edges point in a single direction?



Directed Graphs
DiGraph API

Method Description

DiGraph(int V) create an empty digraph with V vertices

DiGraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v → w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyDG.txt

13 22

4 2 2 3 3 2 6 0 0 1 2 0 11 12 12 9

9 10 9 11 8 9 10 12 11 4 4 3 3 5

7 8 8 7 5 4 0 5 6 4 6 9 7 6

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

for (int v = 0; v < G.V(); v++) {

for (int w : G.adj(v)) {

StdOut.println(v + "->" + w);

}

}



Directed Graphs
DiGraph API

Method Description

DiGraph(int V) create an empty digraph with V vertices

DiGraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v → w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyDG.txt

13 22

4 2 2 3 3 2 6 0 0 1 2 0 11 12 12 9

9 10 9 11 8 9 10 12 11 4 4 3 3 5

7 8 8 7 5 4 0 5 6 4 6 9 7 6

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

for (int v = 0; v < G.V(); v++) {

for (int w : G.adj(v)) {

StdOut.println(v + "->" + w);

}

}



Directed Graphs
DiGraph API

Method Description

DiGraph(int V) create an empty digraph with V vertices

DiGraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v → w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyDG.txt

13 22

4 2 2 3 3 2 6 0 0 1 2 0 11 12 12 9

9 10 9 11 8 9 10 12 11 4 4 3 3 5

7 8 8 7 5 4 0 5 6 4 6 9 7 6

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

for (int v = 0; v < G.V(); v++) {

for (int w : G.adj(v)) {

StdOut.println(v + "->" + w);

}

}



Directed Graphs
DiGraph API

Method Description

DiGraph(int V) create an empty digraph with V vertices

DiGraph(In in) create a digraph from input stream

void addEdge(int v, int w) add a directed edge v → w

Iterable<Integer> adj(int v) vertices pointing from v

int V() number of vertices

int E() number of edges

Digraph reverse() reverse of this digraph

Graph input format

& ~/workspace/dsa/programs

$ more ../ data/tinyDG.txt

13 22

4 2 2 3 3 2 6 0 0 1 2 0 11 12 12 9

9 10 9 11 8 9 10 12 11 4 4 3 3 5

7 8 8 7 5 4 0 5 6 4 6 9 7 6

0

1
2

3
4

5

6
7 8

9 10

11 12

Typical graph-processing code

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

for (int v = 0; v < G.V(); v++) {

for (int w : G.adj(v)) {

StdOut.println(v + "->" + w);

}

}



Directed Graphs

L DiGraph.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DiGraph {

private LinkedBag <Integer >[] adj;

private int V;

private int E;

public DiGraph(int V) {

adj = (LinkedBag <Integer >[]) new LinkedBag[V];

for (int v = 0; v < V; v++) {

adj[v] = new LinkedBag <Integer >();

}

this.V = V;

this.E = 0;

}

public DiGraph(In in) {

this(in.readInt ());

int E = in.readInt ();

for (int i = 0; i < E; i++) {

int v = in.readInt ();

int w = in.readInt ();

addEdge(v, w);

}

}

public int V() {

return V;

}

public int E() {

return E;



Directed Graphs

L DiGraph.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DiGraph {

private LinkedBag <Integer >[] adj;

private int V;

private int E;

public DiGraph(int V) {

adj = (LinkedBag <Integer >[]) new LinkedBag[V];

for (int v = 0; v < V; v++) {

adj[v] = new LinkedBag <Integer >();

}

this.V = V;

this.E = 0;

}

public DiGraph(In in) {

this(in.readInt ());

int E = in.readInt ();

for (int i = 0; i < E; i++) {

int v = in.readInt ();

int w = in.readInt ();

addEdge(v, w);

}

}

public int V() {

return V;

}

public int E() {

return E;



Directed Graphs

L DiGraph.java

}

public void addEdge(int v, int w) {

adj[v].add(w);

E++;

}

public Iterable <Integer > adj(int v) {

return adj[v];

}

public int outDegree(int v) {

return adj[v].size ();

}

public int inDegree(int v) {

int inDegree = 0;

for (LinkedBag <Integer > bag : adj) {

for (int u : bag) {

inDegree += u == v ? 1 : 0;

}

}

return inDegree;

}

public String toString () {

StringBuilder s = new StringBuilder ();

s.append(V + " vertices , " + E + " edges\n");

for (int v = 0; v < V; v++) {

s.append(String.format("%d: ", v));

for (int w : adj[v]) {

s.append(String.format("%d ", w));

}

s.append("\n");

}



Directed Graphs

L DiGraph.java

return s.toString (). strip ();

}

public static void main(String [] args) {

String filename = args [0];

In in = new In(filename );

DiGraph G = new DiGraph(in);

StdOut.println(G);

}

}



Depth-First Search (DFS)

Same method as for undirected graphs, ie, to visit a vertex v

• Mark a vertex v as visited

• Recursively visit all unmarked vertices pointing from v

Reachability problem

• Single-source reachability: given a digraph and a source vertex s, support queries of the form is there a directed
path from s to a given target vertex v?

• Multi-source reachability: given a digraph and a set of source vertices, support queries of the form is there a
directed path from any vertex in the set to a given target vertex v?

Applications

• Program control-flow analysis such as dead-code elimination and infinite-loop detection

• Mark and sweep garbage collector



Depth-First Search (DFS)

Same method as for undirected graphs, ie, to visit a vertex v

• Mark a vertex v as visited

• Recursively visit all unmarked vertices pointing from v

Reachability problem

• Single-source reachability: given a digraph and a source vertex s, support queries of the form is there a directed
path from s to a given target vertex v?

• Multi-source reachability: given a digraph and a set of source vertices, support queries of the form is there a
directed path from any vertex in the set to a given target vertex v?

Applications

• Program control-flow analysis such as dead-code elimination and infinite-loop detection

• Mark and sweep garbage collector



Depth-First Search (DFS)

Same method as for undirected graphs, ie, to visit a vertex v

• Mark a vertex v as visited

• Recursively visit all unmarked vertices pointing from v

Reachability problem

• Single-source reachability: given a digraph and a source vertex s, support queries of the form is there a directed
path from s to a given target vertex v?

• Multi-source reachability: given a digraph and a set of source vertices, support queries of the form is there a
directed path from any vertex in the set to a given target vertex v?

Applications

• Program control-flow analysis such as dead-code elimination and infinite-loop detection

• Mark and sweep garbage collector



Depth-First Search (DFS)

Same method as for undirected graphs, ie, to visit a vertex v

• Mark a vertex v as visited

• Recursively visit all unmarked vertices pointing from v

Reachability problem

• Single-source reachability: given a digraph and a source vertex s, support queries of the form is there a directed
path from s to a given target vertex v?

• Multi-source reachability: given a digraph and a set of source vertices, support queries of the form is there a
directed path from any vertex in the set to a given target vertex v?

Applications

• Program control-flow analysis such as dead-code elimination and infinite-loop detection

• Mark and sweep garbage collector



Breadth-First Search (BFS)

Same method as for undirected graphs, ie, repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices pointing from v and mark them

BFS computes shortest paths (fewest number of edges) from source vertex s to all other vertices in a digraph in time
proportional to E + V

Multiple-source shortest paths: given a digraph and a set of source vertices, find shortest path from any vertex in the
set to each other vertex; solution: use BFS, but initialize by enqueuing all source vertices



Breadth-First Search (BFS)

Same method as for undirected graphs, ie, repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices pointing from v and mark them

BFS computes shortest paths (fewest number of edges) from source vertex s to all other vertices in a digraph in time
proportional to E + V

Multiple-source shortest paths: given a digraph and a set of source vertices, find shortest path from any vertex in the
set to each other vertex; solution: use BFS, but initialize by enqueuing all source vertices



Breadth-First Search (BFS)

Same method as for undirected graphs, ie, repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices pointing from v and mark them

BFS computes shortest paths (fewest number of edges) from source vertex s to all other vertices in a digraph in time
proportional to E + V

Multiple-source shortest paths: given a digraph and a set of source vertices, find shortest path from any vertex in the
set to each other vertex; solution: use BFS, but initialize by enqueuing all source vertices



Breadth-First Search (BFS)

Same method as for undirected graphs, ie, repeat until queue is empty

• Remove vertex v from queue

• Add to queue all unmarked vertices pointing from v and mark them

BFS computes shortest paths (fewest number of edges) from source vertex s to all other vertices in a digraph in time
proportional to E + V

Multiple-source shortest paths: given a digraph and a set of source vertices, find shortest path from any vertex in the
set to each other vertex; solution: use BFS, but initialize by enqueuing all source vertices



Topological Sort
Precedence-constrained scheduling: given a set of jobs to be completed, with precedence constraints that specify that
certain jobs have to be completed before certain other jobs are begun, how can we schedule the jobs such that they are
all completed while still respecting the constraints?

Example (precedence-constrained course scheduling problem)

Algorithms Linear Algebra Calculus

Theoretical CS

Databases Introduction to CS

Artificial Intelligence Robotics

Advanced Programming

Computational Biology Machine Learning Neural Networks

Scientific Computing

A digraph model for the problem

0

1
2

3
4

5

6
7 8

9 10

11 12



Topological Sort
Precedence-constrained scheduling: given a set of jobs to be completed, with precedence constraints that specify that
certain jobs have to be completed before certain other jobs are begun, how can we schedule the jobs such that they are
all completed while still respecting the constraints?

Example (precedence-constrained course scheduling problem)

Algorithms Linear Algebra Calculus

Theoretical CS

Databases Introduction to CS

Artificial Intelligence Robotics

Advanced Programming

Computational Biology Machine Learning Neural Networks

Scientific Computing

A digraph model for the problem

0

1
2

3
4

5

6
7 8

9 10

11 12



Topological Sort
Precedence-constrained scheduling: given a set of jobs to be completed, with precedence constraints that specify that
certain jobs have to be completed before certain other jobs are begun, how can we schedule the jobs such that they are
all completed while still respecting the constraints?

Example (precedence-constrained course scheduling problem)

Algorithms Linear Algebra Calculus

Theoretical CS

Databases Introduction to CS

Artificial Intelligence Robotics

Advanced Programming

Computational Biology Machine Learning Neural Networks

Scientific Computing

A digraph model for the problem

0

1
2

3
4

5

6
7 8

9 10

11 12



Topological Sort
Precedence-constrained scheduling: given a set of jobs to be completed, with precedence constraints that specify that
certain jobs have to be completed before certain other jobs are begun, how can we schedule the jobs such that they are
all completed while still respecting the constraints?

Example (precedence-constrained course scheduling problem)

Algorithms Linear Algebra Calculus

Theoretical CS

Databases Introduction to CS

Artificial Intelligence Robotics

Advanced Programming

Computational Biology Machine Learning Neural Networks

Scientific Computing

A digraph model for the problem

0

1
2

3
4

5

6
7 8

9 10

11 12



Topological Sort
Topological sort: given a directed acyclic graph (DAG), put the vertices in order such that all its edges point from a
vertex earlier in the order to a vertex later in the order

A digraph has a topological order if and only if it is a DAG

Topological order for the precedence-constrained course scheduling problem

8

edges all
point down

prerequisites
all satisfied

Calculus

7

2

3

Linear Algebra

Introduction to CS

Advanced Programming

0 Algorithms

6

9

10

Theoretical CS

Artificial Intelligence

Robotics

11 Machine Learning

12 Neural Networks

1

5

4

Databases

Scientific Computing

Computational Biology



Topological Sort
Topological sort: given a directed acyclic graph (DAG), put the vertices in order such that all its edges point from a
vertex earlier in the order to a vertex later in the order

A digraph has a topological order if and only if it is a DAG

Topological order for the precedence-constrained course scheduling problem

8

edges all
point down

prerequisites
all satisfied

Calculus

7

2

3

Linear Algebra

Introduction to CS

Advanced Programming

0 Algorithms

6

9

10

Theoretical CS

Artificial Intelligence

Robotics

11 Machine Learning

12 Neural Networks

1

5

4

Databases

Scientific Computing

Computational Biology



Topological Sort
Topological sort: given a directed acyclic graph (DAG), put the vertices in order such that all its edges point from a
vertex earlier in the order to a vertex later in the order

A digraph has a topological order if and only if it is a DAG

Topological order for the precedence-constrained course scheduling problem

8

edges all
point down

prerequisites
all satisfied

Calculus

7

2

3

Linear Algebra

Introduction to CS

Advanced Programming

0 Algorithms

6

9

10

Theoretical CS

Artificial Intelligence

Robotics

11 Machine Learning

12 Neural Networks

1

5

4

Databases

Scientific Computing

Computational Biology



Topological Sort
Topological sort: given a directed acyclic graph (DAG), put the vertices in order such that all its edges point from a
vertex earlier in the order to a vertex later in the order

A digraph has a topological order if and only if it is a DAG

Topological order for the precedence-constrained course scheduling problem

8

edges all
point down

prerequisites
all satisfied

Calculus

7

2

3

Linear Algebra

Introduction to CS

Advanced Programming

0 Algorithms

6

9

10

Theoretical CS

Artificial Intelligence

Robotics

11 Machine Learning

12 Neural Networks

1

5

4

Databases

Scientific Computing

Computational Biology



Topological Sort

L DiCycle.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DiCycle {

private boolean [] marked;

private int[] edgeTo;

private boolean [] onStack;

private LinkedStack <Integer > cycle;

public DiCycle(DiGraph G) {

marked = new boolean[G.V()];

edgeTo = new int[G.V()];

onStack = new boolean[G.V()];

for (int v = 0; v < G.V(); v++) {

if (! marked[v] && cycle == null) {

dfs(G, v);

}

}

}

public boolean hasCycle () {

return cycle != null;

}

public Iterable <Integer > cycle() {

return cycle;

}

private void dfs(DiGraph G, int v) {

marked[v] = true;

onStack[v] = true;

for (int w : G.adj(v)) {

if (cycle != null) {



Topological Sort

L DiCycle.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DiCycle {

private boolean [] marked;

private int[] edgeTo;

private boolean [] onStack;

private LinkedStack <Integer > cycle;

public DiCycle(DiGraph G) {

marked = new boolean[G.V()];

edgeTo = new int[G.V()];

onStack = new boolean[G.V()];

for (int v = 0; v < G.V(); v++) {

if (! marked[v] && cycle == null) {

dfs(G, v);

}

}

}

public boolean hasCycle () {

return cycle != null;

}

public Iterable <Integer > cycle() {

return cycle;

}

private void dfs(DiGraph G, int v) {

marked[v] = true;

onStack[v] = true;

for (int w : G.adj(v)) {

if (cycle != null) {



Topological Sort

L DiCycle.java

return;

} else if (! marked[w]) {

edgeTo[w] = v;

dfs(G, w);

} else if (onStack[w]) {

cycle = new LinkedStack <Integer >();

for (int x = v; x != w; x = edgeTo[x]) {

cycle.push(x);

}

cycle.push(w);

cycle.push(v);

}

}

onStack[v] = false;

}

public static void main(String [] args) {

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

DiCycle finder = new DiCycle(G);

if (finder.hasCycle ()) {

StdOut.print("Directed cycle: ");

for (int v : finder.cycle ()) {

StdOut.print(v + " ");

}

StdOut.println ();

} else {

StdOut.println("No directed cycle");

}

}

}



Topological Sort

& ~/workspace/dsa/programs

$ java dsa.DiCycle ../ data/tinyDG.txt

Directed cycle: 3 5 4 3

Directed cycle detection applications

• Cyclic inheritance

• Circular references in spreadsheet calculations



Topological Sort

& ~/workspace/dsa/programs

$ java dsa.DiCycle ../ data/tinyDG.txt

Directed cycle: 3 5 4 3

Directed cycle detection applications

• Cyclic inheritance

• Circular references in spreadsheet calculations



Topological Sort

& ~/workspace/dsa/programs

$ java dsa.DiCycle ../ data/tinyDG.txt

Directed cycle: 3 5 4 3

Directed cycle detection applications

• Cyclic inheritance

• Circular references in spreadsheet calculations



Topological Sort

DFS orders

• Preorder: order in which dfs() is called

• Postorder: order in which dfs() returns

• Reverse postorder: reverse order in which dfs() returns



Topological Sort

DFS orders

• Preorder: order in which dfs() is called

• Postorder: order in which dfs() returns

• Reverse postorder: reverse order in which dfs() returns



Topological Sort

L DFSOrders.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DFSOrders {

private boolean [] marked;

private int[] pre;

private int[] post;

private LinkedQueue <Integer > preorder;

private LinkedQueue <Integer > postorder;

private int preCounter;

private int postCounter;

public DFSOrders(DiGraph G) {

marked = new boolean[G.V()];

pre = new int[G.V()];

post = new int[G.V()];

preorder = new LinkedQueue <Integer >();

postorder = new LinkedQueue <Integer >();

for (int v = 0; v < G.V(); v++) {

if (! marked[v]) {

dfs(G, v);

}

}

}

public int pre(int v) {

return pre[v];

}

public int post(int v) {

return post[v];

}



Topological Sort

L DFSOrders.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class DFSOrders {

private boolean [] marked;

private int[] pre;

private int[] post;

private LinkedQueue <Integer > preorder;

private LinkedQueue <Integer > postorder;

private int preCounter;

private int postCounter;

public DFSOrders(DiGraph G) {

marked = new boolean[G.V()];

pre = new int[G.V()];

post = new int[G.V()];

preorder = new LinkedQueue <Integer >();

postorder = new LinkedQueue <Integer >();

for (int v = 0; v < G.V(); v++) {

if (! marked[v]) {

dfs(G, v);

}

}

}

public int pre(int v) {

return pre[v];

}

public int post(int v) {

return post[v];

}



Topological Sort

L DFSOrders.java

public Iterable <Integer > pre() {

return preorder;

}

public Iterable <Integer > post() {

return postorder;

}

public Iterable <Integer > reversePost () {

LinkedStack <Integer > reverse = new LinkedStack <Integer >();

for (int v : postorder) {

reverse.push(v);

}

return reverse;

}

private void dfs(DiGraph G, int v) {

marked[v] = true;

pre[v] = preCounter ++;

preorder.enqueue(v);

for (int w : G.adj(v)) {

if (! marked[w]) {

dfs(G, w);

}

}

postorder.enqueue(v);

post[v] = postCounter ++;

}

public static void main(String [] args) {

In in = new In(args [0]);

DiGraph G = new DiGraph(in);

DFSOrders dfsOrders = new DFSOrders(G);

StdOut.println(" v pre post");

StdOut.println("--------------");



Topological Sort

L DFSOrders.java

for (int v = 0; v < G.V(); v++) {

StdOut.printf("%4d %4d %4d\n", v, dfsOrders.pre(v), dfsOrders.post(v));

}

StdOut.print("Pre -order: ");

for (int v : dfsOrders.pre()) {

StdOut.print(v + " ");

}

StdOut.println ();

StdOut.print("Post -order: ");

for (int v : dfsOrders.post ()) {

StdOut.print(v + " ");

}

StdOut.println ();

StdOut.print("Reverse post -order: ");

for (int v : dfsOrders.reversePost ()) {

StdOut.print(v + " ");

}

StdOut.println ();

}

}



Topological Sort

& ~/workspace/dsa/programs

$ java dsa.DFSOrders ../ data/tinyDG.txt

v pre post

--------------

0 0 5

1 5 4

2 4 0

3 3 1

4 2 2

5 1 3

6 6 11

7 12 12

8 11 10

9 7 9

10 10 8

11 8 7

12 9 6

Preorder: 0 5 4 3 2 1 6 9 11 12 10 8 7

Postorder: 2 3 4 5 1 0 12 11 10 9 8 6 7

Reverse postorder: 7 6 8 9 10 11 12 0 1 5 4 3 2



Topological Sort

& ~/workspace/dsa/programs

$ java dsa.DFSOrders ../ data/tinyDG.txt

v pre post

--------------

0 0 5

1 5 4

2 4 0

3 3 1

4 2 2

5 1 3

6 6 11

7 12 12

8 11 10

9 7 9

10 10 8

11 8 7

12 9 6

Preorder: 0 5 4 3 2 1 6 9 11 12 10 8 7

Postorder: 2 3 4 5 1 0 12 11 10 9 8 6 7

Reverse postorder: 7 6 8 9 10 11 12 0 1 5 4 3 2



Topological Sort

Topological sort (solution)

• Run depth-first search

• Return vertices in reverse postorder



Topological Sort

Topological sort (solution)

• Run depth-first search

• Return vertices in reverse postorder



Topological Sort

L Topological.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class Topological {

private Iterable <Integer > order;

public Topological(DiGraph G) {

DiCycle finder = new DiCycle(G);

if (finder.hasCycle ()) {

order = null;

} else {

DFSOrders dfs = new DFSOrders(G);

order = dfs.reversePost ();

}

}

public boolean hasOrder () {

return order != null;

}

public Iterable <Integer > order() {

return order;

}

public static void main(String [] args) {

In in = new In(args [0]);

String delim = args [1];

SymbolDiGraph sg = new SymbolDiGraph(in, delim );

Topological topological = new Topological(sg.diGraph ());

if (topological.hasOrder ()) {

for (int v : topological.order ()) {

StdOut.println(sg.nameOf(v));

}



Topological Sort

L Topological.java

package dsa;

import stdlib.In;

import stdlib.StdOut;

public class Topological {

private Iterable <Integer > order;

public Topological(DiGraph G) {

DiCycle finder = new DiCycle(G);

if (finder.hasCycle ()) {

order = null;

} else {

DFSOrders dfs = new DFSOrders(G);

order = dfs.reversePost ();

}

}

public boolean hasOrder () {

return order != null;

}

public Iterable <Integer > order() {

return order;

}

public static void main(String [] args) {

In in = new In(args [0]);

String delim = args [1];

SymbolDiGraph sg = new SymbolDiGraph(in, delim );

Topological topological = new Topological(sg.diGraph ());

if (topological.hasOrder ()) {

for (int v : topological.order ()) {

StdOut.println(sg.nameOf(v));

}



Topological Sort

L Topological.java

} else {

StdOut.println("Topological order does not exist");

}

}

}



Topological Sort

& ~/workspace/dsa/programs

$ more ../ data/jobs.txt

Algorithms/Theoretical CS/Databases/Scientific Computing

Introduction to CS/Advanced Programming/Algorithms

Advanced Programming/Scientific Computing

Scientific Computing/Computational Biology

Theoretical CS/Computational Biology/Artificial Intelligence

Linear Algebra/Theoretical CS

Calculus/Linear Algebra

Artificial Intelligence/Neural Networks/Robotics/Machine Learning

Machine Learning/Neural Networks

& ~/workspace/dsa/programs

$ java dsa.Topological ../ data/jobs.txt "/"

Calculus

Linear Algebra

Introduction to CS

Advanced Programming

Algorithms

Theoretical CS

Artificial Intelligence

Robotics

Machine Learning

Neural Networks

Databases

Scientific Computing

Computational Biology



Topological Sort

& ~/workspace/dsa/programs

$ more ../ data/jobs.txt

Algorithms/Theoretical CS/Databases/Scientific Computing

Introduction to CS/Advanced Programming/Algorithms

Advanced Programming/Scientific Computing

Scientific Computing/Computational Biology

Theoretical CS/Computational Biology/Artificial Intelligence

Linear Algebra/Theoretical CS

Calculus/Linear Algebra

Artificial Intelligence/Neural Networks/Robotics/Machine Learning

Machine Learning/Neural Networks

& ~/workspace/dsa/programs

$ java dsa.Topological ../ data/jobs.txt "/"

Calculus

Linear Algebra

Introduction to CS

Advanced Programming

Algorithms

Theoretical CS

Artificial Intelligence

Robotics

Machine Learning

Neural Networks

Databases

Scientific Computing

Computational Biology



Topological Sort

& ~/workspace/dsa/programs

$ more ../ data/jobs.txt

Algorithms/Theoretical CS/Databases/Scientific Computing

Introduction to CS/Advanced Programming/Algorithms

Advanced Programming/Scientific Computing

Scientific Computing/Computational Biology

Theoretical CS/Computational Biology/Artificial Intelligence

Linear Algebra/Theoretical CS

Calculus/Linear Algebra

Artificial Intelligence/Neural Networks/Robotics/Machine Learning

Machine Learning/Neural Networks

& ~/workspace/dsa/programs

$ java dsa.Topological ../ data/jobs.txt "/"

Calculus

Linear Algebra

Introduction to CS

Advanced Programming

Algorithms

Theoretical CS

Artificial Intelligence

Robotics

Machine Learning

Neural Networks

Databases

Scientific Computing

Computational Biology


	Outline
	Directed Graphs
	Depth-First Search (DFS)
	Breadth-First Search (BFS)
	Topological Sort

